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Abstract 

This thesis aims to develop the aircraft flight control system and propose two 

effective aircraft flight control systems. The first system is the “Aircraft flight control by 

CDM-designed Servo State-feedback system” or ACDM-SS. ACDM-SS is the servo state-

feedback system for simultaneously controlling the aircraft's longitudinal and lateral-

directional dynamics motion. The Coefficient Diagram Method or CDM is used to design 

the servo state-feedback gains of ACDM-SS. CDM is an algebraic approach to provide a 

controller design method. The control system designed by CDM exhibits a good balance 

of stability, response and robustness. The second system is the “Aircraft flight control by 

CDM-designed Model Reference Adaptive System” or ACDM-RAS. ACDM-RAS is the 

Model Reference Adaptive System which employs a design concept based on the 

Lyapunov function theory. ACDM-RAS uses the ACDM-SS as the reference model. The 

ACDM-RAS is expected to improve the performance of ACDM-SS and decrease 

uncertainty which may arise from imperfect modeling, approximate inversion, or sudden 

changes in the system parameters. The performance comparison of ACDM-RAS and 

ACDM-SS is conducted by means of flight simulation under various flight conditions. The 

simulation results show that ACDM-RAS can handle the varying flight maneuvers, 

stabilize aircraft in flight, and improve the performance of ACDM-SS. The proposed 

systems, both ACDM-RAS and ACDM-SS have straightforward structures, and their 

design processes also are not complicated with no need of deep mathematical knowledge. 



iii 

 

Acknowledgments 

First of all, I would like to express my sincere gratitude to my thesis advisor, 

Professor Yoshio Yamamoto, for his invaluable help and constant encouragement 

throughout my doctoral education. 

I would also like to express my gratitude extended to two professors from KMITL 

who are essential to my education. The first person is Professor Jongkol Ngamwiwit. Her 

teaching and advice do not benefit only my research but also benefit my life. The second 

person is Professor Taworn Benjanarasuth, who always supported me since I was a student 

at KMITL. 

I want to show my gratitude to my dissertation committee: Professor Koichi 

Koganezawa (Department of Mechanical Engineering), Professor Atsushi Okuyama 

(Department of Precision Engineering), Professor Yoshinobu Inada (Department of 

Aeronautics and Astronautics) for generously offering their time, support, guidance, and 

goodwill throughout my thesis examination. 

I gratefully acknowledge the scholarship from Civil Aviation Training Center 

CATC, Thailand. This scholarship allows me to achieve my Ph.D., and I will use my 

experience to be most beneficial back to CATC. I also would like to thank all staff at CATC 

who have worked hard instead of me throughout my studies. 

To conclude, I cannot forget to thank my sister and her children and friends for all 

the unconditional support and encouragement. Thanks also to my wife, Dr. Areerat Sensod, 

for all her help and patience for me. Finally, I would like to thank my parents, Mr. Pinit 

and Mrs. Kaeyoon Asa, who always believe in me and give everything in their life for my 

success. 

 

 

Ekachai Asa 



iv 

 

Table of Contents 

Abstract .............................................................................................................................. ii 

Acknowledgments ............................................................................................................. iii 

List of Tables .................................................................................................................... vii 

List of Figures ................................................................................................................. viii 

List of Symbols .................................................................................................................. x 

Chapter 1 Introduction ..................................................................................................... 1 

1.1 Aviation and Flight Control Evolution .......................................................... 2 

1.2 Previous Works in the Aircraft Flight Dynamics ......................................... 3 

1.3 Thesis Motivation .......................................................................................... 11 

1.3.1 Problem statement ............................................................................ 11 

1.3.2 The expected aircraft flight control system ...................................... 13 

1.4 Contribution and Outline of Thesis ............................................................. 14 

Chapter 2 Aircraft Flight Dynamics and Model .......................................................... 16 

2.1 Overview ........................................................................................................ 16 

2.2 Coordinate Systems ....................................................................................... 16 

2.2.1 Inertial and vehicle-fixed coordinate system ................................... 16 

2.2.2 Euler angle ....................................................................................... 17 

2.2.3 Vector notation ................................................................................. 19 

2.3 Aircraft Flight Dynamics .............................................................................. 20 

2.3.1 Aircraft translational and rotational motion ................................... 20 

2.3.2 Scalar equations of motion ............................................................... 22 

2.3.3 The study of nonlinear aircraft dynamics ........................................ 24 



v 

 

2.4 Aircraft Dynamics Linear Model ................................................................. 27 

2.4.1 Linear equations of motion .............................................................. 27 

2.4.2 Linear equations of the forces and moments .................................... 29 

2.4.3 Decoupled state-space models ......................................................... 30 

2.5 Summary of the Aircraft Flight Dynamics Models .................................... 32 

Chapter 3 Controller Design Theory ............................................................................. 35 

3.1 Overview ........................................................................................................ 35 

3.2 Coefficient Diagram Method ........................................................................ 35 

3.2.1 The CDM standard structure and mathematical relations .............. 36 

3.2.2 Coefficient diagram .......................................................................... 39 

3.2.3 The stability condition of CDM ........................................................ 41 

3.2.4 The standard form of CDM .............................................................. 43 

3.2.5 The stability index criterion ............................................................. 45 

Chapter 4 Aircraft Flight Control System and Design ................................................ 46 

4.1 Overview ........................................................................................................ 46 

4.2 The Structure of Servo State-Feedback System ......................................... 46 

4.2.1 Aircraft longitudinal dynamics servo state-feedback system ........... 47 

4.2.2 Aircraft lateral-directional dynamics servo state-feedback system . 49 

4.2.3 The integrated aircraft flight dynamics model and ACDM-SS ........ 50 

4.3 ACDM-SS Design Procedures ...................................................................... 52 

4.4 ACDM-RAS Concept and Design ................................................................ 54 

4.4.1 The reference model by ACDM-SS ................................................... 55 

4.4.2 Adaptive mechanism ......................................................................... 55 

Chapter 5 Flight Simulation ........................................................................................... 60 

5.1 Overview ........................................................................................................ 60 



vi 

 

5.2 Numerical Aircraft Dynamics Models ......................................................... 60 

5.3 The Reference Model by ACDM-SS ............................................................ 62 

5.3.1 The CDM's parameter ...................................................................... 63 

5.3.2 The controller gains of ACDM-SS ................................................... 64 

5.3.3 ACDM-SS response to tracking command ....................................... 65 

5.3.4 ACDM-SS in stabilization investigating ........................................... 68 

5.4 ACDM-RAS Simulation ............................................................................... 71 

5.4.1 The numerical values of the matrix P ............................................... 71 

5.4.2 The effect of the adaptive gain   ..................................................... 72 

5.5 ACDM-RAS vs. ACDM-SS .......................................................................... 77 

5.5.1 ACDM-RAS vs. ACDM-SS in tracking behavior .............................. 77 

5.5.2 ACDM-RAS vs. ACDM-SS in the stabilization ................................. 79 

5.6 ACDM-RAS Flight Path ............................................................................... 82 

Chapter 6 Summary ........................................................................................................ 85 

6.1 Conclusions .................................................................................................... 85 

6.2 Suggestions ..................................................................................................... 87 

6.3 Future Work .................................................................................................. 88 

Appendix A Cessna 182 .................................................................................................. 89 

Appendix B MATLAB® M-File ..................................................................................... 92 

Appendix C Simulink® .................................................................................................. 106 

References ...................................................................................................................... 110 



vii 

 

List of Tables 

Table 2.1. The reference and perturbation quantities. ...................................................... 25 

Table 2.2. The standard shorthand notation for decoupled models. ................................. 31 

Table 2.3. The standard shorthand notation for aircraft flight dynamics models. ............ 34 

Table 5.1. Flight condition for Cessna C182 on cruise phase. ......................................... 61 

 



viii 

 

List of Figures 

Figure 2.1. Inertial frame and vehicle-fixed frame........................................................... 17 

Figure 2.2. Euler angles. ................................................................................................... 18 

Figure 2.3. Vector components. ....................................................................................... 20 

Figure 2.4. Position vectors. ............................................................................................. 21 

Figure 3.1. The CDM standard structure of the Single-Input Single-Output system. ...... 36 

Figure 3.2. Coefficient diagram. ...................................................................................... 40 

Figure 3.3. The shape of coefficient diagram. .................................................................. 41 

Figure 3.4. The pole location of the various systems. ...................................................... 44 

Figure 4.1. Aircraft longitudinal dynamics servo state-feedback system. ....................... 48 

Figure 4.2. The structure of the ACDM-SS. .................................................................... 51 

Figure 4.3. The concept of the ACDM-RAS. ................................................................... 54 

Figure 5.1. The coefficient diagram of the aircraft longitudinal dynamics part. ............. 63 

Figure 5.2. The coefficient diagram of the aircraft lateral-directional dynamics part. .... 64 

Figure 5.3. The altitude and heading commands. ............................................................. 66 

Figure 5.4. Responses of the reference model to tracking command. .............................. 67 

Figure 5.5. The Altitude Hold and Heading Hold responses of the reference model. ..... 68 

Figure 5.6. The altitude and heading disturbance signals. ............................................... 69 

Figure 5.7. Responses of the disturbance rejection behavior of ACDM-SS. ................... 70 

Figure 5.8. The altitude response of ACDM-RAS with the various  . .......................... 73 

Figure 5.9. The heading changing effect on the altitude response. .................................. 74 

Figure 5.10. The heading response of ACDM-RAS with the various  . ........................ 74 

Figure 5.11. The altitude and heading stabilization response of ACDM-RAS. ............... 75 



ix 

 

Figure 5.12. Responses of the disturbance rejection behavior of ACDM-RAS. .............. 76 

Figure 5.13. The altitude response due to altitude changing command. .......................... 78 

Figure 5.14. The effect of heading changing on the altitude response. ............................ 78 

Figure 5.15. The heading response due to the changing heading command. ................... 79 

Figure 5.16. The Altitude Hold and Heading Hold response comparison. ...................... 80 

Figure 5.17. The disturbance rejection comparison. ........................................................ 81 

Figure 5.18. ACDM-RAS flight path I. ............................................................................ 83 

Figure 5.19. ACDM-RAS flight path II. .......................................................................... 84 

Figure A.1. Cessna C182 from FligthGear Flight Simulator ........................................... 91 

Figure B.1. The Simulink® of ACDM-RAS and ACDM-SS (level 1) ........................... 107 

Figure B.2. The Simulink® of the controller part of ACDM-SS .................................... 108 

Figure B.3. The Simulink® of the controller part of ACDM-RAS ................................. 109 

