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Abstract 
Caries is one of the most well-known diseases that affect billions of lives around 

the world. Most people experienced at least one or several symptoms such as tooth 

pain, halitosis, and eventually result in tooth removal. There are many methods to 

evaluate damages from caries, and among them, dentists prefer staging to C0, C1, C2, 

C3, C4. While C0 presents a healthy tooth, C1 to C4 presents different stages of caries 

which lead to different conditions and treatments. Caries treatment is mostly expensive 

without an early diagnosis and therefore leads to financial burdens; especially in the 

under-developing country where usually lacks people’s awareness of dental hygrines 

and experienced dentists. As a result, the purpose of this study is to propose a method 

that provides early caries detection to support a dentist. 

Computer-assisted diagnosis (CAD) is a branch of artificial intelligence and 

computer science. The purpose of CAD is to enable electronic devices to observe, 

interpret relevant data, and produce a suitable output that can assist humans in making 

decisions. Machines have improved in terms of convenience and power as technology 

advances. Therefore, machines may be able to take over a variety of functions 

previously performed by people. Nowadays, many computer-vision studies prefer to 

employ image processing techniques and machine learning algorithms to solve 

different problems, since the combinations between them can partially reduce the 

complexity by learning without being programmed to perform a specific task but still 

providing an effective result based on requirements. In machine learning, neural 

networks are well-known techniques which are widely used to solve pattern recognition 

problems. Neural networks are simple to construct and often appear to be good ability 

to generalize and respond to unexpected patterns. For that season, this study applies the 

image processing and deep learning based on neural network as the main methods in 

CAD. 

Despite the fact that some researchers have sought to remedy this issue. The 

majority of them are either very complex, needing a huge load of resources and 

incurring a significant computational burden, or overly simplistic and incapable of 

producing an adequate outcome. Therefore, my proposed approach streamlined the 

most complex processes while keeping the benefits of each component. The CAD 

system mainly focuses on two processes: tooth isolation and caries detection. Firstly, 

in tooth isolation, the position of each tooth is detected in a panoramic radiograph using 
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the YOLOv3 model. The original oral images will be resized and fed into the YOLOv3 

to split out to several individual tooth images which is useful for centralized diagnosis 

later. The process can help reducing a huge workload of dentists and nurses, and play 

an important role in speeding up the diagnosis. On the other hand, the manual isolation 

of tooth images is fed to a deep convolutional neural network for caries diagnosis. The 

useful features from the images are extracted using geometry and pre-trained deep 

learning model, such as Resnet50, Xception, VGG16, ...etc., and fed into other machine 

learning models such as decision trees, naive Bayes, k-nearest neighbor, and support 

vector machine for the final diagnosis. On tooth isolation, the final result shows 

95.58%, 94.90% for precision and recall, respectively. And on caries detection, the 

final result shows 91.70%, 90.43%, and 92.67% for accuracy, sensitivity, and 

specificity. The results are better, or equivalent compared with the previous researches. 

Finally, the caries detection system is also tested on the automatic isolation tooth for a 

comprehensive assessment. The final results slightly reduce compared to caries 

detection using manual isolation and reach to 88.66%, 88.14%, and 89.47% for 

accuracy, sensitivity, and specificity, respectively. However, an automatic caries 

detection system which can conduct tooth isolation and caries detection has not been 

proposed and the reductions are small; therefore, the proposal and evaluation of the 

automatic caries detection system is important and contribute to the field of dental 

diagnosis. 

The research’s objectives were well accomplished in terms of tooth isolation 

and caries detection. The tooth was found automatically in the oral panoramic 

radiography utilizing an automated isolation tooth technique. Precision demonstrates a 

high level of detection accuracy; as a result, the procedure is advantageous and practical 

for a dentist. All facets of the matter seem to have been considered. However, the 

method may be greatly enhanced. The outcome of manual tooth isolation has surpassed 

the prior state-of-the-art in caries detection. Increased specificity demonstrates that the 

dataset and its results are balanced, consistent, and dependable. On the other side, the 

automated combination technique results in a modest decrease in total caries detection. 

However, this automatic system is a new proposal in the field of dental diagnosis and 

the reduction is small; therefore, the system can contribute to the field of dental 

diagnosis. The weak may be identified by the automated isolation tooth system's 

relativity. As a result, it could be recognized as a benefit to get a further understanding 

of the disease’s diagnosis in general. 
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CHAPTER 1  

Research Introduction 

1.1 Research Background 

1.1.1 Introduction to Oral Health 

Oral health is vital in determining the overall health and quality of life. 

Generally speaking, it refers to a state of good health free of a variety of illnesses and 

ailments, including dental caries, periodontal gum disease, dental cavities, tooth loss, 

HIV infection of the mouth, oral cancer, and Noma, in addition to congenital 

deformities such as cleft lip and palate, among others. The majority of illnesses and 

disorders have modifiable risk factors with the major noncommunicable diseases, 

which is why they are classified as such (cancer, cardiovascular diseases, chronic 

respiratory disease, dental caries, and diabetes). These risk factors include excessive 

alcohol consumption, cigarette smoking, and poor diets high in free sugar, all of which 

are on the rise across the world. A relationship has been shown between dental health 

and overall health [1], according to research. For example, diabetes mellitus has been 

shown to be associated with the progression and spread of periodontitis. A causal 

relationship exists between sugar intake and diabetes, obesity, and tooth decay as well, 
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according to the research. Increases in oral diseases are continuing to be seen in the 

majority of emerging countries, as living conditions improve and urbanization grows 

more prevalent. The major reason is an insufficient supply of fluoride (in dental 

hygiene products such as toothpaste and drinking water) and a costly barrier to 

community-based oral health treatment. Additionally, as a consequence of increasing 

marketing of sugary foods and drinks, as well as alcohol and cigarettes, there is an 

increase in the use of goods that lead to oral health problems and other 

noncommunicable disorders. 

 

1.1.2 Introduction to Dental Caries 

 

Figure 1.1 Caries on teeth (image credit [2]). 

 

Dental caries (often referred to as tooth decay or dental cavity) is a source of 

preoccupation for many individuals. Due to caries, most people have experienced a 
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toothache at least once or multiple times during their lives. Sugar is the primary cause 

of caries. It is added to food during production, cooking, and consumption, as well as 

the sugar naturally found in foods such as fruit, bread, and rice. When teeth are healthy, 

they chop and smash food into little bits to aid in the digesting process in the stomach 

and intestine. Dental caries occurs when food plaque forms on the surface of the tooth 

and converts sugar to acid, which corrodes the tooth over time. The earliest sign of 

caries is a little black (or gray) hole on the tooth's surface (Figure 1.1). However, in 

certain circumstances, caries develops on the inner surface of the tooth or in the gap 

between teeth, causing no evident symptoms. Thus, early identification of caries is 

critical for minimizing tooth affection. Without prompt treatment, caries may cause 

severe discomfort and in extreme cases, tooth loss. 

 

1.1.3 Dental Care in the Health Care System  

According to the World Health Organization (WHO), oral disorders affect over 

3.5 billion people globally [3]. Specifically, cavity and lip cancers account for around 

180,000 fatalities each year and are consistently ranked among the top 15 most 

prevalent malignancies globally. When it comes to dental cavities, the majority of 

instances are left untreated in permanent teeth. Nearly 10% of the population is 

estimated to have severe periodontal gum disease, and around 2.3 billion persons are 

estimated to have dental caries of permanent teeth. Additionally, children are 

considered to be the most vulnerable. Dental caries affects about half of all children 

globally, with around 530 million children suffering from primary tooth caries. The 

majority of illnesses are preventable and readily treatable in their early stages. 

However, therapy is often not covered by universal health insurance. Dental care is 

often prohibitively costly, accounting for 20% of people's out-of-pocket expenses in 



4 

 

many affluent nations. Dental health service demand exceeds the capacity of the health 

care system in the majority of developing countries, and is thus unaffordable to the 

majority of low- and middle-income individuals. To be specific, the direct cost of caries 

reached around US$ 298 billion worldwide in 2010. Additionally, indirect costs equal 

around US$ 144 billion and may reach US$ 442 billion in total. Consequently, 

untreated caries impairs academic and occupational performance and may result in 

personal or social difficulties. Psychosocial devastation results in a slew of associated 

difficulties and significantly reduces one's quality of life. 

 

1.1.4 Category of Dental Caries 

There are various forms of dental caries [4]. They include caries of the enamel, 

reversible caries, early childhood, smooth surface, pit and fissure, acute dental caries, 

and primary and secondary caries. An illustration will be explained in further detail as 

in Figure 1.2: 

 

Figure 1.2 Healthy and caries types tooth (image credit [2]). Structure of healthy 

tooth and a tooth with decay. 
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1. Caries of the enamel: When bacteria consume food plaques, they produce acids 

that erode the tooth enamel. Bacteria get energy from sugars found in food and 

generate lactic acid. Acid lactic acid is one of the components in a chain reaction 

that demineralizes enamel crystals. Corrosion will continue to eat away at 

enamel until bacteria reach the surface of the dentin. 

2. Smooth surface cavity (Damage to the tooth's side or perimeter): Smooth-

surface cavities are more readily addressed due to their moderate growth rate. 

Often, they will resolve on their own with the assistance of fluoride therapies 

like dental gels, toothpaste, varnish, or fluoride-enriched water. Cavities often 

take a long time to propagate through smooth-surface enamel. However, if this 

occurs, a filling will be required. 

3. Root cavity: A root cavity may grow at the base of the tooth, and it is often 

positioned on the unobservable side. Unlike the crown, which is covered with 

a tough, protective enamel, the root surface is uncovered and vulnerable. When 

the gums recede below the enamel line or when they peel away from a tooth, 

the root surface of the tooth becomes visible. Tooth decay is more prone to 

develop in an exposed tooth due to its weaker and more brittle structure. 

Besides, there are several caries types that are usually not listed such as: 

4. Acute caries: This condition affects a large number of teeth fast. In contrast to 

other kinds of caries, lesions in this type of caries are often grey or light brown 

in color. Due to the poor quality of these caries, it is difficult to locate afflicted 

teeth. Acute caries is often associated with sensitive teeth and pulp exposure. 

5. Caries in early childhood is often caused in tiny infants by the newborn being 

administered milk at night. For a lengthy period of time, a little amount of milk 

remains in the mouth, ferments, and produces bacteria nests between the teeth. 
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Caries in early infancy causes gum inflammation, teeth discoloration, and 

finally acute pain, impairing communication, eating, and sleeping. The earliest 

signs appear on the two upper front teeth. The most common prevention 

technique is to avoid feeding the newborn at night, even if teeth begin to appear. 

 

1.1.5 Stages of Dental Caries 

To identify caries, it is vital to know the progression of the disease in the tooth. 

Caries phases must be accurately identified as a result. There are several methods to 

explain the stages of caries in practice. The development of sickness is a well-known 

scale as described in Figure 1.3. 

 

Figure 1.3 Stages of caries, C1 to C4 (image credit [5]). 
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C0 - At this point, there is no visible damage to the surface of the tooth. There 

may be some white patches or coloring at this point, so be cautious. In contrast, stains 

may be eliminated and teeth restored with the proper dental care method. 

C1 - This is the initial stage at which the enamel of a tooth is impacted by caries, 

and it is designated C1 (minor caries). Patients do not experience anything like as pain, 

discomfort, or annoyance as there are no nerves in the enamel layer (pain, discomfort, 

or inconvenience). Enamel degradation that results in black spots is irreversible. Caries 

C1 patients should consult a doctor as soon as possible so that therapy may begin 

promptly. 

C2 - Dentin is now compromised, causing this stage of the sickness C2 

(moderate caries). Teeth that have been exposed to the dentin become sensitive. Some 

persons get a tingling sense in their teeth when they eat or drink anything cold. 

Accordingly, patients should seek prompt dental treatment so that the affected region 

may be properly cleaned and the fissure may be permanently sealed. 

C3 - at this stage, both enamel and dentin have been perforated and pulp drilled. 