 

file:///D:/Thesis%20Update/Thesis%20book/final%20draft%20ekachai_s%20thesis.docx%23_Toc89779933
file:///D:/Thesis%20Update/Thesis%20book/final%20draft%20ekachai_s%20thesis.docx%23_Toc89779934


x 

 

List of Symbols 

g  = gravity acceleration, ft/sec2 

h  = altitude, ft 

, ,L M N    = dimensional derivative of moment 

p  = roll angular rate, rad/sec 

q  = pitch angular rate, rad/sec 

r  = yaw angular rate, rad/sec 

ts  = settling time, sec 

u  = velocity, ft/sec 

1PV   = true airspeed, ft/sec 

, ,X Y Z    = dimensional derivative of force 

   = angle of attack, rad 

   = sideslip angle, rad 

   = deflection of control surfaces, rad 

   = roll angle, rad 

i   = stability index 

*

i   = stability limit 

   = pitch angle, rad 

1   = steady state pitch angle, rad 

   = equivalent time constant, sec 

   = yaw angle, rad 

 



xi 

 

Subscripts 

A  = aileron 

E  = elevator 

LatDir, LD = relative to the lateral-directional dynamics 

Long, L = relative to the longitudinal dynamics 

rL  = reduce matrix of the longitudinal dynamics 

rLD  = reduce matrix of the lateral-directional dynamics 

R  = rudder 

T  = thrust 



 

1 

Chapter 1 

Introduction 

The aviation industry is one of the many primary industries without which our 

everyday life will not be as easy as what it is now due to aircraft utility. There is continuous 

growth in demands of using the aircraft. These demands are from various activities, such 

as transportation, search-and-rescues, exploration and so on. Because of an extremely high 

economic impact of the aviation industry, a market competition also tends to be very high 

in this industry. Once a customer decides to purchase any type of aircraft, it does not mean 

that the aircraft has only its market value but also yields to the maintenance costs followed 

from operating that aircraft, which brings additional economic benefits for the 

manufacturers. Therefore, both aircraft manufacturers and aircraft parts manufacturers 

strive to improve the efficiency of the aircraft and meet the requirements of customers to 

gain a vast market share. So, it is inevitable that there are high trade competitions and 

enormous investments in the aviation industry. Due to the reason already mentioned, there 

has been a rapid change in this industry from the past century. Every part related to the 

aviation industry has been affected and stimulated to respond to this rapid change. Itis 

indisputable to say that an essential part of the industry, then is the aircraft itself. 

From the reason stated above, the aircraft technologies, the structure design, the 

material used, and the aircraft systems such as a flight control system, an electrical power 

system, instrument systems, an air navigation system, a communication system are all 

being under the research and development. Especially in the flight control system, whose 

rapid evolution occurred in many past decades, the form of system has evolved from the 

mechanical system to the hydro-mechanical system and then advanced to the automatic 
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control system to replace the manual flight control system. These development goals are 

multifaceted, such as increasing the efficiency of aviation, reducing production costs, 

increasing safety, improving operating comfort, and all in response to the industry. 

1.1 Aviation and Flight Control Evolution 

Humans are curious about nature's flight system and aspire to fly like other flying 

creatures such as birds. These ideas gave rise to a long history of aviation [1] – [5]. From 

those days, the day humans want to fly, many flying vehicles exist in the present. These 

flying vehicles can be classified into various types based on the mode of classification. For 

example, flying vehicles can be classified into “lighter than air vehicles” and “heavier-

than-air vehicles” according to lift methods. Airship and Kite balloons are examples of 

“lighter than air vehicles”. While gliders, fixed-wing aircraft, and rotorcraft are examples 

of “heavier-than-air vehicles”. However, these different flying vehicles have one thing in 

common: their flight dynamics can be described by a specific set of equations of motion. 

Generally, these equations contain six degrees of freedom: three translational modes and 

three rotational modes and can be called the six degrees of freedom (6 DOF) equations of 

motion of a rigid vehicle or flight dynamics model. The flight dynamics model can predict 

a vehicle's trajectory and orientation during the flight. When flight dynamics knowledge is 

integrated with other technology such as the evolution of flight control actuator, computer 

network, communication technology and control technology, these amount to establishing 

an automatic flight control system [6] – [8]. From the many advantages of this system, such 

as increased flight quality and safety measures, the automatic flight control system has 

become an essential part of modern aircraft. More specialized studies have been conducted 

according to the increasing importance of the automatic flight control system [9] – [11]. 

Designing the automatic flight control system is related to other fields, in addition to the 
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aircraft flight dynamics, such as Aerodynamics, Rigid-body dynamics, and System theory. 

Even though more studies or research are devoted to the automatic flight control system, 

designing of an automatic flight control system is still an arduous task and sometimes 

needed advanced mathematical knowledge besides aviation knowledge alone. 

On the other views about the automatic flight control system, it is not a standalone 

system although it is one of the essential systems in modern aircraft. This system also needs 

to coordinate in operation with other aircraft systems to complete the flight's mission, such 

as communications, navigation, and traffic collision avoidance systems. Therefore, if an 

automatic flight control system effectively controls the flight or stabilizes the aircraft in 

flight, it will be easy to apply to other aircraft systems. In addition, if the structure of the 

flight control system becomes simple, uncomplicated, and has few restrictions, it will be 

easy to adjust the system for compatibility with other systems or requirements. Moreover, 

it is especially beneficial if the processes used to design a system have clear design criteria. 

It is easy to understand and can predict system performance in advance. Contribution of 

these advantages becomes remarkable in reduction of the design or analysis time of the 

system when being used in conjunction with other systems or when problems arise with 

others systems or the flight control system itself. It brings a good benefit in modern aircraft 

design, which has complex relations among the various systems. 

1.2 Previous Works in the Aircraft Flight Dynamics 

The aircraft flight dynamics control has a long history. Since the rise of aircraft 

flight dynamics knowledge and control technology, there have been a vast amount of 

research efforts devoted to the aircraft flight control system related to aircraft dynamics 

motion for many different types of flying vehicles. Generally, the aircraft flight dynamics 

motion can be separated into two major parts. There are aircraft longitudinal dynamics 
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motion and lateral-directional motion. As far as the motion of aircraft is concerned, there 

are many pieces of research examples about aircraft flight control systems specific to both 

longitudinal dynamics motion and lateral directional motion. 

The examples in terms of longitudinal dynamics motion are as follows. The 

adaptive controller of F. Gavilan, R. V., and J. Á. A. [12] for controlling the longitudinal 

flight dynamics of an aircraft is designed by using the adaptive backstepping method. 

Engine physical limits are incorporated into the design to obtain a novel hybrid adaptation 

law that guarantees closed-loop system stability. Simulation results show good 

performance to follow given airspeed and flight-path angle references by actuating elevator 

deflections and aircraft engine thrust.  

In the paper of A. Maqsood and T. H. Go [13], the analysis technique using linear 

dynamics and the multiple scale method in conjunction with bifurcation theory is used to 

analyze the longitudinal dynamics of a small agile unmanned aerial vehicle or UAV. This 

UAV is equipped with the aerodynamic vectoring feature under general envelope trim 

conditions between hover and cruise flight conditions. The research successfully describes 

the peculiar dynamics behavior of this UAV, which is mainly attributed to the class of 

small UAVs flying at a high angle of attack, and the aerodynamic vectoring feature 

enhances its occurrence.  

The problem of fault-tolerant control for a class of uncertain nonlinear systems in 

the presence of actuator faults for aircraft longitudinal dynamics motion is discussed in the 

work of Q. Shen, B. J. and V. C. [14]. Adaptive fuzzy observers are designed by using a 

backstepping approach to provide a bank of residuals for fault detection and isolation. In 

their simulation results, the estimation algorithms and fault-tolerant control scheme have 

better dynamic performances in the presence of actuator faults.  



 

5 

The nonlinear controller based on the total energy control system to control the 

aircraft altitude and airspeed is proposed in the research of M. E. Argyle and R. W. Beard 

[15]. The control is achieved by manipulating the aircraft's total energy and distribution 

rates to account for the dynamic coupling. Furthermore, the simulation results show that 

the nonlinear controller performs better than the total energy control system standard PI-

type controller.  

J. Yan, J. B. H., R. E. H. and D. S. B. [16] used transfer function techniques to 

analyze the response of an aircraft to an elevator step deflection. Furthermore, it showed 

that the aircraft’s initial response to an elevator step command is characterized by the 

instantaneous acceleration center of rotation or IACR.  

The works from A. M. Wickenheiser, E. G. and M. W. [17] and [18] demonstrate 

a new bioinspired flight capability: perching through a morphing aircraft concept. Besides 

the traditional aircraft control surfaces, the proposed morphing aircraft consists of variable 

wing incidence, tail boom angle, and tail incidence. The transient and steady-state behavior 

of this aircraft changing flight condition and vehicle reconfiguration is discussed.  

In paper of Y. Ameho and E. Prempain [19] used three Linear Parametrically 

Varying synthesis algorithms to design the controller to improve the ADMIRE fighter 

aircraft longitudinal dynamics handling qualities. Two algorithms were proved successful 

in longitudinal dynamics handling. In contrast, the latter can provide beneficial information 

about the parameter space to achieve good design by avoiding ill-suited parameter 

combinations. Modern techniques are used to estimate wind from a flight vehicle usually 

has an estimation error. This error comes from sensor measurements and mathematical 

models of the aircraft’s dynamics.  
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H. G. McClelland and C. A. Woolsey [20] presents a methodology to isolate the 

modeling error for common simplified forms of the dynamic flight model during straight-

and-level longitudinal flight, and the proposed is demonstrated via an example study in 

which both open-loop and closed-loop flight simulations.  

In the paper of V. H. Nguyen and T. T. Tran [21], a hybrid robust control design 

method is proposed for a third-order Single-Input Single-Output (SISO) lower-triangular 

model of nonlinear dynamic systems in the presence of disturbances. The proposed control 

method was proved a well-tracking command with asymptotic stability, provides 

robustness in the presence of uncertainties and eliminates a chattering phenomenon. 

The researches relate to lateral-directional dynamics motion are shown as follows. 

The later-directional dynamics control of UAV by using the backstepping technique is 

presented in the paper of S. Swarnkar and M. Kothari [22]. The adaptive design is used to 

learn and control unknown dynamics for the whole flight regime.  

The reinforcement-learning lateral-directional flight controller to prevent or 

recover aircraft from losing control in flight has been discussed by I. K. Ashraf and E.-J. 

Van Kampen [23]. The controller is designed based on value function-based single network 

adaptive critic (J-SNAC), the one of Adaptive Critic Designs (ACD) algorithm. Simulation 

with F16 aircraft was done to evaluate for tracking two different heading command signals, 

robustness against sensor noises, and partial failure of the ailerons.  

P. C. Shrivastava and R. F. Stengel [24] details the conditions for stability 

boundaries of linear systems containing control saturation on unstable lateral-directional 

dynamics. This work examines the effects of control saturation on unstable lateral-

directional dynamics through the fourth-order models with the flight control logic based 
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on minimum control energy linear-quadratic-regulatory theory and found that the stability 

boundaries can be described by unstable limit cycles surrounding stable equilibrium points.  

T. H. Go [25] details the analysis of the lateral-directional aircraft dynamics under 

the cubic variation of the lateral moment to sideslip. The results obtained confirm the 

findings in the author's previous works that the weak static moment nonlinearity does not 

lead to wing rock, and the static moment nonlinearity can cause wing rock. Moreover, the 

results also give the knowledge, which is very useful in aircraft design to avoid wing rock 

or the wing rock alleviation strategy of an existing aircraft.  

N. Abramov, M. G., M. D. and A. K. [26] showed the comparative analysis of two 

forms of aerodynamic representation in terms of their impact on the lateral-directional 

stability characteristics. The results show that the unsteady aerodynamic model exhibits 

good results than the conventional aerodynamic derivative model both for flight dynamics 

analysis and control design at high angles of attack and provide an accurate prediction of 

stability characteristics and be applied for control design beyond stall conditions.  

In R. Livneh [27], the literal approximation method for improving approximation 

of the lateral-directional dynamics of rigid aircraft is presented. Compared to the traditional 

method, the proposed method shows a more meaningful improvement in accuracy than the 

traditional approximation.  

S. A. Snell, W. L. G. Jr. and D. F. E. [28] analyzes the lateral-directional dynamics 

of a supermaneuverable aircraft and the control laws which reduce the levels of lateral 

acceleration and sideslip encountered during aggressive rolling maneuvers at high angles 

of attack. The paper's conclusion states that a significant reduction in lateral acceleration 

measured at the pilot's station is only attainable by compromising the roll-rate performance.  
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The cancellation control laws which reduce the high levels of lateral acceleration 

encountered during aggressive rolling maneuvers executed at a high angle of attack are 

designed in A. Snell [29]. The proposed control laws can reduce the high level of lateral 

acceleration as expected but must be exchanged with slower roll response, poor Dutch-roll 

damping, or a combination of the two.  

The investigation of recovery of the lateral-directional stability of commercial 

aircraft when its vertical stabilizer is damaged is presented in L. Zhaoxing, F. J., G. X., L. 

J., W. S. and W. Y. [30]. The recovery is made through a unique differential thrust-based 

adaptive controller designed based on the Lyapunov stability.  

A linear-adaptive controller for lateral-directional dynamics control of F-14 aircraft 

is presented in C. Tournes and B. Landrum [31]. The controller design is based on the 

combination of the disturbance-observers and Subspace-Stabilization Theory. The 

disturbance-observers method is used to estimate and cancel out the combined effects of 

nonlinear, uncertain, and off-nominal terms in real-time. At the same time, Subspace-

Stabilization Theory is used to steer the system “error-state” to a certain subspace S 

representing the desired servo-tracking error behavior while controlling the subsequent 

motion of the error-state the subspace S to the origin. Simulation results are compared with 

previous results obtained using gain scheduling and H-infinite and exhibit good 

performance. These previous researches present the technique specific to only one type of 

dynamics motion by assuming some conditions to the other dynamics motion or regardless. 

The other proposed researches also can be classified by consideration of the used controller 

techniques. For example, the Proportional–Integral–Derivative controller or PID controller 

is a well-known controller used for flight control systems. There are using the conventional 

PID controller to design the flight control system directly or cooperates with other 

controller form as the hybrid controller or use the PID controller as the baseline. 
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X. Xiao, J. J. Z. and Q. Z. [32] presents the PID controller for flight stability of the 

UAV. In order to improve flight stability, this research designed the reconfigurable control 

law strategy based on the consideration of several typical actuator failures. The simulation 

results show that the controller applied to the unmanned tiltrotor aircraft has good 

performance.  

The attitude control of the four-rotor aircraft is improved in T. Hongpeng and 

Weibo [33]. The differential leading PID algorithm is assigned to stabilize the attitude 

angle of the quadrotor. The proposed algorithm is compared with the conventional PID 

control algorithm and exhibits good performance in attitude stabilizing at high-frequency 

interference and frequent lifting environment.  

The PI algorithm and quaternion method combination is used to improve the 

integral separation PID control algorithm, detailed in H. Y. Tian and L. Li [34]. The 

simulation by using MATLAB shows that the improved integral separation PID exhibits a 

good performance than the conventional PID controller and the integral separation 

controller.  

B. Porter, A. M. and T. M. [35] presents the design of digital model-following 

flight-mode control systems for the F-16 aircraft. The controller is designed based on the 

previous results for fast non-interacting digital signal following systems incorporating fast-

sampling error-actuated digital PID controllers.  

An attempt to improve the attitude control and flight stability of a quadrotor aircraft 

is introduced in Y. Yu and J. Chen [36]. The controller design method is based on the visual 

servo feedback concept. The target image features information is extracted by the Scale-

Invariant Feature Transform (SIFT) algorism and used as an input signal of the PID flight 

control system.  
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A new method for roll reversal phenomenon control and eliminating is introduced 

in M. Mirzaei [37]. The proposed controller is designed by using the sliding mode control 

based on an online identifier that estimates the control input direction. The results show 

that the system has a good performance and robustness.  

Y. Ochi, H. K. and M. W. [38] propose the derivation of the linear dynamic model 

of a powered paraglider from a nonlinear dynamic model. This linear model can be 

described by the payload states of the paraglider, which facilitates dynamical analysis and 

controller design. Based on this linear model, a PID controller shows good control 

performance and desirable stability.  

P. Kumar, S. N. and J. R. [39] introduces the bat algorithm and differential 

evolution for tuning the controller parameters using the robust stability criteria for the 

multi-objective optimization to design the fractional-order PID (FOPID) and integer-order 

PID controllers are discussed. From conclusion shows the bat algorithm gives better results 

in terms of the time domain performances, but differential evolution gives better robustness 

to the control system.  

In A. Z. Azfar and D. Hazry [40], a new method in sensor fusion and inclination 

angle estimation is applied to the PID controller for stabilizing the quadrotor, while D. Luo, 

W. X., S. W. and Y. M. [41] present the PID controller for the UAV formation flight 

distributed formation control and the switching strategy for completing the three kinds of 

conventional formation. The simulation results also show the effectiveness of the proposed 

controller. 

Other techniques used to design the flight control system also have the neural 

network [42] – [44] and the fuzzy logic [45] – [47]. 

 



 

11 

1.3 Thesis Motivation 

1.3.1 Problem statement 

Although many pieces of research activities achieved their individual purposes to 

some extent, automatic flight control is still a challenge, and there are still exciting aspects 

yet able to develop. The essential points of interest in this thesis are identified as follows: 

• The aircraft mathematical models: The automatic control system designing 

usually starts with the mathematical model of the plant of interest, and this 

mathematical model must represent the system's dynamics behavior or the 

relationship between the inputs and the interested variables or the outputs of the 

system. Knowing the system's dynamics is essential for a control system designer 

to analyze the system before and after designing. Therefore, the model's accuracy 

directly influences the system performance or the system design. Generally, the 

mathematical model can be divided by following the system type: nonlinear or 

linear. Determining the nonlinear system's mathematical model is always tricky for 

beginners and skilled ones encountering the more complex system. That may cause 

many problems in the control system design processes. Finding a proper control 

design method to obtain the nonlinear system's mathematical model usually 

requires deep mathematical knowledge in design and analysis, and sometimes 

determining aerodynamic characteristics based on the concept of aerodynamic 

derivatives are difficult or impossible. On the other hand, determining the linear 

system's mathematical model is far more straightforward than the nonlinear system. 

The derivation of the linear model is usually obtained by approximating the 

nonlinear system at flight conditions of interest. Therefore, the linear model may 

not be accurate in describing all dynamics behavior of the actual system. Generally, 
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the actual plants are inherently nonlinear systems, and an aircraft is also a nonlinear 

system without an exception. Choice of mathematical model type to represent 

aircraft affects many points in control system design, such as the choice of the 

control design method and the system's performance analysis. Therefore, selecting 

the mathematical model, which can accurately describe the system's behavior and 

benefit the design processes, is of vital importance. 

• The controller and design method: As already stated, many types of controllers 

or design methods have been proposed for the aircraft's automatic flight control 

system. However, choosing the most effective controller for the plant depends on 

several factors. For example, in the conventional PID controller, the 

implementation of this controller type is done by adjusting the value of PID's gains 

(Kp, Ki, and Kd) to get the best response of the system. The selection of these gain 

values causes variation in the observed response against the desired response. Trial-

and-error may be used to determine these gains. Another example is a controller 

based on neural networks. The proper network structure is one crucial part of this 

controller type. However, there is no specific rule for determining the network 

structure. The appropriate structure can be achieved through the designer's 

experience and trial and error. In the fuzzy logic-based controller, setting exact 

fuzzy rules and membership functions is a difficult task. Validation and 

Verification of a fuzzy knowledge-based system needs extensive testing with 

hardware. Although each controller can achieve its control objective, there are 

some limitations in design, such as requiring a deep understanding of the behavior 

of the system, the system designer must have more experience regarding the 

system, or design's processes still requires trial and error which might not find the 

optimum point. Besides the controller type, the controller design process or 
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controller design method is another interesting factor. The design method has 

straightforward processes or the tuning decision, which is interesting and maybe 

more beneficial for design and analysis processes. 

1.3.2 The expected aircraft flight control system 

Upon reviewing the previous works about aircraft flight dynamics control, it was 

noticed that there are many points are yet to be improved. According to the author's idea, 

the expected aircraft flight control system should be characterized as follows. 

1) The system should have a simple structure or model, which makes it easy 

to design, analyze, and customize the system before and after the design. A 

servo state-feedback system [48] is the most suitable answer for this 

purpose. The first reason is that the servo state-feedback system can be 

started with the linear mathematical model, which dramatically reduces the 

complex task when working with the nonlinear model. The second reason 

is that the linear model structure is also straightforward and makes further 

modification easy. There are many applications based on the servo state-

feedback system, such as the inverted pendulum system [49], the two-

wheeled balancing robot [50], and the magnetic levitation system [51]. 