The infection has now migrated to the tooth core, which contains several nerves and 

blood arteries. Inflammation and affection are very harmful and cause agonizing pain. 

If the bacteria penetrate further into the tissue, the diseased area will be suppurated, the 

face will enlarge, the mouth will smell, and the pulp will be destroyed. In this case, the 

dying pulp of the tooth must be removed. 

C4 (severe caries which is the last phrase) - at this point, just the tooth's root 

remains; the tooth's whole crown has been destroyed. The body may easily get infected 

with various bacteria through the death pulp. Tooth is mostly destroyed or showed in 

black. To prevent infection, the remaining root of the tooth must be extracted and 

replaced with an implant, bridge, or denture. 
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1.1.6 Importance of Early Treatment in Dental Caries 

Adult patients' teeth are permanent, which implies that they cannot be restored 

to their pre-existing shape or size. When an acid-damaged tooth is pulled during dental 

treatment, the tooth's ability to regenerate will be severely limited. As a consequence, 

caries should be recognized as soon as possible in order to prevent tooth damage from 

occurring. The earlier caries is discovered, the less probable it is that the tooth will need 

to be removed. As a result, early detection of caries is crucial for rapid treatment, which 

results in time, effort, and money savings for both the patient and the dentist. 

Alternatively, late detection may result in permanent damage, requiring the extraction 

of a tooth or many teeth. The identification of caries is not difficult, despite the fact that 

each patient's treatment must be adapted to their specific needs. In light of the fact that, 

the vast majority cases of caries present symptoms in the form of discoloration, 

fractured shape, or a hole in the tooth, the practical experience for identifying whether 

or not a tooth is affected seems to be the same. As people's need for early diagnosis 

grows, the problem of unskilled dentists, especially in developing countries, becomes 

even more acute. Because of this, a strong, stable, and scalable solution is necessary. 

 

1.1.7 Computer-Aid Diagnosis (CAD) for Caries  

With the advancement of medical imaging technology in recent years, 

computer-aided diagnostic systems (CADs) have become critical in the early 

identification of a variety of disorders, including cancer, diabetes, and even caries [6, 

7]. Caries may be discovered in a variety of ways and approaches. Several studies 

recommended that photoacoustic pictures, wavelengths, or ultrasound images be used 

for detection [8-10]. Other study has described a strategy using an RGB oral endoscope 
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picture [11, 12]; however, most systems lack the ability to see the detailed structure of 

the tooth, particularly the tooth root, and so fail to diagnose caries. Besides, dental 

radiograph is an simple and inexpensive imaging technique which can be conducted at 

most dental office or hospital; while other imaging technique such as CT-radiograph or 

near infrared range may be more expensive and not popular [13]. As a result, the dental 

radiographic image is the most often used method and is preferred for the early 

identification of caries using CAD. 

1.2 Objectives 

The purpose of this study is to develop a computer-aided diagnostic system that 

will assist dentists in the caries detection process by meeting the following criteria: 

1. Automatic extraction of a single tooth from a panoramic radiograph - 

this contribution helps save time and effort for the nurse and dentist 

when it comes to tooth isolation, which is often time-consuming and 

exhausting for a human being. The tooth's position should be indicated, 

along with the bounding box that may be used to slice the tooth for 

subsequent diagnosis. 

2. Caries detection: caries teeth should be identified among normal teeth. 

This contribution improves the accuracy of the dentist's diagnosis and 

helps in training new dentists. Additionally, the system might give an 

early diagnosis for people living in faraway places without access to 

medical professionals or facilities. 

By archiving those mentioned targets, the implement of this study can help 

dentist in two tasks: caries patients screening and caries diagnosis. While the screening 
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task can remove a large of certain non-caries patients, the diagnosis task can help in 

consolidating the dentist’s final diagnosis. 

1.3 Thesis Structure 

There are six sections to this dissertation: an introduction, background 

information, tooth localization, caries detection, automated system combination, and a 

conclusion and suggestions for further research. The first chapter examines the broad 

issue of oral health and the relevance of performing this study. The remainder is as 

follows: 

Chapter 2 contains the foundational knowledge of this study. This may assist 

readers in gaining a better idea of the suggested strategy prior to delving further in the 

proposed method. 

Chapter 3 discusses the approach for tooth localization using the Yolov3 model. 

The procedure begins with the original panoramic radiograph as its input. The result is 

a bounding box that positions each individual tooth, thereby segmenting it for further 

diagnosis. 

Chapter 4 presented a classification system for caries and non-caries teeth. Each 

tooth, which is divided manually from panoramic radiographs dataset, was diagnosed 

in this section. For assessment purposes, the final outcome was compared to related 

studies. 

Chapter 5 synthesizes the methods given in chapters three and four. This 

chapter's outcome is compared to chapter four in order to provide a thorough 

evaluation. 
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Chapter 6 summarizes the whole study, provides the author's perspective, 

evaluates the research's strengths and weaknesses, and concludes with a strategy for 

future work.  
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CHAPTER 2  

Background Knowledge 

Before detailing the explanation of the following chapter, I present the 

necessary background information. First, the first section provides a broad overview of 

computer vision and image processing generally. Then, the second section discusses 

neural networks and the system's unique topologies. 

2.1 Computer Vision and Image Processing  

Image processing is a subfield of computer science concerned with the analysis 

and manipulation of digital images [14]; also known as a kind of signal processing that 

takes a photograph as an input and outputs it in a number of formats and qualities. The 

purpose of image processing is to improve the quality of a raw image (by smoothing, 

sharpening, and contrasting it, for illustration) by the use of computer software. 

By decomposing the raw picture into a collection of the most relevant data, 

image processing methods, such as feature extraction, are utilized to tackle the 

challenge of describing an image [15]. When an image is acquired, a feature set 

(alternatively called a feature vector) is formed. This feature set comprises a collection 

of values that define the image's unique characteristics. Due to the attributes retrieved 

from the picture, our perception of the raw image may be significantly affected. In 
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practice, the great majority of picture data is often redundant; just a few critical 

characteristics need to be collected in order to make demand-driven judgments 

regarding the image. There are characteristics with varying degrees of complexity. The 

intensity level, the form of the item, and the object's size are all well-known low-level 

features. Semantic features of an object are high-level properties that express the notion 

of the thing in human terms. Because the use of features varies significantly by purpose, 

no one characteristic can guarantee the optimum recognition outcomes. Color is 

efficient in differentiating between night and day sceneries, for example, but circularity 

is more successful at differentiating between a ball and a tree picture. In classification 

and recognition problems, the approach of feature extraction (i.e., the process of 

creating a collection of features) becomes more significant. 

 

2.2 Machine Learning 

Machine learning is a study of computer algorithms that may improve 

automatically via experience and the usage of data that is referred to as machine 

learning (ML)[16]. Machine learning algorithms create a model based on sample data, 

known as training data, in order to make predictions or choices without being explicitly 

coded [17]. Computer vision, medicine, email filtering, and voice recognition are just 

a few of the fields where machine learning algorithms are being utilized to solve 

problems where it is difficult or impossible to create traditional algorithms to 

accomplish the required tasks [18]. 

Statistical learning is a subset of machine learning that is closely connected to 

computational statistics, which is concerned with generating predictions using 

computers; nevertheless, statistical learning is not all of machine learning. The 
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discipline of machine learning benefits from the study of mathematical optimization 

since it provides tools, theory, and application fields. Data mining is a closely 

connected topic of research that focuses on exploratory data analysis utilizing 

unsupervised learning techniques to solve problems [19]. Some machine learning 

implementations make use of data and neural networks in a manner that is intended to 

simulate the functioning of a biological brain. Machine learning is referred to as 

predictive analytics when it is used to solve business challenges across a variety of 

industries. 

In deep learning, each level learns to turn its input data into a representation 

that is gradually more abstract and composite. For example, of face recognition 

application, the raw input may be a matrix of pixels; the first representational layer may 

abstract the pixels and encode edges; the second layer may compose and encode 

arrangements of edges; the third layer may encode a nose and eyes; and the fourth layer 

may recognize that the image contains a face. It is important to note that a deep learning 

process may perform learning itself which characteristics should be ideally placed in 

which levels. It is still necessary to fine-tune the results manually; for example, 

adjusting the number of layers and the size of the layers might yield varying levels of 

abstraction [20, 21].  

The term "deep" in the phrase "deep learning" refers to the number of layers 

that the data is changed through. Deep learning systems have a significant depth of 

credit assignment path (CAP). The CAP is the sequence of transformations that takes 

place from input to output. CAPs are used to represent links between input and output 

that might be considered possibly causative. In a feedforward neural network, the depth 

of the CAPs is the same as the depth of the network plus one (as the output layer is also 

parameterized). The CAP depth is theoretically limitless in recurrent neural networks, 
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in which a signal may travel through a layer more than once [22]. Although there is no 

commonly accepted depth threshold that distinguishes shallow learning from deep 

learning, the majority of scholars believe that deep learning requires CAP depths 

greater than 2. It has been shown that CAP of depth 2 is a universal approximator in 

the sense that it can simulate any function. More layers, however, do not improve the 

network's capacity to approximate functions in any way. Deep models (CAP > 2) are 

able to extract better features than shallow models, and as a result, the addition of more 

layers aids in the successful learning of the features. 

 

2.2.1 Decision Tree  

Decision trees (DTs) are a subclass of supervised machine learning techniques 

that recreate the tree-like structure of data by segmenting it according to a specified 

parameter defined as an attribute's "test" [23]. The root, nodes, and leaves are the three 

fundamental components of the tree. The root node denotes the start of the dataset as a 

whole. Each node has an attribute test that categorizes the data as sub-nodes or leaves. 

The final outcome that dictates a path of action is the leaf. 

Finally, and probably most significantly, the bulk of complicated, specialized 

situations are impossible of being grasped via the use of a simple linear model. They 

need a non-linear approach to convey topics in a unified fashion. As a result, the DT 

structure becomes substantially larger and branches to a large number of nodes, often 

leading to overfitting. To avoid overfitting, a constraint on the number of branching 

nodes and leaves is given under specific parameters, including 1) the minimum number 

of training instances in each leaf; and 2) the tree's depth, defined as the maximum 

number of nodes from the root to a leaf.  
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Figure 2.1 describes an example of fruits classification using a decision tree 

model.  In the example, the model classifies three types of fruits (apple, cucumber, and 

banana) using the shape (round or not round) and color (yellow or not yellow) features. 

In the first round, by using the shape if it is round, the apple has been defined when the 

answer comes to yes. Otherwise, that should be other fruits, such as banana or 

cucumber, when the answer comes to no. In the second round, by using the color if it 

is yellow, banana is defined when the answer comes to yes. Otherwise, cucumber is 

defined when answer comes to no. 

 

Figure 2.1 Examples of fruits classification using decision tree. 
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2.2.2 K-nearest Neighbor 

K-nearest neighbor (KNN) is a well-known statistic-based machine learning 

technique that was invented in 1951 by Evelyn Fix and Joseph Hodges [24],  and 

subsequently extended by Thomas Cover [25]. KNN is used to tackle problems 

involving regression and classification. In both circumstances, the training sample's 

input is a set of k-values representing the number of nearest samples, and the output is 

dependent on whether k-NN is used for classification or regression. 

 

  

Figure 2.2 Example of KNN classification. a) two known-classes b) adding new 

sample c) assign the new sample to known-class with k = 3. 
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Class membership is the result of k-NN categorization. A majority vote of its 

neighbors classifies an item, with the object being assigned to the most common class 

among its k closest neighbors (k is a positive integer, typically small). If k equals 1, the 

item is simply allocated to the class of its closest neighbor. 

The value of an object's attribute is returned as the result of a k-NN regression 

analysis. There are k-nearest neighbors, and this number is the average of their values. 

When using the k-NN model with the parameter k = 3, the procedure depicted in Figure 

2.2 is as follows: As a result, three samples that are closest to the new unknown 

datapoint are defined. Distance metrics such as Euclidean distance, Manhattan 

distance, and Chebyshev distance are used to measure the length of a path between an 

unknown sample and one or more nearby neighbors. The formula of distance metric is 

shown in formulas (2.1),(2.2), and (2.3). 