2) The controller design method for this expected system should have the 

concept as same in the model. The design processes should be 

straightforward and easy to modify if required. Therefore, the Coefficient 

Diagram Method, also known as CDM, is chosen to design this servo state-

feedback system. CDM has straightforward design processes, clear tuning 

criteria, and CDM also has a specific diagram, which is helpful in design 

processes. CDM has provided successful controller designs for various 
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practical control problems over the past decade, and a great amount of 

research efforts have been done on CDM [52] – [71]. Besides the 

widespread use of CDM in various fields, various controllers are also 

designed based on CDM in the field of aeronautics [72] – [76]. Inaccuracies 

or uncertainties which may arise due to the linear model approximation 

when the designed controller is applied to nonlinear plant need to be 

addressed. For that purpose, the concept of a model-reference adaptive 

system is implemented to the servo state-feedback designed based on CDM. 

1.4 Contribution and Outline of Thesis 

The automatic aircraft flight control system is proposed in this thesis. The proposed 

system is called Aircraft flight control by CDM-designed Model-Reference Adaptive 

System or, in short, ACDM-RAS. ACDM-RAS is the model-reference adaptive control 

system, and the reference model, which is used in ACDM-RAS, is the servo state-feedback 

system designed by Coefficient Diagram Method. This servo state-feedback system will 

be called ACDM-SS. ACDM-SS comprises two servo state-feedback systems: the aircraft 

longitudinal and lateral-directional dynamics controllers, and ACDM-SS can 

simultaneously control both aircraft dynamics motions. Using the Coefficient Diagram 

Method or CDM to design ACDM-SS from the linear models can reduce design 

complications, and use of the adaptive system is intended to compensate inaccuracies or 

uncertainties, which may be caused by model approximation. The proposed ACDM-RAS 

is able to handle the varying flight maneuvers and stabilize aircraft in flight. In addition, 

the ACDM-RAS can improve the performance of ACDM-SS by compensating any 

restrictions of ACDM-SS. The structure of ACDM-RAS is also quite straightforward. The 
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design processes and system analysis are not complicated with no need of mathematically 

involved method. 

The outline of this thesis is as follows: In Chapter 2, the derivation of the aircraft 

flight dynamics model is presented. Coefficient Diagram Method or CDM, the control 

system design theory, is described in Chapter 3. At the same time, the design processes of 

the servo state-feedback system using CDM and the model-reference adaptive system are 

explained in Chapter 4. Simulation studies and results for the different control strategies 

proposed are presented in Chapter 5. Finally, the conclusion and suggestions for further 

work are given in Chapter 6. 
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Chapter 2 

Aircraft Flight Dynamics and Model 

2.1 Overview 

In this chapter, the aircraft flight dynamics mathematical models [81] – [87] used 

in Chapters 4 and 5 for designing the controller and flight simulation are described. 

Generally, these aircraft flight dynamics models are typically nonlinear; however, the 

purpose of this thesis is to develop the aircraft flight control system. This system is the 

Model-Reference Adaptive System or MRAS where the reference model used is designed 

by CDM. Therefore, these aircraft dynamics models need to be converted to a linear system 

suitable for the CDM controller design method. When the aircraft dynamics models are 

converted to the linear model, these models can be divided into two essential parts: the 

aircraft longitudinal dynamics model and lateral-directional dynamics model. These two 

models are adjusted to have the desired control parameters and are further used in the 

controller design in the later chapter. 

2.2 Coordinate Systems 

2.2.1 Inertial and vehicle-fixed coordinate system 

The coordinate system or coordinate frame must be firstly defined before the 

aircraft flight dynamics models are derived. The frame introduced first is called an inertial 

frame. This frame is undergoing neither rectilinear acceleration nor rotation. An example 

of a genuinely inertial frame S is a frame whose origin is fixed at the Earth's center and 

referring to specific stars. However, frame S is more complex and not suitable for the 
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desired aircraft modeling. In the aircraft flight dynamics model's derivation, the earth frame 

is assumed to be an inertial frame. This earth frame is a Cartesian coordinate system. The 

frame's origin is fixed to a point on the earth's surface with axes oriented true north, east, 

and downward to the center of the earth, frame E, as shown in Figure 2.1. 

 

Figure 2.1. Inertial frame and vehicle-fixed frame. 

The second frame is vehicle-fixed, which is rigidly attached to the vehicle and 

therefore moves with a vehicle. The frame's origin is placed at the aircraft's center of 

gravity. The positive x-axis lies along the aircraft's symmetrical axis in the forward 

direction, and the positive y-axis is perpendicular to the symmetrical axis of the aircraft in 

the right direction. The positive z-axis is perpendicular to the x-y plane, making the right-

hand orientation. This frame V is also shown in Figure 2.1. 

2.2.2 Euler angle 

The Euler angles  ,  , and   are defined as vehicle bank angle, vehicle pitch 

angle, and vehicle heading angle, respectively. These angles are used to express the 

vehicle-fixed frame's orientation to the earth frame, as shown in Figure 2.2. 
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(a) Heading angle 

 

(b) Pitch angle 

 

(c) Bank angle 

Figure 2.2. Euler angles. 

The transformation of the earth frame to the vehicle-fixed frame can be done using 

the Direction Cosine Matrix or DCM. The DCM can be expressed in term of Euler angles 

as shown in Eq. (2.1). 
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( )

cos cos cos sin sin

, , sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

E V

    

              

           

−

− 
 

= − +
 
 + − 

T  (2.1) 

2.2.3 Vector notation 

The components of the necessary vectors in the vehicle-fixed frame are defined as 

in Eq. (2.2). These vectors will derive the six scalar equations of motion, covering the 

aircraft dynamics, and will be derived in the next section. 

Vehicle velocity vector VV , Position of mass element relative to vehicle center of 

mass p , gravity vector g , and Angular velocity of Frame V with respect to Frame E ,V Eω  

are defined as Eq. (2.2 a). 

,

V
V V V V

E

V V V

x V y V z V

V E V V V

d
U V W

dt

x y z

g g g

P Q R

= + +

= + +

= + +

= + +

p
V i j k

p i j k

g i j k

ω i j k

 (2.2 a) 

Aerodynamic and Thrust Force vectors are designed as Eq. (2.2 b). 

X Y Z

X Y Z

Aero A V A V A V

Thrust T V T V T V

F F F

F F F

= + +

= + +

F i j k

F i j k
 (2.2 b) 

Aerodynamic and Thrust Moment vectors are designed as Eq. (2.2 c). 

Aero A V A V A V

Thrust T V T V T V

L M N

L M N

= + +

= + +

M i j k

M i j k
 (2.2 c) 
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(a) Components of VV  and ,V Eω  

 

(b) Components of g  

 

(c) Components of Force and Moment 

Figure 2.3. Vector components. 

2.3 Aircraft Flight Dynamics 

2.3.1 Aircraft translational and rotational motion 

From a vehicle, as shown in Figure 2.4, it is considered that the aircraft's mass 

Vdm dV=  is acted by the forces consisting of gravitation plus external forces. By using 
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Newton's second law and equilibrium internal forces, the translational and relational 

momentum of the mass dm are expressed as 

V V ext

EVol Vol SurfaceE

d d
dV dV d

dt dt
 

 
= + 

 
  

p
g f  (2.3) 

V V ext

EVol Vol SurfaceE

d d
dV dV d

dt dt
 

 
   =  +  

 
  

p
p p g p f  (2.4) 

 

Figure 2.4. Position vectors. 

However, these equations are expressed in terms of particles' position to the earth 

frame, which is not a suitable form for the derivation of aircraft dynamics. With the vehicle-
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fixed frame and the assumption that the aircraft is a rigid body, the aircraft's mass and mass 

distribution are treated constant; thus Eq. (2.3) and (2.4) can be rewritten as below. 

V V
V ext

E E E Vol Surface

d dd
m m dV d

dt dt dt


 
= + 

 
 

p V
g f  (2.5) 

( ),

, ,

V I

V V I V I ext

Vol SurfaceE

d
dV d

dt


   
   +   =      

   
 

ω
p p ω ω p p f  (2.6) 

For the right side of Eq. (2.5) and (2.6), the gravity force is assumed constant. Let 

the external forces and moments act on the vehicle arises due to aerodynamic and thrust 

effects. The equations of motion for a rigid vehicle with a constant density distribution 

governing the translational and rotational motion of aircraft can be expressed as 

V V
Aero Thrust

E E E

d dd
m m m

dt dt dt

 
= = + + 

 

p V
g F F  (2.7) 

( ),

, ,

V I

V V I V I Aero Thrust

Vol E

d
dV

dt


   
   +   = +     

   


ω
p p ω ω p M M  (2.8) 

2.3.2 Scalar equations of motion 

There are a set of equations of motion that can be used to describe the aircraft flight 

dynamics, and this set of equations can be obtained by using Eq. (2.7) and (2.8). These 

equations comprise three translational equations of motion and three rotational equations 

of motion. They are suitable and sufficiently accurate to model the dynamics of 

conventional aircraft. Before the derivation of these equations of motion, it is necessary to 

introduce one vector translation. Consider a generic vector A that initially defines with 

respect to the earth frame. If vector A needs to be expressed with respect to the vehicle-
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fixed frame, the vehicle-fixed frame's angular velocity ,V E  with respect to the earth frame 

must be introduced. Thus, the expression of the vector A can be expressed as 

,V E

E V

d d

dt dt
= + 

A A
A  (2.9) 

Substituting Eq. (2.2) into Eq. (2.7) and (2.8) with the relationship given in Eq. 

(2.9), the three scalar equations for translational motion are expressed as 

sin

cos sin

cos cos

X X

Y Y

Z Z

A T

A T

A T

m U QW VR mg F F

m V RU PW mg F F

m W PV QU mg F F

 
+ − = − + + 

 

 
+ − =  + + 

 

 
+ − =  + + 

 

 (2.10) 

and the three scalar equations for rotational equations are expressed as 

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2 2

xx xz yz xy zz yy A T

yy xx zz xy yz xz A T

zz xz xy yz yy xx A T

I P I R PQ I Q R I Q RP I I RQ L L

I Q I I PR I P QR I R PQ I P R M M

I R I P QR I P Q I Q RP I I PQ N N

   
− + − − − − + − = +   

   

   
+ − − + − − + − = +   

   

   
− − − − − + + − = +   

   

 (2.11) 

where •I  are the moments and products of inertia. 

There are another set of equations that need to be addressed; the kinematic 

equations. These equations represent the kinematic relationship between the angular and 

translational rates and can be expressed as 
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sin

cos cos sin

cos cos sin

P

Q

R

= − 

=  +  

=   − 

 (2.12) 

Inverting Eq. (2.12) yields the following angular kinematic form,  

( )

sin tan cos tan

cos sin

sin cos sec

P Q R

Q R

Q R



 = +  +  

= − 

 = +  

 (2.13) 

Summarizing Eq. (2.10) through (2.13), the nine nonlinear equations of motion 

governing the rigid dynamics of the aircraft have been developed. In the next section, the 

small perturbation theory will be applied to these equations for aircraft dynamics modeling. 

2.3.3 The study of nonlinear aircraft dynamics 

In this section, the small perturbation theory is applied to Eq. (2.10) to (2.13) for 

analyzing the aircraft dynamics behavior in the neighborhood of a reference condition. The 

small perturbation theory can be summarized into five steps as below. 

1) Derive the nonlinear equations governing the aircraft dynamics, and this 

step has been done in the previous section. 

2) Express all degrees of freedom in the equations from step 1 regarding a 

reference condition plus deviations from this reference condition. 

3) Extract two sets of equations from the results obtained in the step 2 into the 

reference set and perturbation set. 

4) Use the reference set for studying the reference conditions of interest. 
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5) Use the Perturbation set and the reference conditions selected in the step 4, 

for analyzing the aircraft's perturbation dynamics. 

Following the second step of the small perturbation, all the variables expressed in 

terms of the reference, and perturbation quantities are listed in Table 2.1. 

Table 2.1. The reference and perturbation quantities. 

rsU U u= +
 rsV V v= +

 rsW W w= +
 

rsP P p= +
 rsQ Q q= +

 rsR R r= +
 

θ rs =  +
 rs  =  +

 rs  =  +
 

X X Xrs
A A AF F f= +

 Y Y Yrs
A A AF F f= +

 Z Z Zrs
A A AF F f= +

 

X X Xrs
T T TF F f= +

 Y Y Yrs
T T TF F f= +

 Z Z Zrs
T T TF F f= +

 

rsA A AL L l= +
 rsA A AM M m= +

 rsA A AN N n= +
 

rsT T TL L l= +
 rsT T TM M m= +

 rsT T TN N n= +
 

 

The variable subscripts with rs mean the reference variables, and the lower-case 

italics variables mean the perturbation variables. Under the small perturbation assumption 

and variables in Table 2.1, Eq. (2.10) to (2.13) can be extracted into the reference and 

perturbation equations as shown below. 

The translational equations in the reference set are 

_ _

_ _

_ _

sin

cos sin

cos cos

X X

Y Y

Z Z

rs rs rs rs rs rs A rs T rs

rs rs rs rs rs rs rs A rs T rs

rs rs rs rs rs rs rs A rs T rs

m U Q W V R mg F F

m V R U P W mg F F

m W P V Q U mg F F

 
+ − = −  + + 

 

 
+ − =   + + 

 

 
+ − =   + + 

 

 (2.14) 
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The translational equations in the perturbation set are 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

cos

cos cos sin sin

cos sin sin cos

X X

Y Y

Z Z

rs rs rs rs rs A T

rs rs rs rs rs rs rs rs A T

rs rs rs rs rs rs rs rs A T

m u Q w W q V r R v mg f f

m v R u U r P w W p mg f f

m w P v V p Q u U q mg f f



 

 

 
+ − − + = −  + + 

 

 
+ + − + =   −   + + 

 

 
+ + − + = −   +   + + 

 

 (2.15) 

The rotational equations in the reference set are 

( )

( ) ( )

( )

2 2

rs rs

rs rs

rs rs

xx rs xz rs rs rs zz yy rs rs A T

yy rs xx zz rs rs xz rs rs A T

zz rs xz rs rs rs yy xx rs rs A T

I P I R P Q I I Q R L L

I Q I I P R I P R M M

I R I P Q R I I P Q N N

 
− + + − = + 

 

+ − + − = +

 
− − + − = + 

 

 (2.16) 

The rotational equations in the perturbation set are 

( ) ( )( )

( )( ) ( )

( ) ( )( )

2

xx xz rs rs zz yy rs rs A T

yy xx zz rs rs xz rs rs A T

zz xz rs rs yy xx rs rs A T

I p I r Q p P q I I R q Q r l l

I q I I R p P r I P p R r m m

I r I p R q Q r I I Q p P q n n

 
− + + + − + = + 

 

+ − + + − = +

 
− − + + − + = + 

 

 (2.17) 

The kinematics equations in the reference set are 

sin

cos sin cos

sin cos cos

rs rsrs rs

rsrsrs rs rs rs

rsrsrs rs rs rs

P

Q

R

=  − 

=   +  

= −  +  

 (2.18) 
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The kinematics equations in the perturbation set are 

( )

( )

sin sin

cos sin cos cos sin sin sin cos

cos cos cos sin sin cos cos sin

rs rs rs

rsrsrs rs rs rs rs rs rs rs

rsrsrs rs rs rs rs rs rs rs

p

q

r

  

    

    

= −  − 

=  −  +   −   +  

=   −  −  −   +  

 (2.19) 

The angular kinematics equations in the reference set are 

( )

sin tan cos tan

cos sin

sin cos sec

rs rs rs rs rs rs rs rs

rs rs rs rs rs

rs rs rs rs rs rs

P Q R

Q R

Q R

 = +   +  

 =  − 

 =  +  

 (2.20) 

The angular kinematics equations in the perturbation set are 

( )( )

( )

( )( )

tan sin cos cos sin

sin cos tan

cos sin sin cos

tan sin cos sin cos cos

rs rs rs rs rs rs rs

rsrs rs rs rs rs rs

rs rs rs rs rs rs

rs rs rs rs rs rs rs rs rs

p q r Q R

Q R P

q r Q R

q r R Q

 



 

  

= +   +  +  − 

  
+  +  +  −   

  

=  −  −  + 

=   +  +  −  −  

 (2.21) 

2.4 Aircraft Dynamics Linear Model 

2.4.1 Linear equations of motion 

The cores of aircraft dynamics linear models come from the set of perturbation 

equations. Consider Eq. (2.15) under the flat-earth condition, and aircraft has a constant 

mass. Therefore, by dividing Eq. (2.15) with the mass m, the differential equations of u, v, 

and w can be expressed as 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

cos

cos cos sin sin

cos sin sin cos

X X

Y Y

Z Z

rs rs rs rs rs A T

rs rs rs rs rs rs rs rs A T

rs rs rs rs rs rs rs rs A T

u V r R v Q w W q g f f m

v P w W p R u U r g f f m

w Q u U q P v V p g f f m



 

 

= + − − −  + +

= + − + +   −   + +

= + − + −   +   + +

 (2.22) 

With the same condition as in Eq. (2.22), the aircraft also assumes symmetricity 

about the XZ plane for Eq. (2.17). Therefore, the products of inertia are zero. Then Eq. 

(2.17) can be rewritten as the differential equations of q, p, and r as follows. 

( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

1

1
2

1

xz rs rs yy zz rs rs A T

xx

zz xx rs rs xz rs rs A T

yy

xz rs rs xx yy rs rs A T

zz

p I Q p P q I I R q Q r l l
I

q I I R p P r I R r P p m m
I

r I R q Q r I I Q p P q n n
I

 
=  + + − + + + 
 

= − + + − + +

 
=  − + + − + + + 
 

 (2.23) 

where 

2

1
1

11

xz

xx

xzxz

zzxx zz

I

I

II

II I

 
 
  =
  

−    
  

 

In this thesis, the flight condition of interest is the straight-and-level flight with zero 

bank and sideslip angles. Applying these flight conditions to Eq. (2.21) to (2.23), the linear 

equations governing translational and rotational motion can be shown as 

( )

( )

( )

X X

Y Y

Z Z

A T

rs A T

rs A T

u g f f m

v U r g f f m

w U q f f m





= − + +

= − + + +

= + +

 (2.24) 



 

29 

( )

( )

( )

A T xx

A T yy

A T zz

p l l I

q m m I

r n n I

=  +

= +

=  +

 (2.25) 

and the angular kinematic equations become 

,p q r  = = =  (2.26) 

2.4.2 Linear equations of the forces and moments 

In order to obtain the desired aircraft flight dynamics models, the external forces 

and moments on the right-hand side of Eq. (2.24) and (2.25) need to be explained. The 

external forces and moments that apply to the aircraft in this thesis are considered only 

from the viewpoint of aerodynamics and thrusts. The modeling based on the aircraft is a 

single-engine aircraft with only primary flight control surfaces. Appling the small 

perturbation theory as in the aircraft dynamics modeling, the specific small perturbation 

set of forces and moments can be expressed. The aerodynamic and thrust forces in 

perturbation set are 

( ) ( ) ( )

( )

_U _ _2 2

cos

X X u s X X s E

s s

A T D D T T s D L D E

P P

T s

u u
f f q S c c c c c c c

V V

T

  

  



     
+ = − + + + + − + −       

     

+ +

 (2.27 a) 

( )_ _ _
2 2Y Y T p r A R

s s

A T Y Y Y Y Y A Y R

P P

pb rb
f f q S c c c c c c

V V     

     
+ = + + + + +       

     

 (2.27 b) 

( ) ( )

( )

_2
2 2

sin

Z Z u s s q E

s s s

A T L L L D L L L E

P P P

T s

u c qc
f f q S c c c c c c c

V V V

T







 

  



       + = − + + − − − − −              

− +

 (2.27 c) 
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The aerodynamic and thrust moments in perturbation set are 

( )_ _ _
2 2T p r A R

s s

A T l l l l l A l R

P P

p r
l l q Sb c c c c c c

V V     

     
+ = + + + + +       

     

 (2.28 a) 

( ) ( ) ( )

( )

_ _ _

_

2 2

2 2

cos sin

u s u s

s s

q E

s s

m m m T m T m m T

P P

A T

m m m E

P P

T T T T

u u
c c c c c c

V V

m m q S

c qc
c c c

V V

T d X

 










  



    
+ + + + +    

        
+ =  

     − + −    
    

+ −

 (2.28 b) 

( )_ _ _
2 2p r A R

s s

A T n n T n n n A n R

P P

p r
n n q Sb c c c c c c

V V     

     
+ = + + + + +       

     

 (2.28 c) 

2.4.3 Decoupled state-space models 

To obtain the complete aircraft dynamics model, Eq. (2.27) and (2.28) are 

substituted into Eq. (2.24) and (2.25) with simplification applied according to the standard 

shorthand notation. 