 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑(𝑥𝑖 − 𝑦𝑖)
2 

 

(2.1) 

   

 
𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑|(𝑥𝑖 − 𝑦𝑖)| 

 
(2.2) 

   

 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = max
𝑖
|𝑥𝑖 − 𝑦𝑖| (2.3) 

 

Following the calculation of the k number of nearest neighbors, I assign the class 

of the new unknown point based on the class of the majority of neighbors in the area 

around the point. Two of the nearest neighbors belong to class B, while one of the 

nearest neighbors belong to class A, in this case. As a result, class B is assigned to the 

newly discovered unknown location. 
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2.2.3 Naïve Bayes  

Naive Bayes (NB) [26] is one of the well-known probabilistic classifier 

machine learning techniques based on Bayes’ theorem with an independence 

assumption between features. In basic words, a Naive Bayes classifier asserts that the 

existence of one feature in a class is independent to the presence of any other feature. 

The Naive Bayes model is easy to create and is particularly suitable for enormous data 

sets, and also is recognized to beat even the most powerful classification systems owing 

to its simplicity. 

Bayes theorem aims to compute a posterior probability 𝑃(𝑦|𝑥) from 𝑃(𝑦), 

𝑃(𝑥), and 𝑃(𝑥|𝑦) as described in Equation (2.4) and (2.5): 

 

 

𝑃(𝑌𝑘|𝑥) =
𝑃(𝑥|𝑌𝑘)𝑃(𝑌𝑘)

𝑃(𝑥)
 

(2.4) 

   

   

 𝑃(𝑌𝑘|𝑋) = 𝑃(𝑥1|𝑌𝑘) × 𝑃(𝑥1|𝑌𝑘) × …× 𝑃(𝑥𝑛|Y) × 𝑃(𝑌𝑘) (2.5) 

   

where: 

𝑃(𝑦|𝑥) is the posterior probability of class 𝑐 given predictor 𝑥. 

𝑃(𝑌) is the prior probability of class. 

𝑃(𝑥|𝑦) is the likelihood which is the probability of predictor given class. 

𝑃(𝑦|𝑥) is the prior probability of predictor. 

 

2.2.4 Random Forest 

In 1995, Tim Kan Ho [27] developed an ensemble learning system for 

regression, classification, and other tasks that he named random forest (also known as 

random decision forests). RF is an acronym for Random Forest, which is an 
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abbreviation for Random Decision Forest. In order to address Eugene Kleinberg's 

"stochastic discrimination" approach [28-30], Ho devised a technique. However, 

whereas in classification problems, the output of a random forest is a class that has been 

selected by the majority of trees, regression tasks provide the mean or average forecast 

of the individual trees. If overfitting from the training set is avoided, then random 

choice forests outperform ordinary decision trees in terms of performance. Random 

forests consistently beat choice trees in the vast majority of situations, despite the fact 

that data attributes may have an impact on the ultimate performance of the model. 

Figure 2.3 depicts the process by which random forests generate a result based on the 

majority vote of tree outcomes. 

For further information, in 2006, Leo Breiman and Adele Cutler submitted a 

"trademark" application for the expansion of random forests. Using Ho's random 

selection features in conjunction with Breiman's bagging notion, the goal is to generate 

a collection of decision trees with a controlled variance. Finally, random forests are 

generally used as a black box technique since they may frequently provide fantastic 

results with a small amount of input data and configuration. 
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Figure 2.3 Example of random forest. 

 

2.2.5 Support Vector Machine 

Support vector machines (SVMs, sometimes referred to as support vector 

networks) are supervised learning models and related algorithms invented by Vladimir 
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Vapnik at AT&T Bell Laboratories in 1992 [31]. SVMs are the most powerful approach 

for classification and regression analysis that is based on statistical learning and 

Vapnik-Chervonenkis theory. 

In this scenario, the SVM model seeks to determine the ideal hyperplane that 

best describes the difference between data, caries, and non-caries. To keep the training 

set small, the Gaussian radial basis function is used in the classifier. For a given training 

data 𝐷 = {𝑥𝑖, 𝑦𝑖} and 𝑦𝑖  ∈ {−1,1} the SVM classifier and the mapping function of the 

Gaussian kernel can be described as follows in Equation (2.6) and (2.7) : 

 

min
𝜔,𝑏,𝜉

1

2
||𝑊||

2
+ 𝐶∑𝜉𝑖

2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑊
𝑇𝑋𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, ∀𝑖

𝑖

 (2.6) 

 

where 𝐶 >  0 is the selected parameter and 𝜉 is a set of slack variables. 

 

 

K (X, Y)  =  𝑒
||𝑋−𝑌||

2

𝐴  

 

(2.7) 

   

where 𝐾 is the kernel function and 𝐴 is the constant. 
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2.3 Convolutional Neural Network 

Convolutional neural networks (CNNs) are a form of neural networks that are 

employed mostly for grid-like data, such as sequences and images [32]. The phrase 

"convolutional" stems from the fact that CNNs undertake convolution operations as 

opposed to the traditional weighted sum utilized in traditional feedforward neural 

network. 

Convolution operation is a mechanism to calculate weighted sum in which a 

collection of weights, termed a kernel or a filter, is shared between local patches in the 

input. Convolution of input I with a kernel W of size H×H is defined as follows in 

Equation (2.8) for 2D discrete data such as digital images: 

𝑂(𝑚, 𝑛) =  𝑋(𝑚, 𝑛) ×𝑊(𝑚, 𝑛) 

          =  ∑ ∑ 𝑊(𝑖, 𝑗)𝑋(𝑚 − 𝑖, 𝑛 − 𝑗)

𝐻−1
2

𝑗= 
𝐻−1
2

𝐻−1
2

𝑖= 
𝐻−1
2

  
(2.8) 

Typically, a CNN is structured as a series of phases, with the initial stages 

consisting of two types of layers, namely convolutional and pooling layers [21]. Planes 

that arrange the nodes in a convolutional layer are known as feature maps. In the 

convolutional layer, inputs are convolved with a set of weights known as a filter to 

generate an output feature map containing specific features. Various inputs are 

convolved with various filters. In addition, several filter banks are convolved with an 

input to extract distinct characteristics. 
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Figure 2.4 A model of convolutional neural network. 

 

The model begins with a convolution layer whose activation function varies. 

Following an activation function is the pooling layer as illustrated in Figure 2.4. In the 

pooling layer, the input values of local regions are statistically summed into one output 

unit. Multiple methods of pooling may be utilized. For instance, max pooling returns 

the largest value inside the region, whereas average pooling returns the average value. 

Two to three repetitions of the stage are followed by further convolutional layers. The 

final stage consists of multiple completely interconnected layers and an output layer 

that displays forecasts for each class. Several variants of CNNs model have been 

proposed over the years such as Alexnet, GoogLeNet ...etc. and are generally defined 

as next sub suction. 

 

2.3.1 AlexNet 

In 2012, AlexNet [33], a convolutional neural network design, introduced the 

use of convolutional layers that were successively layered. Using graphics processing 

units, AlexNet's designers trained the network (GPUs). AlexNet is well-known for its 

remarkable result in the ImageNet Large Scale Visual Recognition Competition 

(ILSVRC) in 2010. In general, the network comprises of three layers of alternating 
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convolutional and max-pooling, two levels of convolutional processing, and three 

layers of fully connected processing. Following is a quick description of the model's 

distinctive attributes: 

• ReLU - A utilized activation function, ReLU. 

• Local response normalization - Normalization strategy used to improve 

generalizability. After the first two pooling layers, it is applied to each 

active output of each node. The normalized response 𝑦𝑖,𝑗
𝑃  j for each 

active output a 𝑥𝑖,𝑗
𝑃  is defined as in Equation (2.9): 

 

 

𝑦𝑖,𝑗
𝑃 = 𝑥𝑖,𝑗

𝑃 /

(

 𝑘 +  𝛼 ∑ (
𝑃
𝑖, 𝑗
)
2

min(𝑁−1,𝑖+
𝑁
2
)

𝑗=max(0,𝑖−
𝑁
2
) )

 

𝛽

 

 

(2.9) 

 

where 𝑛 is the number of neighboring filters used to normalize 𝑥𝑖,𝑗
𝑃 , 𝑁 is the 

number of total filters in the layer, and 𝑘, 𝑎, 𝑏 are specified parameters. 

• Overlapping pooling — For pooling layers, each location of a pooling 

window overlaps 

The model also utilizes an overfitting avoidance approach employed dubbed 

“drop out”. If you train using dropout, there is a 50% chance that each hidden node will 

be allocated with zero as an output in the forward pass when you use dropout. This 

permits the output provided by the network in each forward pass be produced with 

different architectures 
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2.3.2 GoogLeNet 

GoogLeNet [34] is a 22-layer (27 layers including pooling layers) deep 

convolutional neural network that’s a variant of the Inception Network, a Deep 

Convolutional Neural Network constructed by researchers at Google. The GoogLeNet 

architecture submitted at the ImageNet Large-Scale Visual Recognition Challenge 

2014(ILSVRC14) addressed computer vision tasks like as picture categorization and 

object recognition. There are a number of computer vision tasks that GoogLeNet is 

presently being deployed. 

The emergence of CNN, larger datasets, efficient computing resources, and 

intuitive CNN topologies accelerated the development of solutions for common 

computer vision applications that are efficient and performant. Researchers discovered 

that an increase in the number of network layers and units led to a significant 

performance advantage. Extending the layers to build more extensive networks, 

however, came at a cost. Large networks are susceptible to overfitting and either the 

bursting gradient or the vanishing gradient problem. Utilizing the Inception module in 

particular, the GoogLeNet architecture was able to resolve the majority of the problems 

that large networks faced. The Inception module is a neural network architecture that 

detects features at multiple scales using convolutions with various filters and minimizes 

the computational burden of training an extended network through dimensional 

reduction. 

 

2.3.3 Residual Neural Network (Resnet) 

Residual Networks, or ResNets, instead of learning unreferenced functions, 

learn residual functions with reference to the layer inputs. Residual nets let these 

stacked layers to fit a residual mapping, as opposed to hoping each few piled levels 



27 

 

directly match a desired underlying mapping. Residual blocks are stacked atop one 

another to build networks; for instance, a ResNet-18, ResNet-50, ResNet-101 consists 

of 18, 50, and 101 layers of these blocks, respectively. 

 

Figure 2.5 A form of residual neural network. 

 

There are two major reasons to add skip connections: to prevent the problem of 

vanishing gradients and to minimize the Degradation problem, in which adding 
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additional layers to a sufficiently deep model results in an increase in training error 

[35]. During training, the weights mute the upstream layer and enhance the layer that 

was skipped. In the simplest example, just the weights for the next layer's link are 

modified; the upstream layer does not have explicit weights. This is most effective 

when only a single nonlinear layer is traversed, or when all intermediate levels are 

linear. Otherwise, an explicit weight matrix must be learnt for the omitted link. An 

illustration of residual network model is depicted as in Figure 2.5. 

Bypassing significantly optimizes the network by employing fewer layers 

during the first phases of training. This accelerates learning by decreasing the influence 

of vanishing gradients, since there are fewer layers through which information must 

travel. As it learns the feature space, the network then progressively recovers the 

skipped levels. At the conclusion of training, when all layers are extended, the agent 

remains closer to the manifold and so acquires knowledge more quickly. A neural 

network devoid of residual elements examines a larger portion of the feature space. 

This renders it more susceptible to disturbances that lead it to depart off the manifold, 

necessitating additional training data for recovery. 

 

2.3.4 Very Deep Convolutional Networks (VGG Net) 

VGG Net [36] is the name of a pre-trained convolutional neural network (CNN) 

developed by Simonyan and Zisserman of the Visual Geometry Group (VGG) at the 

University of Oxford in 2014; it was able to finish as the runner-up in the classification 

task of the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2014. 

VGG Net was trained using the ImageNet ILSVRC data set, which contains pictures of 

1000 classes divided into three sets of 1,300,000 training photos, 100,000 testing 
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images, and 50,000 validation images [37]. The model achieved 92.7% accuracy in 

ImageNet.  

VGG Net has trained to extract the characteristics (feature extractor) that 

differentiate items and is used to categorize unseen things. VGG was created with the 

intention of improving classification accuracy by increasing the CNNs' depth. For 

object identification, VGG 16 and VGG 19 with 16 and 19 weight layers, respectively, 

have been employed. VGG Net accepts 224×224 RGB pictures as input and processes 

them via a stack of convolutional layers with fixed filter size of 33 and stride of 1. Five 

max pooling filters are placed between convolutional layers to downsample the input 

representation (image, output matrix of a hidden layer, etc.). Three fully connected 

layers of 4096, 4096, and 1000 channels, respectively, follow the stack of convolutional 

layers. The last layer is a soft-max layer. 

 

2.3.5 Xception Net 

Google's Xception [38] (Extreme version of Inception) is evaluated. With a 

modified depth-wise separable convolution, it outperforms Inception-v3 [39] (also by 

Google, 1st Runner-Up in ILSVRC 2015) on ImageNet ILSVRC and JFT. The 

modified depth-wise separable convolution consists of a pointwise convolution and a 

depth-wise convolution.  

Two small variations distinguish Xception from Inception: the sequence of 

operations and the presence or absence of non-linearity. The operation's sequence: As 

previously stated, the original depth-wise separable convolutions as often implemented 

(e.g., in TensorFlow) execute channel-wise spatial convolution prior to 11 

convolutions, but the modified depth-wise separable convolution performs 11 

convolutions prior to channel-wise spatial convolution. It is said that this is 
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insignificant since, when utilized in a stacked environment, only minor variations show 

at the beginning and conclusion of each linked conception module. The Existence or 

Nonexistence of Nonlinearity: After the first operation in the original Inception 

Module, there occurs non-linearity. No intermediary ReLU nonlinearity exists in 

Xception, the modified depth-wise separable convolution. 

 

2.4 YOLOv3 Model: You Only Look Once 

You Only Look Once (YOLO) is a real-time object identification system that 

uses neural networks [40]. This is a detection and recognition technique for different 

things in a photograph (in real-time). YOLO performs object detection as a regression 

problem and outputs the observed photos' class probabilities. The YOLO method 

detects objects in real-time using convolutional neural networks (CNN).  

In addition, YOLO generates predictions with a single network evaluation, as 

opposed to systems such as R-CNN that need thousands for a single picture and show 

advantage on: 

• Quick response: YOLO enhances the speed of detection since it can 

anticipate objects in real-time. 

• Hight precision: YOLO is a prediction approach that offers accurate 

findings with little background mistakes. 

• Learning capabilities: The method has exceptional learning capabilities, 

allowing it to pick up on the representations of things and use them in 

object detection. 

This makes it extraordinarily speedy, almost a thousand times faster than R-

CNN and one hundred times faster than Fast R-CNN  
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Figure 2.6 Example of car detection using YOLO. 

 

As implied by the name, the method detects objects by performing just one 

forward propagation across a neural network. This indicates that a single algorithm run 

is sufficient to anticipate the complete picture. The CNN algorithm is used to 

concurrently predict multiple class probabilities and bounding boxes. Numerous 

variations of the YOLO algorithm exist. YOLOv3 and tiny-YOLO are two popular 
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examples. The benefits of speed, accuracy, and learning capabilities have propelled 

YOLO to global viral status for a variety of applications such as detecting animation, 

moving objects, and signals. Figure 2.6 describes a car detection using YOLO with 

parameters as: 𝑏𝑥𝑏𝑦 is the coordinates of center of bounding box, 𝑏𝑥 and 𝑏𝑤 is high 

and width of bounding box, 𝑐 is class of bounding box, and 𝑝𝑐 is the probability of 

confidence. 
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CHAPTER 3  

Tooth Localization 

3.1 Introduction 

Caries detection may be performed on bitewing or panoramic radiographs. 

However, panoramic images give a more thorough perspective of an individual's dental 

condition, which dentists prefer. On the other hand, tooth localization is critical for 

centralized diagnosis in every situation of caries detection. When compared to bitewing 

images, a panoramic radiograph image is substantially more complicated and useful. 

While the bitewing represents six or seven teeth in a specific region of the mouth, the 

panoramic image depicts the whole mouth and describes the state of each individual 

tooth, offering an intuitive view of the patient's dental health (Figure 3.1). Although the 

teeth in a bitewing picture are often relatively similar in form, a panoramic view 

analyzes all incisors (or front teeth), canines (or cuspids), premolars (or bicuspids), and 

molars (or back teeth). Because it is difficult to record the position of the bitewing in 

the mouth for medical re-examination in practice, bitewing is only acceptable for one-

time analysis and not for medical history reference. Finally, but certainly not least, teeth 

detection on panoramic radiographs is beneficial for various research involving human 



34 

 

identification. Tooth isolation is focused on panoramic radiography for the reasons 

indicated above. 

 

Figure 3.1 Panoramic radiograph and bounding box ground truth (image credit [41]). 

 

3.2 Literature Review 

Vijayakumari [42] pioneered a technique for personal identification based on 

biometric edge detection. To begin, radiographs are preprocessed to improve the 

contrast using frequency domain image enhancement and edges are detected using an 

isoperimetric approach. The images are additionally processed using Sobel and Canny 

edge detection, as well as nodal graph representation. The radiographs are then 

compared to provide the best result. Due to the absence of an explanation for the dataset 

and the small number of testing images, this research exposes a dataset issue. 

Additionally, the final images are fuzzy and incapable of capturing the deed in its 

entirety. To conclude, the suggested technique is unsatisfactory and has a low detection 

rate for teeth. 
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Radhiyah et al. [43] demonstrated a scheme to process panoramic radiographs 

using Gaussian Filtering and Histogram Equalization. The teeth are manually marked 

in the image prior to utilizing watershed segmentation. After that, the peak signal-to-

noise ratio (PSNR) is calculated for comparison reasons, illustrating the 

appropriateness of each pre-processing procedure. Gaussian Filtering has a success rate 

of 80.58% on average, whereas Histogram Equalization has a success rate of 81.88% 

on average. The research analyzed a small sample of 28 images and provided no 

method for estimating the success factor. In conclusion, the result seems to provide a 

negligible contribution due to the low quality of the results and the manual marking of 

teeth, which requires human input. 

Nomir et al. [44] focused on the shape and appearance of the teeth while 

identifying humans. A vector feature is produced from each tooth using the forcefield 

energy function of the grayscale picture and Fourier descriptors of the tooth's form. 

Fourier descriptors and potential energy are used to construct the feature vector. 

Following that, voting is conducted to determine the best match for the query image 

based on the results of each individual tooth. The team analyzed a total of 162 

antemortem photographs. This research does not provide an explanation for the 

findings or a conclusive statement. Additionally, the antemortem image does not 

correspond to the medical history. As a result, there is some doubt about the research's 

utility. 

Huang et al. [45] employed gray-scale integral projection and angle correction 

to analyze skewed images in order to minimize any information loss. The tooth loss 

gap valley is then located using an adaptive windowing technique. Additionally, 

isolation curves are removed, and a missing line is utilized to locate missing teeth. 241 

upper jaw teeth received a 95.63% score, while 230 lower jaw teeth received a 98.71% 
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score. The research employed just bitewing images of the jaw (back teeth), which each 

include 6-7 teeth; as a consequence, the image is basic and does not fully depict the 

complete issue of tooth isolation in the oral cavity, which includes a variety of tooth 

types, sizes, and forms. Additionally, the data set is quite small (60 images) and does 

not provide a comprehensive picture of the tooth's state. Although the study is 

fascinating, it is not very useful. The absence of additional teeth, in particular, hampers 

the method when confronted with real-world scenarios. 

Mahdi et al. [46] used an optimization approach with a deep learning system to 

recognize teeth in dental panoramic radiographs. To begin, candidates are selected 

using Faster R-CNN using panoramic radiographs. The detected candidates are refined 

in the most efficient manner possible. To get a better outcome in the second stage of 

detection, a deep learning-based faster RCNN technique leveraging Resnet is applied. 

The study is tested in dataset of 1000 images in several quality (1400-3100 × 800-1536 

pixels) and the precision and recall rates were 98.8% and 97.8%, respectively. On the 

other hand, their strategy used a two-stage procedure, requiring the method to be trained 

twice; as a consequence, the method adds more computational weight, consumes 

additional labor and time, and causes the system to be less efficient and slow. Unlike 

the previous research, a unique strategy is offered in this work that is simpler to 

implement than the two-stage training technique while still producing outstanding 

outcomes. 

The present researches are usually whether providing a simple and poor 

performance or providing a good performance with an extra high-tech investment 

requirement in hardware. Recognizing the current problem, this study’ section aims to 

improve tooth isolation outcome while keeping the friendly complexity which help the 

method much simpler and friendly-use. 
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3.3 Proposed Method 

 

 Figure 3.2 Flow chart of the proposed method (image credit [41]). 

 

This section details the recommended approach. This section will explain how 

to build the technique and offer a detailed description of the structure of the Yolov3 

detection model. Three critical components of the proposed approach are 

preprocessing, teeth detection, and postprocessing (Figure 3.2). Preprocessing will use 

the augmentation technique to provide more diverse and recent samples for the training 

dataset. The images will then be resized to fit the input size of the Yolov3 model. The 

section on tooth detection will cover the creation of the Yolov3 model and how it suits 

the circumstance. The model generates a set of tooth coordinates in a new image size 
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that is too small to see; as a consequence, the coordinates are scaled in the post-

processing step to match the original image size. 

 

3.3.1 Preprocessing 

To begin, the region-of-interest (ROI) is used to the image in order to improve 

accuracy and decrease computation time. To avoid encroachment on the teeth, an area 

is picked in the picture's center that was 2000 pixels wide and had a preliminary ratio 

of 1:1.4 in contrast to the original image (Figure 3.3).  

 

Figure 3.3 Region of interest on panoramic radiograph (image credit [41]). 

 

Following that, as previously stated, a dataset is developed that encompasses as 

much of the issue as possible in order to address true medical problems. As a 

consequence, despite the fact that the dataset is already sufficiently big, it is still 

enhanced using two widely-used techniques: horizontal flipping and scaling [47]. 

Horizontal flipping improves the model's variety learning by doubling the challenge at 

both locations. Scaling enables the model to see the issue from a variety of angles, 
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which may be triggered by images recorded by a variety of medical devices. 

Additionally, augmentation may often improve the model's performance by making it 

more accurate and adequate. Images have been reduced in size to fit a particular 

detection model. 

 

3.3.2 Localization using YOLOv3 

 

Figure 3.4 Yolo model (image credit [41]). 
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In this research, a Yolov3 model is used with a "Squeeze net" as the base 

network [40, 48], often referred to as the "backbone." The default input size for the 

model is 227 × 227, which suggests a 1:1 ratio; however, owing to the size of the image 

(1536 × 2000), the model input size is adjusted to 227 × 307. This is a vital step in 

maintaining the same picture ratio. Because a significant change in image ratio may 

harm the tooth shape and alter the object issue, particularly for the front teeth and 

overlapped teeth, a significant change in image ratio can harm the tooth shape and alter 

the object problem. As a result, increasing the quantity of the inputs will assist in 

boosting the performance of the deep model and reducing information loss. 