( )

( )

u E

A R

E

u T E T T

p r A R

u q rs E T T

u g X X u X X X

v g Y Y p Y r Y Y

w Z u Z Z Z U q Z Z

 

  

 


   

   

   

= − + + + + +

= + + + + +

= + + + + + +

 (2.29) 

( ) ( )

A R

u E T

A R

p r A R

u T T q E T

p r A R

p L L p L r L L

q M M u M M M M q M M

r N N p N r N N



  

  


  

  

   

  

= + + + +

= + + + + + + +

= + + + +

 (2.30) 
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Table 2.2. The standard shorthand notation for decoupled models. 

( )2
u s su D D PX c c q S V= − +

 
( )TY YY c c q S

 
 = +  ( )2

u s su L L PZ c c q S V= − +
 

( )2
u X X sU s

T T T PX c c q S V= +  2
p sp Y PY c q Sb V=  ( )

sL DZ c c q S
 = − −

 

( )
sD LX c c q S

 = − +
 

2
r sr Y PY c q Sb V=  2

sL PZ c q Sc V


=  

E E
DX c q S
 = −

 A A
YY c q S
 =

 ( )2
q sq L PZ c q Sc V= −

 

( )cosT T sX  = +  
R R

YY c q S
 =

 E E
LZ c
 = −

 

 ( )sinT T sZ q S  = +  

( )Tl lL c c q Sb
 

 = +  ( )2
u s su m m PM c c q S V= +

 
( )Tn nN c c q Sb

 
 = +  

2
p sp l PL c q Sb V=  ( )2

u T T su s
T m m PM c c q S V= +  2

p sp n PN c q Sb V=  

2
r sr l PL c q Sb V=  mM c q S

 =  2
r sr n PN c q Sb V=  

A A
lL c q Sb
 =

 TT mM c q S
 

=
 A A

nN c q Sb
 =

 

R R
lL c q Sb
 =

 
2

sm PM c q Sc V


= −  
R R

nN c q Sb
 =

 

 

2
q sq m PM c q Sc V=  

 E E
mM c q S
 = −

 

( )cos sin
T T T T TM d X  = −  

 

 

Eq. (2.29) and (2.30) with Eq. (2.26) can be regrouped into two significant groups; 

aircraft longitudinal dynamics and lateral-directional dynamics. With an additional 

notation that rsw U =  and rsv U = , the regrouped equations can be expressed in the 

following equations: 
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( )

( )( )

( ) ( )
( )

1

u E

E

u

E T

E T

u T E T T

u q rs E T T

rs

u q rs

u T T q

rs rs rs

E

rs rs

u X X u X g X X

Z u Z Z U q Z Z
U Z

M Z M Z M Z U
q M M u M M M q

U Z U Z U Z

M Z M Z
M M

U Z U Z



 

 




  



  

 
 

 

 

   

   





= + + − + +

= + + + + +
−

     +
    = + + + + + + +
    − − −

     

 
 + + + + +
 − −
 

T

q
















 

  
  
  


= 

 (2.31) 

 

( )
1

A R

A R

A R

p r A R

rs

p r A R

p r A R

Y Y p Y r g Y Y
U

p L L p L r L L

r N N p N r N N

p

  

  

  

    

  

  




= + + + + + 



= + + + +



= + + + + 

= 

 (2.32) 

The first equation, Eq. (2.31), is called the linear aircraft longitudinal dynamics 

equation of motion, while the second, Eq. (2.32), is called the aircraft lateral-directional 

equation of motion. To obtain a suitable format for the design theory, these two groups of 

equations will be summarized and expressed in the space-state format in the next section. 

2.5 Summary of the Aircraft Flight Dynamics Models 

The aircraft longitudinal dynamics model in the state-space format is shown in Eq. 

(2.33), where x(t)Long is the state vector, x(t)Long  
T

u q = , and u(t)Long is the input, 

which consists of elevator defection and thrust, u(t)Long  
T

E T = . 
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( ) ( ) ( )

( ) ( )

( ) ( ) ( )4

0 0 1 0 0 0

E T

E T

E T

Long LongLong Long Long

u q

u q

Long Long
u q

LongLong Long Long

d
t t t

dt

X XX X X X

Z ZZ Z Z Z
t t

M M M M M M

t t t

  

  

   

= +

      
          = +
       
  
    

= =

x A x B u

x u

y C x I x

 (2.33) 

The aircraft lateral-directional dynamics model in the state-space format is shown 

in Eq. (2.34), where x(t)LatDir is the state vector, x(t)LatDir  
T

p r = , and u(t)LatDir 

is the input, which consists of aileron and rudder defection, u(t)LatDir  
T

A R = . 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )4

0 1 0 0 0 0

A R

A R

A R

LatDir LatDirLatDir LatDir LatDir

p r

p r

LatDir LatDir
p r

LatDirLatDir LatDir LatDir

d
t t t

dt

Y YY Y Y Y

L LL L L L
t t

N N N N N N

t t t

  

  

   

= +

      
          = +
       
  
    

= =

x A x B u

x u

y C x I x

 (2.34)
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Table 2.3. The standard shorthand notation for aircraft flight dynamics models. 

( )
uu u TX X X = +

 ( )u u rsZ Z U Z


 = −  ( ) ( )uu u T u rsM M M M Z U Z
 

 = + + −  

X X 
 =  ( )rsZ Z U Z 



 = −  ( ) ( )T rsM M M M Z U Z
  

 

 = + + −  

0qX  =  ( ) ( )q q rs rsZ Z U U Z


 = + −  ( )( )q q q rs rsM M M Z U U Z
 

 = + + −  

X g
 = −  0Z

 =  0M
 =  

E E
X X 
 =  ( )E E rsZ Z U Z 



 = −  ( )E E E rsM M M Z U Z  
 

 = + −  

T TX X
 =  ( )T T rsZ Z U Z



 = −  ( )T T T rsM M M Z U Z  
 

 = + −  

rsY Y U 
 =  L L 

 =  N N 
 =  

p p rsY Y U =  p pL L =  p pN N =  

r r rsY Y U =  r rL L =  r rN N =  

rsY g U
 =  0L

 =  0N
 =  

A A rsY Y U 
 =  

A A
L L 
 =  

A A
N N 
 =  

R R rsY Y U 
 =  

R R
L L 
 =  

R R
N N 
 =  
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Chapter 3 

Controller Design Theory 

3.1 Overview 

This chapter provides fundamental theory for designing a controller. The controller 

design method used throughout this thesis is Coefficient Diagram Method or CDM. CDM 

is an algebraic approach for a controller design and has a special diagram called 

"Coefficient Diagram" as the design tool. The necessary information needed for the 

controller design is provided by the coefficient diagram. There are only three design 

parameters in CDM namely the stability index, i , the equivalent time constant,  , and 

the stability limit, *

i , makes design processes of CDM is straightforward and has a good 

design criterion. By using CDM as the design method, the characteristic polynomial and 

the controller can be designed simultaneously and guaranteed to achieve a good balance 

between the system stability, response, and robustness. CDM is used to design the servo 

state-feedback system for the “Aircraft flight control by CDM-designed Servo State-

feedback system” or ACDM-SS and details will be given in Chapter 4. 

3.2 Coefficient Diagram Method 

The Coefficient Diagram Method [88] – [89], or CDM, is one of the controller 

design theories and was first proposed in 1991 by Shunji Manabe [90]. CDM is an algebraic 

controller design theory which uses polynomials of the closed-loop controlled system in 

design processes. CDM uses a specific diagram called the coefficient diagram as a 

powerful tool to demonstrate the efficiency and performance of a closed-loop controlled 

system. CDM considers the numerator polynomial and the denominator polynomial 
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equation of the closed-loop controlled system's transfer function separately for system 

performance analysis. CDM initially defines the type and order for both the controller 

polynomial equation and the closed-loop system's characteristic polynomial equation at the 

beginning of design processes. Both these polynomial equations are designed by 

considering the system performance requirements. There are three major parameters to 

determine the closed-loop system's performance: the stability index, i , the equivalent 

time constant,  , and the stability limit, *

i . 

3.2.1 The CDM standard structure and mathematical relations 

 

Figure 3.1. The CDM standard structure of the Single-Input Single-Output system. 

(Permitted reuse reproduction for doctor thesis from the author). 

The standard structure of the Single-Input Single-Output (SISO) system to be 

designed by CDM, is illustrated in Figure 3.1. This SISO system comprises the controller 

and the plant, where the former is described by the polynomials Ac(s), Ba(s), and Bc(s) while 

the plant is described by the polynomials Ap(s) and Bp(s). From the standard structure of 

this SISO system, the C(s) is the output of a closed-loop control system and can be 

calculated as shown in Eq. (3.1). 
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( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
a p c p

c p c p

B s B s R s A s B s D s
C s

A s A s B s B s

+
=

+
 (3.1) 

According to CDM, the characteristic polynomial of Eq. (3.1) can be defined as 

follows: 

( ) ( ) ( ) ( ) ( )
1

1 1 0

0

...

c p c p

n n

n n

n
i

i

i

P s A s A s B s B s

a s a s a s a

a s

−

−

=

= +

= + + + +

=

 (3.2) 

where a0, a1,…, an are the coefficients of the characteristic polynomial. These coefficients 

contain known parameters of plant and unknown parameters of the controller. In this thesis 

the CDM method is used to design these unknown parameters of the controller. The 

controller design process will be discussed in detail later in Chapter 4. 

The CDM control design method includes vital parameters used in controller 

design, and these parameters are the stability index, i , which determines the stability of 

the system; the equivalent time constant,  , which determines the speed of the system 

response; and the stability limit, 
*

i , which indicates the robustness of the control system 

parameter change. These three parameters are mathematically related to the coefficients of 

the characteristic polynomial, a0, a1,…, an, as follows: 

2

1 1

i
i

i i

a

a a


+ −

=  (3.3) 

1

0

a

a
 =  (3.4) 
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*

0

1 1

1 1
;    ,  i n

i i

  
 + −

= + =   (3.5) 

where i = 1,···, n – 1. The coefficients of the characteristic polynomial, ai, can be expressed 

in the term of the stability index, i , and the equivalent time constant,  , by using Eq. 

(3.3) – (3.5) as shown in Eq. (3.6) 

0 2 1

1 2 1

1

0

1

1

1

i

i i i

i

i
i

j
j i j

a a

a


  




− −

−

−

= −

=

= 
 (3.6) 

From Eq. (3.2) and (3.6), the characteristic polynomial, P(s), in term of the stability 

index, i , and the equivalent time constant,  , can be explained as follows: 

( ) ( )
1

0

2 1

1 1
in

i

j

i ji j

P s a s s 


−

−= =

    
= + +   

     
   (3.7) 

The monic characteristic polynomial, Pm(s), is also obtained by dividing Eq. (3.7) 

with coefficient, an. The coefficient, an, can be obtained by using Eq. (3.6). 

1

0

1

1n
n

n j
j n j

a a 


−

= −

=   (3.8) 

From both Eq. (3.7) and (3.8), the monic characteristic polynomial, Pm(s), is shown 

in Eq. (3.9) and will be used to design the controller by CDM later. 

( )
( )

( )

1

1
1

2 1

1 1

n
j

n j in
ij

jm n
i ji j

P s s s



 


−

− −
=

−= =

    
= + +   

     


   (3.9) 
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3.2.2 Coefficient diagram 

The controller design principle by CDM has the coefficient diagram as a handy and 

essential tool in controller design. This coefficient diagram shows the system's stability, 

response time, and robustness within a single diagram. This style makes it useful for 

designing high-order polynomials. Besides considering the overall system performance 

simultaneously, the coefficient diagram is also highly accurate and allows the designer to 

implement it in the actual design efficiently. As mentioned above, the coefficient diagram's 

uniqueness gives control system designers the tools to make design decisions that are not 

available in any other method. The coefficient diagrams are presented with a semi-

logarithmic graph. The left vertical axis shows the polynomial coefficient, ai, while the 

right vertical axis shows the stability index, i , the equivalent time value,  , and the 

stability limit, 
*

i . The equivalent time constant,  , is represented by a straight line 

between 1 and  , and the horizontal axis represents the order "i" of each coefficient of the 

polynomial. 

For an illustration purpose of the coefficient diagram construction, an example is 

introduced for easier understanding. A characteristic polynomial equation of the closed-

loop control system is assumed to be defined as: 

( ) 5 4 3 20.25 2 2 0.2P s s s s s s= + + + + +  (3.10) 

From Eq. (3.10), the coefficient, ai, of the characteristic polynomial P(s), and the 

parameter of CDM can be obtained as: 

 0.25 1 2 2 1 0.2ia =  (3.11) 

 2 2 2 2.5i =  (3.12) 
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5 =  (3.13) 

 * 0.5 1 0.9 0.5i =  (3.14) 

Using Eq. (3.11) through (3.14), the coefficient diagram shown in Figure 3.2 

displays the coefficient, ai, the stability index, i , the equivalent time constant,  , and the 

stability limit, 
*

i . 

 

Figure 3.2. Coefficient diagram. 

(Permitted reuse reproduction for doctor thesis from the author). 

In this diagram, the curve's curvature represents the stability of the system, the slope 

of the curve represents the speed of the system response, and the deformation of the curve 

due to the change in system parameters indicates the robustness of the system. 

Figure 3.3 (a) indicates the larger the curve of the coefficient, ai, becomes, the more 

stable the control system will be. It corresponds to the stability index, i , that are greater. 

In contrast, the smaller the curve of the coefficient, ai, is the less stable the control system 

becomes, and this corresponds to the low stability index, i . Figure 3.3 (b) illustrates that 
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the more left and down the curve of the coefficient, ai, is shifted, the smaller the equivalent 

time constant,  , becomes. The response of the control system will be faster. 

 

(a) Due to change of the stability index 

 

(b) Due to change of the equivalent time constant 

Figure 3.3. The shape of coefficient diagram. 

(Permitted reuse reproduction for doctor thesis from the author). 

3.2.3 The stability condition of CDM 

Stability of the control system obtained by means of CDM is analyzed from the 

viewpoint of the sufficient conditions for Lipatov stability theory [91]. 
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The Routh-Hurwitz stability criterion has a system stability condition for the third-

order and can be expressed as follows: 

2 1 3 0a a a a  (3.15) 

Furthermore, it can be expressed in term of the stability index, i , as follows: 

2 1 1    (3.16) 

The stability conditions of the fourth-order system are given as: 

( ) ( )2 1 3 4 3 1 0a a a a a a a +  (3.17) 

*

2 2   (3.18) 

By the Routh-Hurwitz stability criterion, Lipatov said this was appropriate to 

consider a third or fourth-order system's stability. However, this is not enough to take into 

account the stability of a higher-ordered system. Lipatov offers sufficient system stability 

and instability conditions for a system of fifth-order or higher in many forms. The sufficient 

stability and instability of the system suitable for the controller design by CDM is given 

below. 

The sufficient condition for investigating the stability of the system is 

1 1
2 2

1 1

1.2 i i
i i i

i i

a a
a a a

a a

− +
+ −

+ −

 
 + 

 
 (3.19) 

*1.12  for every value of 2 2i i i n  = −  (3.20) 

The sufficient condition for investigating the instability of the system is 
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1 2 1i i i ia a a a+ + −  (3.21) 

1 1 for some values of 2 2i i i n +  = −  (3.22) 

3.2.4 The standard form of CDM 

Graham studied the relationship between the characteristic polynomial coefficient 

and the transient response using the Integral Time Absolute Error or ITAE standard form, 

presented for the first time in 1953. In 1960, Kessler developed a new standard form by 

which every stability index is assigned a value of 2 to reduce the oscillations and overshoot 

of response in the control system designed with the ITAE. 

Later in 1998, Shunji Manabe proposed assigning the 1st stability index, 1 , to be 

equal to 2.5 and the remaining stability index to 2, by which the obtained response from 

the control system has no overshoot and the rise time decrease. He assigned this stability 

index as the standard stability index of CDM, shown as follow: 

1 3 2 1=...= = =2 and 2.5n   − =  (3.23) 

He also assigned the equivalent time constant,  , which relates to the settling time 

as follow: 

2.5 3st  =  (3.24) 

From Eq. (3.7), it is found that the characteristic polynomial P(s) consists of the 

stability index, i , and the equivalence time constant,  . Therefore, the shape of the 

control system's response is determined by the stability index, i , and the speed of the 
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response is determined by the equivalent time constant,  . The properties of the standard 

form of CDM are summarized as follows. 

For a type-1 system, there is no overshoot, and a type-2 system has an overshoot of 

approximately 40%. The control system's rise time can be designed to assign the equivalent 

time constant,  . 

The shape of a CDM-designed control system’s response is independent of the 

system's order. However, it depends on the stability index, i , and the equivalent time 

constant,  . 

The pole locations of the low-rank system are arranged in a straight line, and the 

pole location of the high-rank system is within 49.5 degrees from the negative real axis 

with the value of the damping ratio,  , greater than 0.65, as shown in Figure 3.4. 

 

Figure 3.4. The pole location of the various systems. 

(Permitted reuse reproduction for doctor thesis from the author). 



 

45 

3.2.5 The stability index criterion 

In general, the CDM's standard stability index, i , is a prerequisite for the control 

system to achieve the stability and response required. However, the designer can modify 

this stability index, i , to obtain a control system with the desired performance under the 

condition below. 

*1.5i i   (3.25) 

If the control system is required to have robustness, it should be chosen with a high 

stability index. From sufficient conditions for stability, Lipatov stated that the system is 

stable if all the stability indices are more than 1.5, which was demonstrated in his research. 

Furthermore, if all the stability indexes are more than 4, then the system's roots are all 

negative real numbers. Therefore, typically CDM state that the stability index value 

generally should be chosen between 1.5 and 4. 
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Chapter 4 

Aircraft Flight Control System and Design 

4.1 Overview 

This chapter provides the concepts for designing and understanding the aircraft 

flight control system. The structures of the servo state-feedback systems for aircraft 

longitudinal and lateral-directional dynamics are first introduced. After describing the 

decoupled servo systems, the structure of the Aircraft flight control by CDM-designed 

Servo State-feedback system or ACDM-SS is introduced. ACDM-SS is comprised of the 

aircraft's longitudinal and lateral-directional servo state-feedback system. Then, the servo 

system design procedures based on CDM are explained. The final section of the chapter 

describes the concept and design of Aircraft flight control by CDM-designed Model-

Reference Adaptive System or ACDM-RAS. ACDM-RAS uses ACDM-SS as its reference 

model to specified behavior of the system. 

4.2 The Structure of Servo State-Feedback System 

Before designing the ACDM-SS and ACDM-RAS, the aircraft flight dynamics 

models [81] [82] [86] [87], which are detailed in Chapter 2, need to be modified to achieve 

the required controlled parameters and restructured to suit the controller design. Therefore, 

the aircraft dynamics models developed in Chapter 2 require further modifications to obtain 

the desired equation form. 
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4.2.1 Aircraft longitudinal dynamics servo state-feedback system 

The desired aircraft longitudinal dynamics model in this research needs two 

parameters to be controlled: altitude, h, and speed, u. Nevertheless, the aircraft longitudinal 

dynamics model from Chapter 2, Eq. (2.33), does not yet contain an altitude as a state 

variable. Therefore, it is necessary to customize this equation based on the relationship of 

heights as 

1 1p ph V V = − +  (4.1) 

The modified aircraft longitudinal dynamics model thus can be rewritten as 

follows: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1

5

0

0

0

0 0 1 0 0 0 0

0 0 0 0 0

E T

E T

E T

L L L L L

u q

u q

u q L L

p P

L L L L

d
t t t

dt

X XX X X X

Z Z Z Z Z Z

M M M M t tM M

V V

t t t

  

   

   

= +

      
         
     = +  
  
  
  −   

= =

x A x B u

x u

y C x I x

 (4.2) 

The modified state variable for Eq. (4.2) is xL(t)  
T

u q h = , and the 

input is uL(t)  
T

E T = . When the aircraft longitudinal dynamics model has complete 

state variables as required, this model will refine the structure to obtain the suitable 

structure used for designing the controller further. 
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Figure 4.1. Aircraft longitudinal dynamics servo state-feedback system. 

(Cited and partially modified from ref. 80). 

The structure of the servo state-feedback system [48] [92] shown in Figure 4.1 

involves the following matrices, being introduced to complete this servo system. 

• The reduced matrices HrL and HL 

0 1 0 0 0
1 0 0 0 0

0 0 1 0 0  and 
0 0 0 0 1

0 0 0 1 0

rL L

 
  

= =   
   

H H  (4.3) 

• The feedback loop gain matrix, KL, and the servo loop gain matrix, GL 

   2 3 4 1 5 and L l l l L l lk k k k k= =K G  (4.4) 

Therefore, the input uL(t) for this aircraft longitudinal dynamics servo state-

feedback system can be expressed in Eq. (4.5). 