As with extract features in Yolov3, a base network may have several outputs, 

referred to collectively as a detection head. The more detection heads a network has, 

the more accurately it can recognize small objects, since each higher level of detection 

head doubles the layer's size. As a result, this study aims to increase the number of 

detection heads and concatenate the findings from previous detection heads with a 

proper layer in order to provide a further improved outcome. To minimize overfitting 

and reduce complexity, the model's size should be considered. As a consequence, three 

detecting heads are used in our detection model. The first detection head will link to 

the backbone through the "fire9-concat" layer. To generate the output, the second 

detection head will up-sample the result of the first detection head and concatenate it 

with the output of "layer5-concat." Similarly, the third detection head's output will be 

generated by upsampling the result of the second detection head and concatenating it 

with the output of "layer3-concat." Figure 3.4 and Table 3.1 explains the detail of 

connection and input parameters. 
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Table 3.1 Parameter setting of Yolov3 model (table credit [41]). 

Parameter Value 

Mini batch size 32 

Number of anchor box 11 

Iteration 1000 

Initial learning rate 0.001 

L2regularization 0.0005 

 

3.3.3 Post-processing 

As an output result, the detection model produces a vector of tooth positions 

and size that matches the magnified image (227 ×  307). Due to the proximity or 

overlap of numerous teeth in oral imaging, a higher resolution image may assist patients 

and physicians in seeing more clearly. As a consequence, the output vector value is 

rescaled to match the dimensions of the source image (1536×2876). Additionally, this 

will offer readers a more complete view of our results. 

3.4 Experimental Setup and Result 

3.4.1 Dataset 

In fact, the tooth comes in a range of sizes, forms, and varieties. Therefore, a 

large dataset is necessary that is capable of accurately describing all dental conditions 

or at least covering the greatest amount of diversity. As a consequence, a dataset is 

adopted by Dr. Kumon Makoto at the Shinjuku East Dental Office. The collection 

comprises 396 high-resolution panoramic radiographs (1536 × 2876 pixels) (11,707 

single teeth totally) from 396 patients. Adults have a greater challenge, since their teeth 

are no longer milk teeth but permanent teeth, which implies that each tooth extracted 
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cannot be returned to its original form. Each picture portrays a real patient from the 

hospital who was 18 years old at the time and was carefully selected with the patient's 

agreement to contribute to the research's objectives. Finally, the committee at Tokai 

University evaluated the permission to use and disseminate dataset images ethically. 

The mouth and a piece of the patient's jaw bone are shown in Figure 3.1 as an example 

image from the collection. Some of the teeth have cavities, which provides variation to 

the dataset. 

The data set is divided into two parts: a training set that comprises 90% of all 

images and a testing set that contains 10% of all images. Additionally, k-fold cross-

validation is applied on both the training and testing sets to minimize overfitting and to 

provide a more complete analysis of the final performance result. 

 

3.4.2 Measurements 

The measurement is determined using the well-known object identification 

technique described in the Pascal visual object classes (VOC) challenge [49]. The 

intersect-over-union, precision, recall, F1-score, and average precision components are 

all considered in the computation. 

 

3.4.2.1 Intersect Over Union: 

The bounding box overlap area is computed, also known as intersect over union 

(𝐼𝑂𝑈), between the predicted bounding box and the ground truth bounding box to 

assess the bounding box's accuracy in identifying objects. The overlap should be at 

least 0.5 (50%) to be regarded as a successful detection, as in Equation (3.1): 

 

 

𝐼𝑂𝑈 = 
𝑎𝑟𝑒𝑎 (𝐵𝑝  ∩ 𝐵𝑡)

𝑎𝑟𝑒𝑎 (𝐵𝑝  ∪ 𝐵𝑡)
 

(3.1) 
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where 𝐵𝑝 denotes the predicted bounding box, 𝐵𝑡 the ground truth bounding 

box, 𝐵𝑝  ∩ 𝐵𝑡 the intersection of the predicted and ground truth bounding boxes, and 

𝐵𝑝 ∪ 𝐵𝑡 the union of the predicted and ground truth bounding boxes. 

 

3.4.2.2 Precision and Recall 

The performance assessment is calculated using two well-known metrics: 

accuracy and recall. While accuracy indicates the percentage of properly identified 

items relative to the total number of detected objects, recall indicates the percentage of 

correctly detected things relative to the total number of detected objects, as in Equation 

(3.2) and (3.3). 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(3.2) 

   

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
(3.3) 

   

where true positive (TP) denotes the number of teeth accurately discovered; 

false positive (FP) denotes the number of teeth incorrectly detected; and false negative 

(FN) denotes the number of teeth undetected. 

3.4.2.3 F1-score and Average Precision 

Simultaneously, studies should emphasize the importance of precision and 

recall. However, recall and precision are typically inversely connected, which means 

that increasing precision decreases recall and vice versa. As a consequence, additional 

evaluation metrics are provided, such as the F1-score and average accuracy, in order to 

facilitate future comparisons with other investigations. The F1-score equalizes the 
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weights of precision and memory to get the harmonic mean of precision and recall. The 

formula below may be used to calculate the F1-score, as in Equation (3.4). 

 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

(3.4) 

   

The accuracy and recall value can be provided for a certain 𝐼𝑂𝑈 threshold and, 

as a result, build a curve to represent the relationship between precision and recall. The 

average precision is shown by the area under the curve (𝐴𝑃). The average accuracy 

value is determined as in Equation (3.5) and (3.6): 

 

 
𝐴𝑃 = 

1

𝑁
 ∑ 𝑝(𝑟)

𝑟 ∈{0,…,1}

 

 

(3.5) 

   

where 𝑁 is the number of points on the precision-recall curve interpolated, and 

𝑝(𝑟) is the greatest precision recorded for a technique with a recall greater than 𝑟. 

 

 
𝑝(𝑟) = 𝑚𝑎𝑥

�̃�:�̃�≥𝑟1
 𝑝(�̃�) 

 
(3.6) 

   

where 𝑝(�̃�) is the measured precision at recall �̃�. 

3.4.3 Experimental Result 

3.4.3.1 Overall Performance 

The findings of the 5-fold cross-validation experiment, as well as the average 

precision, recall, f1-score, and average precision, are summarized in Table 3.2. The 

result demonstrates a highly promising performance, since precision and recall values 

are often near to one another and, in most situations, exceed 90%. The highest result in 
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fold-4 is 96.97% for precision and 96.16% for recall. Precision and recall both perform 

at an average of more than 90%, suggesting their dependability.  

Table 3.2 Experimental result of k-fold and average of proposed method  

(table credit [41]). 

Measure Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg 

Precision 95.96 95.45 94.44 96.97 96.27 95.58 

Recall 95.15 94.65 93.65 96.16 94.90 94.90 

F1-score 95.55 95.05 94.04 96.56 95.58 95.36 

m-AP 97.42 94.33 95.08 97.30 96.61 96.15 

 

Additionally, the f1-score and average precision values are included in the 

overall assessment. Due to the frequent inversion of accuracy and recall, the f1-score 

value may be utilized as a referee when comparing following investigations. The 

method offers a reliable outcome in average accuracy, which is often more than 90%, 

suggests that it is trustworthy for dentist’s references in screening and diagnosis process 

using panoramic radiographs. Finally, the simple implementation of method can help 

raising physician’s applicability and patient’s awareness to improve overall social 

health. 

Figure 3.5 illustrates an example of the detection approach that makes use of 

the bounding box for each tooth, as well as the confidence rate associated with each 

bounding box. Additionally, the execution time of the recommended approach is 

calculated on our system, MATLAB 2020, on a gen-9 core i7 computer equipped with 

an NVIDIA GeForce RTX 2060 graphics card, and published it in Table 3 to provide 

a complete view of both performance and computational complexity. 
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Figure 3.5 Teeth detection and confidence rate (image credit [41]). 

 

3.4.3.2 Comparison to State-of-the-art 

Table 3.3 Performance comparison to previous studies (table credit [41]). 

Method Size 

Based 

Technique 

Precision Recall 

F1- 

score 

mAP Iteration 

Radhiyah et 

al. 

28 images 

Histogram 

Equalization 

- 81.88 - - - 

Mahdi et al. 

1000 

images 

Fater R-CNN on 

Resnet101 

98.8 97.8 98.20 98.10 9000 

Proposed 

Method 

396 images 

Yolov3 on 

Squeezenet 

95.58 94.90 95.36 96.15 1000 

 

After evaluating the final performance, the preceding state-of-the-art is again 

benchmarked (Table 3.3). When compared to the original research, our novel approach 

exceeds it by about 10% in recall values and delivers more comprehensive evaluation 

values on panoramic radiographs. In terms of f1-score value and mean average 

accuracy, the second research exceeds our approach by around 3% and 2%, 
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respectively. On the other hand, the second research utilized a two-stage approach, 

which implies that one detection mistake might affect another, demanding intensive 

training to reach a reasonable result. Additionally, their approach demands far more 

computation time, effort, and high-tech equipment than our alternative. A high level of 

performance is archived in nine times the time with iteration. For the reason stated 

above, our proposed approach has a greater chance of universal adoption, especially in 

developing and impoverished countries. 

3.5 Conclusion  

This section describes a new mechanism for recognizing teeth in oral images 

that resolves a problem. Firstly, the radiograph is enhanced in order to provide 

variation. The tooth is subsequently recognized using an oral image-based Yolov3 

detection model. The model is modified to account for the complexities of the 

circumstance and explored layer by layer. Additionally, the Yolov3 model and the input 

images are scaled to fit each other while preserving the original image ratio for optimal 

detection. Later, the bounding box value is adjusted to correspond to the original 

picture, allowing readers to perceive the result more clearly. The final assessment 

demonstrates a successful conclusion, with precision and recall rates of 95.58% and 

94.90%, respectively, for our approach. Additionally, for a complete conclusion, the 

outcome is compared to the previous state-of-the-art. The proposed technique is 

somewhat less efficient (by around 3% on average) than the prior best state-of-the-art, 

which is a research constraint. 

The following are the major results drawn from our involvement in this 

investigation. To begin, the image must be rescaled to fit the classification model's 

input; nevertheless, the image's ratio must stay constant or as close to constant as 
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possible. For more information, the results highly advise against decreasing the width 

to height ratio of the image and instead recommend lowering the height to width ratio. 

Because any drop in the width of the image relative to its height may result in 

information loss, impairing learning and resulting in a poor detection performance as a 

consequence. Second, our technique resulted in an exceptional conclusion that is 

remarkably close to the preceding state-of-the-art, while requiring less labor, less time, 

and less high-tech gadgets, resulting in a wide applicability advantage.  
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CHAPTER 4  

Caries Detection 

4.1 Introduction 

The primary and ultimate goal of this study is to develop a decision-making 

system capable of distinguishing between healthy and carious teeth. Caries 

identification is often a multi-step procedure involving numerous stages; as a result, 

caries detection using radiographs is very tough for the majority of dentists, particularly 

inexperienced dentists. Computer-aided diagnostic systems (CADs) have become more 

significant in the early detection of a number of ailments, including cancer, diabetes, 

and even dental cavities, as medical imaging technology has advanced [6, 7]. Caries 

may be detected by a number of different processes and approaches. According to 

certain research, photoacoustic images, wavelengths, or ultrasound images should be 

employed for detection [8-10]. Another research suggested an approach based on an 

RGB oral endoscope image [11, 12]; nevertheless, the majority of systems are unable 

to provide a complete anatomy of the tooth, especially the tooth root, and so struggle 

to detect caries. In comparison to oral endoscopic imaging, dental radiographs provide 

a higher-quality image and show detailed structural deformation inside the tooth [13]; 
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thus, the dental radiographic image is the most often used method and is favored for 

early detection of caries. 

Dental radiographs, which are used to detect tooth problems and monitor oral 

health, are taken in a clinical environment utilizing a low-dose X-ray to acquire images 

of the interior of teeth and gums. Radiographs are often shown in grayscale images, but 

they may also be displayed in color. However, color radiographs require a significant 

investment that is unaffordable for the majority of institutions, especially those in low-

income countries; to compensate, grayscale radiographs are focused. Regrettably, there 

is no credible dataset that provides high-quality images, descriptions, or ground truth. 

The majority of data in this field is shared under stringent conditions, such as all 

researchers publishing in a particular journal or being members of a certain group or 

event. Certain scholars make their confidential study data available to the public. The 

picture quality, the volume of data, the absence of description and ground truth, and/or 

the data's long-term availability are all frequent issues with the data. Dr. Kumon 

Makoto, director of Shinjuku East Dental Office, contributed the dataset and ground 

truth for this study as part of a research contract with Tokai University. On May 19, 

2003, Dr. Kumon Makoto was certified by the Academy of Clinical Dentistry and 

registered as a professional dentist with the number 148529. He could supply a reliable 

dataset because he has 18 years of expertise as a dentist and is responsible for over 200 

patients every month. More importantly, all of the patients who took part in the dataset 

collection were real Dr. Makoto patients who were being treated by him. During 

treatment, each caries tooth in the dataset was confirmed in the patient's medical 

history. For the stated reason, the dataset is proved reliable and can be utilized for 

research and publication for the reasons stated above. 



51 

 

4.2 Literature Review 

Caries may be detected during a dental checkup using radiography by a fracture 

in the tooth, missing portions of a tooth, or tooth loss. Except for the dentist's diagnostic 

expertise, there is no visual symptom or criteria for the shape, size, or severity of tooth 

decay, posing a severe hurdle to image-based computer-aided diagnosis systems.  

Wei Li et al. [50] developed a strategy for detecting tooth decay by combining 

a support vector machine (SVM) with a backpropagation neural network (BPNN). The 

Autocorrelation Coefficient and the Gray Level Co-occurrence Matrix are two features 

that are employed independently in this approach for feature extraction. Then, for 

classification purposes, SVM and BPNN models were utilized independently. SVM 

has a 79% accuracy on the testing set, whereas BPNN has a 75% accuracy. The 

resulting product is inefficient, and further effort is necessary to improve it. Apart from 

that, the article does not contain a description of the dataset, which may reflect 

negatively on the study's validity. 

Yang Yu et al. [51] made an effort to enhance the backpropagation neural 

network layer and feature extraction from the autocorrelation coefficient matrix. The 

technique was assessed with 80 private tooth images (55 for training and 35 for testing) 

and achieved an accuracy of 94%; however, as the number of layers in the image 

increases, the system becomes highly computationally costly. The backpropagation 

neural network has increased in size. Sensitivity (SEN), specificity (SPEC), precision 

(PRE), and F-measure are also omitted. Additionally, the research's relatively limited 

testing data (35 images) without cross-validation exposes inadequacies, showing that 

the study is unable to completely address the issue of tooth decay. 
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Shashikant Patil et al.[52]  demonstrated an intelligent system tailored for 

dragonflies. Multi-linear principal component analysis was used to extract the feature 

set (MPCA). After loading the attributes into a neural network classifier, it was trained 

using the adaptive dragonfly algorithm as an optimization technique (ADA). The 

proposed MPCA model non-linear Programming with ADA (MNP-ADA) was 

evaluated using 120 private dental images divided into three test cases. Each test case 

has a total of 40 images, 28 images are used for training and 12 images are used for 

testing. Other classifiers and feature sets, such as linear discriminant analysis (LDA) 

[53], principal component analysis (PCA) [54], and independent component analysis 

(ICA) [55], as well as fruit fly (FF) [56] and grey-wolf optimization (GWO) [57], were 

also used in the testing for comparison. According to the final average results, the 

MNP-ADA model achieves 90% accuracy, 94.67% sensitivity, and 63.33% specificity. 

The findings indicate that the test has a poor specificity, implying that non-caries 

patients are misclassified as caries patients. As a result, distinguishing caries from non-

caries patients is inefficient, and performance must be improved. Due to the great 

accuracy but limited specificity of the result, it may raise issues about the data balance 

between caries and non-caries images. The findings section explores further into other 

measure values in this research, such as precision and f1-score. 

Most researches do not provide an impacting result. Shashikant Patil et al.[52]  

seems performance the best in the state-of-the-art. However, specificity in the research 

is low with 63.33% in combination with 90% accuracy and 94.67% sensitivity. That 

raise on a concern about data balance, between caries and non-caries patients, and the 

impact of research in real case. Therefore, I would like to experiment a reliable in a 

large and balance data. The final result can comprehend the whole problem and well as 

produce a trustworthy opinion for dentist’s reference. 
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4.3 Proposed Method 

  

Figure 4.1 Diagram for caries prediction (image credit [58]). 

 

The two fundamental stages of caries detection are feature extraction and 

classification. To begin, pre-trained models are employed such as Alexnet [33], 

Googlenet [34], VGG16 [36], VGG19 [36], Resnet18 [35], Resnet50 [35], Resnet101 

[35], and Xception [38] to discover which deep activated characteristics best represent 

radiography. The experiments were conducted at the base levels of each model. Later, 

to supplement the information included in the feature, mathematic qualities such as 
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mean and standard deviation were extracted, as well as textural features such as 

Haralick's features [59]. Subsequently, the two sets of traits are combined to create 

fusion features. The second step validates the feature set used in classification models 

such as support vector machine (SVM), Nave Bayes (NB), k-nearest neighbor (KNN), 

decision tree (DT), and random forest. The complete process is shown in Figure 4.1, as 

well as various sub-stages. 

 

4.3.1 Features Descriptors using Pre-trained CNN 

Table 4.1 Convolutional neural network (CNN) model specification  

(table credit [58]). 

Network Model Depth Size (MB) Parameter (×106) Input Size 

Alexnet 8 227 61.0 227 × 227 × 3 

Googlenet 22 27 7.0 224 × 224 × 3 

VGG16 23 528 138.4 224 × 224 × 3 

VGG19 26 549 143.7 224 × 224 × 3 

Resnet18 18 45 11.5 224 × 224 × 3 

Resnet50 50 98 25.6 224 × 224 × 3 

Resnet101 101 171 44.7 224 × 224 × 3 

Xception 126 88 22.9 299 × 299 × 3 

 

A pre-trained CNN is used as a feature descriptor in this study to extract deep 

activated features. The eight most well-known networks, Alexnet, Googlenet, VGG16, 

VGG19, Resnet18, Resnet50, Resnet101, and Xception network, were utilized to 

choose the best descriptor pre-trained networks. The parameters of each pre-trained 
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model, such as depth, parameter, size, and input size, are listed in Table 4.1. For the 

highest rate of deep learning, the most often suggested extraction layers are typically 

the last layer before the "prediction" layer; accordingly, in our preliminary experiment, 

Multiple levels are examined preceding the "prediction" layer (except the "drop" layer, 

because the drop layer likely shows the same information as the previous respective 

layer). Before a picture can be fed into a particular network, it must be scaled to a 

certain size. When radiographs are grayscale, the network analyzes RGB images; as a 

result, the grayscale channel is increased to compensate for the image's missing 

channel. The Results section contains information about the layers and network testing. 

 

4.3.2 Features Descriptor using Geometric Features 

Geometrical considerations are critical for discussing any issue. Because the 

qualities are obtained via a mathematical process, they are comprehensible and 

explicable. Regardless of the contribution of deep active feature descriptors, geometric 

features may include important and relevant information that is observable to humans. 

Additionally, whereas deep activated features investigate data in ways that are opaque 

to humans, geometric features are often acquired via an expert's domain expertise; 

hence, geometric features are essential and irreplaceable when addressing a challenging 

issue. 

In practical terms, dentists manually differentiate between caries and non-caries 

depending on the extent of structural damage to the tooth. The variation in size, shape, 

contrast, margin, and intensity, among other factors, may account for the structural 

damage to the tooth. The suspicious aspects that determine the tooth's condition are 

obtained using their attributes, such as mean, Haralick's features, and gray level co-

occurrence matrices (GLCM) features [60, 61]. Table 4.2 describes the name and 
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formula of used features in detail. In the formula, 𝐼(𝑥, 𝑦) presents the pixel value 𝐼 at 

the coordinate point 𝑥, 𝑦 of the candidate image 𝑁. 𝑝(𝑖, 𝑗) presents the (𝑖, 𝑗)𝑡ℎ entry of 

GLCM matrix. Ng presents number of distinct gray levels in the image. 𝜇 and 𝜎 present 

the mean and standard deviation values. 

Table 4.2 Geometric features and formula (table credit [58]). 

Features Name Formula 

F1 Mean 
1

𝑛
∑ 𝐼(𝑥, 𝑦)

(𝑥,𝑦)∈𝑁

 

F2 Entropy − ∑∑𝑝(𝑖, 𝑗)log p(i, j)

𝑗𝑖

 

F3 Autocorrelation ∑∑(𝑖 ∙ 𝑗)𝑝(𝑖, 𝑗)

𝑗𝑖

 

F4 Contrast ∑∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑗𝑖

 

F5 Correlation ∑∑
(𝑖 − 𝑢𝑥)(𝑗 − 𝑢𝑦)𝑝(𝑖, 𝑗)

𝜎𝑥𝜎𝑦
𝑗𝑖

 

F6 Cluster prominence ∑∑(𝑖 + 𝑗 − 𝑢𝑥 − 𝑢𝑦)
4
𝑝(𝑖, 𝑗)

𝑗𝑖

 

F7 Cluster shade ∑∑(𝑖 + 𝑗 − 𝑢𝑥 − 𝑢𝑦)
3
𝑝(𝑖, 𝑗)

𝑗𝑖

 

F8 Dissimilarity ∑∑|𝑖 ∙ 𝑗|𝑝(𝑖, 𝑗)

𝑗𝑖

 

F9 Maximum Probabilities max
𝑖,𝑗
𝑝(𝑖, 𝑗) 

F10 Sum of square variance ∑∑|𝑖 − 𝜇2|𝑝(𝑖, 𝑗)

𝑗𝑖

 

F11 Sum of average ∑𝑖 ∙

2𝑁𝑔

𝑖=2

𝑝𝑥+𝑦𝑖 
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F12 Sum of entropy ∑𝑃𝑥+𝑦(𝑖) log 𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

F13 Sum of variance ∑(𝑖 − 𝑆𝑢𝑚𝐸𝑛𝑡)2 ∙ 𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

F14 Difference entropy − ∑ 𝑝𝑥−𝑗(𝑖) log 𝑝𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

 

 

4.3.3 Fusion Features 

This step integrates the deep network features and geometric attributes that were 

collected before. Each deep active feature is associated with the extracted geometric 

features as a whole. 

The fusion feature is then included in a classification model in the subsequent 

step. Additionally, the proposed method evaluated the geometric and fusion features' 

performance relative to deep activated features by feeding each deep activated and 

fusion feature into the classifier under the identical conditions as fusion features (Figure 

4.2). The Results section contains a full discussion of the fusion and deep activated 

feature comparisons. 

 

 

Figure 4.2 Diagram for experiment of deep activated and fusion features (image 

credit [58]). 
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4.3.4 Classification Model 

Before being given into the classification system, each deep active feature is 

merged with geometric characteristics. Additionally, the deep activated features are 

evaluated independently and compared to the fusion features in order to determine the 

fusion effectiveness of deep activated and geometric features. The bulk of the tests was 

conducted using an "optimal margin classifier," more often referred to as a support 

vector machine (SVM). 

4.4 Experimental Setup and Result 

4.4.1 Dataset 

To the best of our knowledge, the tooth is available in a range of sizes, forms, 

and architectures. Tooth decay features contribute to this variation; hence, the greater 

the collection, the more accurately it can depict tooth decay challenges. Our data was 

collected and labeled by Dr. Makoto Kumon from Shinjuku Dental East Office. The 

Tokai university's committee for the right of use and publication certified the dataset 

for quality and ethics; nonetheless, the images in the dataset are panoramic oral 

radiographs of all teeth; however, dental diagnosis and treatment should be performed 

on each individual tooth. As a consequence, each sub-image of the tooth, which is 

manually segmented, included the target tooth for diagnosis and its label. Segmentation 

is simple and may be accomplished in a number of different ways. Due to the ease at 

which segmentation may well be performed by any dentist or nurse, the statistically 

significant impact is not anticipated in this study (Figure 4.3). To simulate real-world 

situations in which the area determined for each tooth varies depending on who 

performs the segmentation, the area and range of teeth are not considered to be fixed 
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in any size, but rather extremely flexible depending on the size and position of the 

tooth, as well as the surrounding space. 

 

Figure 4.3 Samples of oral and tooth image. (a) oral panoramic radiograph and (b) 

segmented tooth radiographs (image credit [58]). 

 

After segmentation, the dataset comprised 533 image samples from 95 patients: 

229 caries teeth and 304 non-caries teeth. The dataset may be considered balanced 

because of the little variation in the number of caries and non-caries photographs 

(caries/non-caries is around 0.43/0.57). Each picture is a two-dimensional grayscale 

representation of the target tooth and its neighbors, which may include black empty 

space or a piece of nearby teeth. The images show teeth in their natural form, unaltered 

in terms of color, size, or angle. Each image is varied in size, which corresponds to the 

standard segmentation approach, and is subsequently combined into a single layer of 

the same size for feature extraction. 

4.4.2 Measurements 

In this study, three well-known metrics were used to evaluate the suggested 

method's performance: accuracy (ACC), sensitivity (SEN), and specificity (SPEC) 

(SPEC). In addition, the measurements include precision or positive predictive value 
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(PPV), negative predictive value (NPV), f1-score, area under the curve (AUC), and 

processing time to provide a holistic perspective of the suggested method's benefits and 

for additional research reasons, as in Equation (4.1) to (4.6). 

 

 
𝐴𝐶𝐶 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

(4.1) 

   

 
𝑆𝐸𝑁 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
(4.2) 

   

 
𝑆𝑃𝐸𝐶 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
(4.3) 

   

 
𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(4.4) 

   

 
𝑁𝑃𝑉 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 
(4.5) 

   

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4.6) 

   

   

where true positive (TP) indicates the number of caries images correctly 

classified as caries; true negative (TN) refers to the number of non-caries images 

correctly classified as non-caries; false-positive (FT) means the number of non-caries 

images classified wrongly as caries; false-negative (FN) denote the number of caries 

images classified wrongly as non-caries. 

Based on two mentioned factor values: True positive rate (also known as 

sensitivity or recall) and true negative rate (also known as specificity or selectivity), a 

ROC curve (receiver operating characteristic curve) is produced to present all model 

performance at all classification threshold.  An ROC curve plots true positive rate 
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(TPR) as 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and false positive rate (FPR) as 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. Reducing the 

classification threshold increases the number of objects classified as positive, hence 

increasing the number of False Positives and True Positives. Figure 4.4 depicts a typical 

ROC curve. 

 

Figure 4.4 Typical ROC curve with TP and FP at different thresholds. 

 

Area under the ROC curves (AUC) quantify the whole two-dimensional area 

underneath the entire ROC curve. AUC is an aggregate performance metric over all 

potential categorization criteria. The likelihood that the model rates a random positive 

example higher than a random negative example is one approach to analyze AUC. A 

typical AUC curve is presented in Figure 4.5. 
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Figure 4.5 Area under the ROC curve. 

 

4.4.3 Experimental Result 

4.4.3.1 Deep Activated Features Performance 

In the first step of the experimental result, the optimal layers are determined in 

each deep pre-trained network that best represents the issue. Table 3 summarizes the 

characteristics extracted from each deep pre-trained network by layer. To get the final 

classification result, a support vector machine model is used to assess the extracted 

feature set. Various layers are investigated before deciding on the prediction layer, 

since there is no standard for determining the layer in each network. Some of them 

illustrate the superiority of the pooling layer, while others may choose the layer first. 

With an accuracy of 90.57%, a sensitivity of 91.30%, and a specificity of 90%, the 
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"fc8" layer in the VGG16 model has the greatest accuracy, sensitivity, and specificity. 

Additionally, Resnet50, Resnet101, and Xception all achieve an accuracy rate of 88%, 

which is quite promising. Notably, none of the deep active features has an accuracy 

lower than 80%, demonstrating their effectiveness. 

Table 4.3 Performance of deep activated features corresponding to networks 

(table credit [58]). 

Network 
Alex 

net 

Google 

net 

VGG 

16 

VGG 

19 

Resnet 

18 

Resnet 

50 

Resnet 

101 
Xception 

Layer fc8 
pool5-

7x7_s1 
fc8 fc8 pool5 

avg_po

ol 
pool5 avg_pool 

ACC 0.8679 0.8302 0.90571 0.8113 0.8491 0.8868 0.8868 0.8868 

SEN 0.7826 0.8261 0.91301 0.7391 0.8261 0.8696 0.8261 0.9130 

SPEC 0.9333 0.8333 0.90001 0.8667 0.8667 0.9000 0.9333 0.8667 

PPV 0.9000 0.7919 0.87501 0.8095 0.8261 0.8696 0.9048 0.8400 

NPV 0.8485 0.8621 0.93101 0.8125 0.8667 0.9000 0.8750 0.9286 

F1-score 0.7200 0.6786 0.80771 0.6296 0.7037 0.7692 0.7600 0.7778 

AUC 0.9087 0.8333 0.95871 0.8674 0.9014 0.9565 0.9072 0.9464 

1The highest performance for each measured factor regarding network was highlighted in bold. 
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4.4.3.2 Fusion Features Performance 

 

Figure 4.6 Overlay bar graphs distribution of average accuracy between fusion feature 

and deep activated feature (image credit [58]). 

 

To increase performance so far, each deep activated feature set is combined 

with geometric features and will be fed into the SVM model (Table 4.4). The 

conclusion of the fusion feature indicates that the fusion Xception feature has grown. 

As seen in Figure 4.6, the Xception network's fusion properties were the most 

significant qualities after the combination, increasing accuracy, sensitivity, and 

specificity to 90.45%, 100%, and 86.67%, respectively. The most significant change is 

the increase in sensitivity from 91% to 100%; hence, the fusion Xception features set 

demonstrated geometric contribution when combined with deep activated features. 

Resnet18 and Googlenet also exhibit an increase in accuracy of 83.02% to 86.79% and 

84.91% to 88.68%, respectively, despite the accuracy that their performance is 
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consistent with Xception fusion characteristics. Interestingly, none of the fusion feature 

sets outperform their deep activated counterparts in terms of accuracy. Finally, when 

comparing fusion features to deep activated features alone, fusion features clearly 

demonstrate an advantage. 

Table 4.4 Performance of fusion features corresponding to networks  

(table credit[58]). 

Network 
Alex 

net 

Googlen

et 

VGG 

16 

VGG 

19 

Resnet1

8 

Resnet5

0 

Resnet1

01 
Xception 

ACC 0.8679 0.8679 0.9057 0.8113 0.8868 0.8868 0.8868 0.92451 

SEN 0.7826 0.8696 0.9130 0.7826 0.8696 0.8696 0.8261 1.00001 

SPEC 0.9333 0.8667 0.9000 0.8333 0.9000 0.9000 0.9333 0.86671 

PPV 0.9000 0.8333 0.8750 0.7826 0.8696 0.8696 0.9048 0.85191 

NPV 0.8485 0.8966 0.9310 0.8333 0.9000 0.9000 0.8750 1.00001 

F1-score 0.7200 0.7407 0.8077 0.6429 0.7692 0.7692 0.7600 0.85191 

AUC 0.9087 0.8949 0.9594 0.8659 0.9123 0.9580 0.9087 0.96881 

1 The highest performance for each measured factor regarding network was highlighted in bold 

The training and testing sets are randomly divided for cross-validation in order 

to develop and evaluate the best caries detection technique. The k-fold cross-validation 

approach is a well-known and trustworthy technique for evaluating a method's 

robustness. The use of k-fold cross validation indicates the proposed approach's ability 

to cover the whole issue and adapt to unknown samples; also, this methodology was 

used to prevent method overfitting on our testing data. 
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Figure 4.7 Comparison of the ROC curves for five classifiers. (a) Decision tree, (b) 

K-nearest neighbor, (c) Naïve Bayes, (d) Random Forest, (e) Support vector machine, 

and (f) Comparison of mean of receiver operating characteristic (ROC) curves for 

each classifier (image credit [58]). 
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4.4.3.3 Classification Model Performance 

Table 4.5 Performance of fusion features based on classifiers (table credit [58]). 

Classifier Measure 
Five-Fold Cross-Validation 

Mean 
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 

Decision 

Tree 

Accuracy 0.6415 0.6038 0.7170 0.6038 0.6981 0.6528 

Sensitivity 0.6522 0.7826 0.7391 0.6957 0.6087 0.6957 

Specificity 0.6333 0.4667 0.7000 0.5333 0.7667 0.6200 

PPV 0.5769 0.5294 0.6538 0.5333 0.6667 0.5920 

NPV 0.7037 0.7368 0.7778 0.6957 0.7188 0.7265 

F1-score 0.4412 0.4615 0.5313 0.4324 0.4667 0.4666 

AUC 0.6696 0.6507 0.7717 0.6159 0.7043 0.6825 

K-Nearest 

Neighbor 

Accuracy 0.8491 0.8302 0.7736 0.7547 0.7170 0.7849 

Sensitivity 0.6522 0.6957 0.6087 0.6087 0.6522 0.6435 

Specificity 1.0000 0.9333 0.9000 0.8667 0.7667 0.8933 

PPV 1.0000 0.8889 0.8235 0.7778 0.6818 0.8344 

NPV 0.7895 0.8000 0.7500 0.7429 0.7419 0.7649 

F1-score 0.6522 0.6400 0.5385 0.5185 0.5000 0.5698 

AUC 0.8261 0.8145 0.7543 0.7377 0.7094 0.7684 

Naïve 

Bayes 

Accuracy 0.7358 0.7333 0.7170 0.7547 0.7547 0.7391 

Sensitivity 0.6087 0.7308 0.6087 0.6522 0.6522 0.6505 

Specificity 0.8333 0.7353 0.8000 0.8333 0.8333 0.8071 

PPV 0.7368 0.6786 0.7000 0.7500 0.7500 0.7231 

NPV 0.7353 0.7813 0.7273 0.7576 0.7576 0.7518 
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F1-score 0.5000 0.5429 0.4828 0.5357 0.5357 0.5194 

AUC 0.8101 0.8066 0.8043 0.7674 0.8094 0.7996 

Random 

Forest 

Accuracy 0.9057 0.8679 0.92451 0.7736 0.7925 0.8528 

Sensitivity 0.8696 0.9565 0.9565 0.7391 0.6522 0.8348 

Specificity 0.9333 0.8000 0.9000 0.8000 0.9000 0.8667 

PPV 0.9091 0.7857 0.8800 0.7391 0.8333 0.8295 

NPV 0.9032 0.9600 0.9643 0.8000 0.7714 0.8798 

F1-score 0.8000 0.7586 0.8462 0.5862 0.5769 0.7136 

AUC 0.9551 0.9261 0.9623 0.8087 0.8652 0.9035 

Support 

Vector 

Machine 

Accuracy 0.9623 0.9245 0.8868 0.8868 0.9245 0.9170 

Sensitivity 0.9565 0.8696 0.7391 0.9565 1.0000 0.9043 

Specificity 0.9667 0.9667 1.0000 0.8333 0.8667 0.9267 

PPV 0.9565 0.9524 1.0000 0.8148 0.8519 0.9151 

NPV 0.9667 0.9063 0.8333 0.9615 1.0000 0.9336 

F1-score 0.9167 0.8333 0.7391 0.7857 0.8519 0.8253 

AUC 0.9971 0.9899 0.9681 0.9652 0.9688 0.9778 

1 The highest performance for accuracy regarding network was highlighted in bold 

The most significant results from each classification model were then used to 

determine which classification model was most appropriate for the characteristics set. 

This analysis made use of decision trees (DT), k-nearest neighbor (KNN), Naive Bayes 

(NB), random forest (RF), and support vector machine (Table 4.5). Moreover, k-fold 

cross-validation is performed at this step to prevent overfitting the approach and to 

achieve the final average assessment. With an accuracy of 91.70%, a sensitivity of 

90.43%, and a specificity of 92.67%, the support vector machine is definitely the most 



69 

 

dominant model. Due to the balanced nature of the used dataset and the small difference 

in the number of caries and non-caries samples, precision (also known as positive 

predictive value) and recall pair (also known as sensitivity) also show promising values 

of 91.51% and 90.43%, respectively, as mentioned previously in Section 3.1. Finally, 

receiver operating characteristic (ROC) curves are constructed for each classifier; the 

ROC curves indicate how each classifier performed in each fold of the experiment. The 

mean ROC curve for each classifier is interpolated and compared in Figure 4.7 

 

4.4.3.4 Caries Detection Execution Time 

The execution time of the proposed caries detection technique is also assessed 

to ensure a thorough assessment. The experiments were conducted in a Windows 10 

environment using the Matlab2020a environment. The basic method was carried out 

on a CPU core i7-9750 HF and a GeForce GTX 2060 video card. 

Table 4.6 Total execution time for each function of the proposed system  

(table credit [58]). 

Function Name Time(s) 

Load data 0.37 

Deep activated features extraction 9.99 

Geometric features extraction 2.52 

Fusion features combination 0.01 

Training classification model 0.62 

Predict and evaluation 0.28 

Total 13.79 
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Each function process is thoroughly analyzed since it is one of the factors that 

contribute to determining the method's complexity. According to Table 4.6, the whole 

method takes 13.79 seconds, and the most complex function, deep activated feature 

extraction, takes less than ten seconds. Additionally, the calculation of the geometric 

feature took just 2.52 seconds to complete. The recommended approach works well 

and is extensible to a range of computer systems based on these results. According to 

the prediction and evaluation timeframes, it will take just 0.28 seconds to determine if 

a tooth has caries or not (less than 1 second). Dentists will find this to be optimal even 

in major hospitals with a high patient volume. 

 

4.4.3.5 Comparison to Related Study 

The proposed approach was compared to currently available state-of-the-art 

techniques in Table 4.7. Due to the fact that the various techniques were applied to 

individual datasets, the size and complexity of each dataset impacted performance. The 

distinctions and benefits/disadvantages of each strategy are highlighted to provide a 

fair comparison. Additionally, a reference is given to the relevant article and a 

description, since some methodologies are not fully discussed but have been tested on 

other datasets in other works. The comparison table demonstrates that Wei Li et al. and 

Yang Yu et al. method underperform, while Shashikant Patil et al. outperforms much 

more; yet, with an accuracy of 90.00%, a sensitivity of 94.67%, and a specificity of 

63.33%, both a data imbalance and a bad performance result can be obviously 

observed. In comparison to earlier methods, our proposed technique obtained 92.67% 

specificity, a 29.34% increase, while maintaining higher than 90% sensitivity. The drop 

in sensitivity of 4.24% is a reasonable trade-off for the improvement in specificity. 
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Table 4.7 Performance comparison of the proposed method and with the previous 

methods (table credit [58]). 

Reference Method Image 
ACC

% 

SEN 

% 

SPEC

% 

PPV

% 

NPV

% 

Wei Li et al. 

[50, 52] 

• Autocorrelation and 

GLCM features 

• SVM classification 

120 53.33 59.33 06.67 73.67 6.67 

Yang Yu et 

al. [51, 52] 

• Autocorrelation 

coefficients matrix 

• Neural network 

classification 

120 73.33 77.67 53.33 90.33 53.33 

Shashikant 

Patil et al. 

[52] 

• Multi-linear 

principal component 

analysis 

• Non-linear 

programming with 

adaptive dragonfly 

algorithm 

• Neural network 

classification 

120 90.00 94.67 63.33 91.00 63.33 

Proposed 

method 

• Deep activated 

features 

• Geometric features 

• SVM classification 

533 91.70 90.43 92.67 91.51 93.36 

 

4.5 Conclusion 

This section described a caries detection technique based on radiography 

images. Firstly, dentists classified radiography images manually as caries or non-caries. 

Later in the feature extraction method, dental images were utilized to extract the deep 

active features. The optimal layer for obtaining deep activated features from each deep 

pre-trained model was identified throughout the research. Fusion features were created 
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by extracting geometric features and fusing them with deep activated features. The 

optimal features set was determined via a performance comparison of deep activated 

features and fusion features. The number of geometric attributes was minimized while 

retaining the most important information. Following that, the fusion is fed into 

classification models such as support vector machine (SVM), decision tree (DT), k-

nearest neighbor (KNN), Naive Bayes (NB), and random forest to distinguish between 

caries and non-caries images (RF). The proposed approach obtained 91.70% for 

accuracy, 90.43% for sensitivity, and 92.67% for specificity, respectively. In 

comparison to previous state-of-the-art techniques, accuracy is increased by 1.7%, 

from 90% to 91.70%, and specificity by 29.34%, from 63.33% to 92.67%; sensitivity 

remained high at 90.43%. The proposed approach provided two key contributions: first, 

it determined the ideal feature set, which consists of a mix of deep activation and 

geometric characteristics; and second, it fitted a strong classification model to describe 

the situation. Second, by raising the specificity factor, performance may be improved. 

The complexity or size of the model has no effect on the performance of the deep 

activated feature. While VGG16 has a better deep activated function than Xception, the 

fusion result is the opposite. Although the selected deep active feature had a 

considerable influence, analytically calculated attributes also contributed to the result. 

It is more crucial to determine which deep activated feature features are compatible 

with analytically computed features than it is to determine which deep activated feature 

features are the best among all pre-trained models. While the majority of research aims 

to create the deepest networks possible in order to maximize learning performance, our 

results demonstrate that network depth is not necessarily a determinant in performance. 

More crucially, the combination of calculated features may be vital for performance 

enhancement, making it indispensable for the depth of the pre-trained model. The 
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processing time of 13.79 seconds for the whole experiment and 0.28 seconds for 

prediction demonstrates that the technique may be implemented widely in a short 

period of time on a low-tech machine.  
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CHAPTER 5  

Automated System Combination 

5.1 Experimental Strategy 

 

Figure 5.1 Caries detection of automated and manual tooth isolation. 
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This section will integrate the automated tooth separation and caries detection 

systems discussed in Chapters 3 and 4. The bounding box created by the isolation tooth 

systems will be utilized to segment the individual tooth for caries detection. The 

automated system's output will be compared to the results from manual segmentation 

tooth caries detection, as indicated in Figure 5.1. 

 

5.2 Experimental Result 

This section compares the results of the suggested approach to those of manual 

and automated methods. The measure metric is equivalent to the metric described in 

section 4.4.2. Therefore, the author prefers to proceed right to the examination of the 

results.  

Table 5.1 Comparison between manual and automated isolation input images. 

Method ACC% SEN% SPEC% PPV% NPV% AUC% 

Caries detection on 

manual isolation  
91.70 90.43 92.67 91.51 93.36 97.78 

Caries detection on 

automated isolation 
88.66 88.14 89.47 92.86 82.93 93.80 

 

According to Table 5.1, the overall performance of caries detection on 

automated isolation images has been decreased by about 4%, reaching 88.66% for 

accuracy, 88.14% for sensitivity, and 88.47% for specificity, respectively. However, 

this is a minor decrease and the results remain encouraging. Additionally, at this stage, 

the performance is being slowed down due to the automated isolation technique and 

may be enhanced by boosting the automated isolation tooth method's performance. 
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Table 5.2 Performance on each stage of caries. 

Stage Number of samples Detection Performance on each class (%) 

C0 218 89.47 

C1 67 75.59 

C2 189 88.89 

C3 43 91.12 

C4 16 100.00 

 

Lastly, for each example of caries stage, caries detection on automated isolation 

teeth is determined. Table 5.2 provides a summary of the number of samples collected 

and the precision of the results for each stage of caries. The detection performance of 

C0 is indicative of the overall performance's specificity, which is the classification 

output for non-caries. The result of the caries classification is determined by separating 

the values C1 through C4 and averaging them to determine their sensitivity. 

The best performance is observed in the C3 and C4 molars, with 91.12% and 

100%, respectively, despite the fact that caries is typically rather evident in these teeth. 

In addition, C0 and C2 perform well with respective scores of 88.89% and 89.47%. In 

contrast, C1 has a puzzling classification performance of around 75%, indicating that 

approximately one-third of C1 cases were mistakenly categorized as non-caries. 

Although C1 value is not particularly promising, it is nevertheless used in caries 

screening. The primary issue may be the little damage in the C1 stage and the poor 

quality of radiographs. Consequently, the approach may perform better with additional 

high-quality data. In addition, due to the fact that individuals may experience 

discomfort in stages C3 and later, C2 is also effective for screening. 
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5.3 Conclusion 

This section presented the automated caries detection method's implementation 

and validation. Both the tooth isolation approach and the caries detection method have 

been merged into a single, integrated system. On the basis of the decrease in the 

outcome metric, the performance and impact of manually isolated teeth and 

automatically isolated teeth were examined and explained. The varying contributions 

of each method to a strategy have been described. This part is a step forward in uniting 

all systems and making a significant contribution to research and medical practice 

through implementation. 

The result reveals that the accuracy metric, which is used to measure overall 

performance, has suffered a moderate decline of about 3%. Accordingly, both 

sensitivity and specificity have experienced a reduction of around 2%, falling from 

94.43% to 88.14%, and 3%, falling from 93.67% to 89.47%, respectively. The drop can 

be directly attributed to the relative ease with which teeth can be isolated. On the other 

hand, this is a relatively minor adjustment in light of the overall intricacy of the issue. 

As a consequence of this, the procedure is regarded as having a high potential for 

further development study and for the capability of being implemented in actual cases 

at dental hospitals. 

Last but not least, the effectiveness of caries detection on each class in order to 

demonstrate the degree of difficulty associated with detection on each class. C1 and C2 

are the very early stages of the disease, which should be given more attention and have 

been fairly diagnosed; nevertheless, the performance has been getting better in the more 

recent stages, which are C3 and C4. This provides an explanation for the performance 
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contribution that each phrase has made to the overall evaluation score, including 

accuracy, sensitivity, and specificity.   
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CHAPTER 6  

Research Conclusion 

6.1 Conclusion 

This study aims to demonstrate that a computer can be used to aid in the process 

of separating individual teeth and finding cavities. Despite the fact that numerous 

researchers have attempted to address this issue, it remains unsolved. The vast majority 

of them are either extremely complex, requiring a large number of resources and 

placing a significant stress on the computer system, or excessively simple, unable to 

give an effective result. As a result, our proposed approach reduced the most complex 

processes while preserving the advantages of each component. 

The objective of the study was achieved in terms of tooth isolation and the 

detection of caries. Oral panoramic radiography was utilised in conjunction with an 

automated tooth isolation technique to locate the tooth automatically. Due to its high 

degree of precision, which demonstrates a high level of detection accuracy, the method 

is practical and applicable for use by physicians. It appears that every aspect of the 

problem has been considered. However, the procedure might be considerably 

enhanced. It has been demonstrated that the outcomes of manually isolating teeth are 

superior to the previous state of the art in caries identification. An rise in the specificity 
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of the dataset indicates that the dataset and its results are well-balanced, consistent, and 

reliable. The automated combination technique, on the other hand, generates data that 

leads to a modest reduction in the total detection of caries. A component of the 

automated isolation dental system, relativity can be used to identify the weak. As a 

result, it may be useful to have a more comprehensive understanding of the situation in 

general.  

 

6.2 Future Work 

This study has two limitations: the automated tooth isolation reduced overall 

system performance due to an inaccuracy in tooth border identification, and the C1 

stage of caries detection did not function as anticipated. As a result, future studies 

should investigate other strategies for achieving these two objectives. First, a Yolo-

based network model should be examined in greater detail. Additionally, single-shot 

detection (SSD) [62], a competitor to Yolo, should be utilised to compare performance. 

Second, further image processing approaches should be researched for a more precise 

image processing that allows the deep learning model to gain a better knowledge of the 

issue and, as a result, make a higher improvement in C1 stage caries detection. 
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