 

( ) ( ) ( ) ( )( )

( ) ( )

   

( ) ( ) ( )

2 2 3 3 4 4 1 1 5 2 1 1 5 5

1

2

1

1 2 3 4 5 3 1 5

2

4

5

L L rL L L L L L

l l l l l l l l l l l l l l

l

l

l

l l l l l l l l

l

l

l

L sL L L L

t t t t

k x k x k x k r k r k x k x

x

x
r

k k k k k x k k
r

x

x

t t t

= − + −

= − + + + + − −

 
 
   
 = − +  
   
 
  

= − +

u K H x G r H x

u K x G r

 (4.5) 
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where KsL is the overall servo state-feedback gain matrix for this aircraft longitudinal 

dynamics servo state-feedback system and expressed in Eq. (4.6). 

 1 2 3 4 5sL l l l l lk k k k k=K  (4.6) 

4.2.2 Aircraft lateral-directional dynamics servo state-feedback system 

Similarly, with the aircraft longitudinal dynamics model, two parameters are 

controlled in the desired aircraft lateral-directional dynamics model: heading angle,  , and 

side angle,  . Therefore, it is necessary to adjust Eq. (2.34) to archive the desired state 

variables. The angular kinematic equation, Eq. (2.26), is applied to Eq. (2.34). The 

modified aircraft lateral-directional dynamics model thus can be rewritten as follows: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )5

0

0 0

0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

A R

A R

A R

LD LD LD LD LD

p r

p r

LD LDp r

LD LD LD LD

d
t t t

dt

Y YY Y Y Y

L LL L L

t tN N N N L

t t t

  

 

  

= +

      
         
    = +  
  
  
     

= =

x A x B u

x u

y C x I x

 (4.7) 

The modified state variable is xLD(t)  
T

p r  = , and the input is uLD(t) 

 
T

A R = . Since these two dynamics models, longitudinal and lateral-directional 

dynamics, are very similar in terms of the number of state variables and their order of the 

control variables. Therefore, the aircraft lateral-directional dynamics model's reduced 

matrices are identical to those of the aircraft longitudinal dynamics model. The overall 
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servo state-feedback gain matrices of both dynamic models are also identical. These 

matrices can be expressed as the following equation. 

• The reduced matrices HrLD and HLD 

0 1 0 0 0
1 0 0 0 0

0 0 1 0 0 ,  and 
0 0 0 0 1

0 0 0 1 0

rLD LD

 
  

= =   
   

H H  (4.8) 

• The feedback loop gain matrix, KLD, and the servo loop gain matrix, GLD 

   2 3 4 1 5 and LD ld ld ld LD ld ldk k k k k= =K G  (4.9) 

• The overall servo state-feedback gain matrix for aircraft lateral-directional 

dynamics servo state-feedback system 

 1 2 3 4 5sLD ld ld ld ld ldk k k k k=K  (4.10) 

4.2.3 The integrated aircraft flight dynamics model and ACDM-SS 

In the preceding sections, the servo systems designed by the CDM for aircraft 

longitudinal dynamics and aircraft lateral-directional dynamics have been obtained. The 

structure of the Aircraft flight control CDM-designed Servo State-feedback system or 

ACDM-SS, which serves as the reference model in the Aircraft flight control by CDM-

designed Model-Reference Adaptive System or ACDM-RAS, is illustrated in Figure 4.2. 



 

51 

 

Figure 4.2. The structure of the ACDM-SS. 

(Cited and partially modified from ref. 80). 

The ACDM-SS consists of three major parts: the aircraft longitudinal dynamics and 

aircraft lateral-directional dynamics controllers and the integrated aircraft flight dynamics 

linear model (A/C Model in Figure 4.3). This A/C model combines both the two derived 

aircraft flight dynamics linear models, Eq. (4.2) and (4.7), as stated in the previous section. 

This integrated aircraft flight dynamics model will also be used in the simulation to 

investigate the ACDM-RAS's effectiveness later in Chapter 5. The structure of this 

integrated aircraft flight dynamics model is expressed by the following equation. 

( ) ( ) ( )

( ) ( )

L L

LD LD

L

LD

d
t t t

dt

t t

   
= +   
   

 
=  
 

A 0 B 0
x x u

0 A 0 B

C 0
y x

0 C

 (4.11) 

where x(t) ( ) ( )
T

T T

L LDt t =
 
x x  and u(t) ( ) ( )

T
T T

L LDt t =
 
u u . 
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4.3 ACDM-SS Design Procedures 

“Aircraft flight control by CDM-designed Servo State-feedback system” or 

ACDM-SS in Figure 4.3 uses CDM to design the overall servo state-feedback gain 

matrices, KsL and KsLD for aircraft longitudinal and lateral-directional dynamics. The 

summary of the procedures to determine these overall servo state-feedback gain matrices 

is given as follows. 

1) Determine the CDM's characteristic polynomial, Eq. (3.9), using the standard 

stability index and the equivalent time constant recommended by CDM. The 

standard stability index values are 2.5 for 1  and 2 for 2  to 1n − , and the 

equivalent time constant,  , is 5. 

( ) 1

1 1 0...n n

CDM n nP s a s a s a s a−

−= + + + +  

2) Determine the coefficients of CDM's characteristic polynomial, obtained from 

the first step, which are called CDM's coefficients. These CDM's coefficients 

will be used to specify the characteristic polynomial of AL – BLKsL and ALD – 

BLDKsLD, which are closed-loop system equations of longitudinal and lateral-

directional dynamics parts. 

3) Determine the characteristic polynomials of AL – BLKsL and ALD – BLDKsLD. 

These polynomials are represented with respect to the unknown variables; kli 

and kldi, which are the elements of the overall servo state-feedback gain matrix; 

KsL and KsLD, respectively. The coefficients are determined from each 

polynomial. 

( ) ( ) ( ) ( )

( )

1

1 1

0

, , , , ... , ,

, ,

n n

L Ln Lij Lij li Ln Lij Lij li L Lij Lij li

L Lij Lij li

P s a A B k s a A B k s a A B k s

a A B k

−

−= + + +

+
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( ) ( ) ( )

( ) ( )

1

1

1 0

, , , , ...

, , , ,

n n

LD LDn LDij LDij ldi LDn LDij LDij ldi

LD LDij LDij ldi LD LDij LDij ldi

P s a A B k s a A B k s

a A B k s a A B k

−

−= + + +

+ +
 

4) Calculate the values of the overall servo state-feedback gain matrices by 

matching CDM's coefficients with the polynomial coefficients from step 3. 

Then the overall servo state-feedback gain matrix's values, KsL and KsLD, can 

be obtained. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

0 0 0 0

, , , ,

, , , ,

, , , ,

, , , ,

Ln Lij Lij li n LDn LDij LDij ldi n

Ln Lij Lij li n LDn LDij LDij ldi n

L Lij Lij li LD LDij LDij ldi

L Lij Lij li LD LDij LDij ldi

a A B k a a A B k a

a A B k a a A B k a

a A B k a a A B k a

a A B k a a A B k a

− − − −

= =

= =

= =

= =

 

5) Calculate the values of KL and GL from KsL by using Eq. (4.4) and (4.6), and 

KLD and GLD from KsLD by using Eq. (4.9) and (4.10). 

Remark: The adjustments are allowed to meet the system requirement if 

required. The adjustments can be made through the CDM's parameters, the 

stability index i , and the equivalent time constant  . CDM strongly 

recommends that the values of 1 , 2 , and 3  be 2.5, 2, and 2, respectively, and 

the remaining gamma, 4  to 1n −  can arbitrarily be adjusted according to Eq. 

(3.25) but should be chosen between 1.5 and 4. The value of   can arbitrarily 

be adjusted according to Eq. (3.24). After adjusting the CDM's parameters, 

repeat steps 2 to 5, and the coefficient diagrams can be used to investigate 

system stability and response by considering the shape of the diagram in each 

parameter adjustment process. 
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4.4 ACDM-RAS Concept and Design 

This section describes the concept of “Aircraft flight control by CDM-designed 

Model-Reference Adaptive System” or ACDM-RAS. The structure of ACDM-RAS is 

shown in Figure 4.3. The ACDM-RAS is the Model-reference adaptive system [93] – [96] 

that adopts the ACDM-SS as the reference model. By the concept of the Model-reference 

adaptive system, the performance of ACDM-RAS is expressed in the term of ACDM-SS.  

ACDM-RAS has the reference model and adaptive mechanism as the essential part. These 

parts make ACDM-RAS different from the ordinary feedback control system. The online 

adaptive mechanism adjusts the controller parameters according to reducing the error 

difference between the output of the system and the output of the reference model. 

Therefore, ACDM-RAS responds to both the input commands and the output of the 

reference model. Many methods and theories are available for adaptive mechanisms, such 

as a gradient method or stability theory. ACDM-RAS uses the Lyapunov stability theory 

to obtain an adaptive mechanism for the system of interest. The following sections show 

how to prepare ACDM-SS to be the reference model and the processes to obtain the 

adaptive mechanism. 

 

Figure 4.3. The concept of the ACDM-RAS. 
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4.4.1 The reference model by ACDM-SS 

In the reference model preparation, only the aircraft longitudinal dynamics part is 

used as an example. Find the servo state-feedback system by substituting the input uL(t), 

Eq. (4.5) into the aircraft longitudinal dynamics model, Eq. (4.2). Then the servo state-

feedback system can be described as Eq. (4.12). 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )

L L L L sL L L L

L L L sL L L L L

L L sL L L L L

d
t t t t

dt

t t t

t t

= + − +

= − +

= − +

x A x B K x G r

A x B K x B G r

A B K x B G r

 (4.12) 

Assign the following parameters for the reference model. 

( ) ( )

( ) ( )

mL L

mL L L sL

mL L L

mL L

mL L

t t

t t

=

= −

=

=

=

x x

A A B K

B B G

y y

C C

 (4.13) 

Then, Eq. (4.12) can be rewritten as the reference model, Eq. (4.14). 

( ) ( ) ( )

( ) ( )

mL mL mL mL L

mL mL mL

d
t t t

dt

t t

= +

=

x A x B r

y C x

 (4.14) 

4.4.2 Adaptive mechanism 

In order to obtain the adaptive mechanism based on the concept of ACDM-RAS, 

Figure 4.3, the error equation is needed. This error equation is the difference between the 
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output of the actual plant and the output of the reference model. Assuming the general 

aircraft longitudinal dynamics to be controlled expressed as in Eq. (4.15), 

( ) ( ) ( )

( ) ( )

aL al aL aL aL

aL aL aL

d
t t t

dt

t t

= +

=

x A x B u

y C x

, (4.15) 

the error equation for the aircraft longitudinal dynamics part can be described in Eq. (4.16), 

and its time derivative is given in Eq. (4.17). 

( ) ( )aL mLe t t= −x x  (4.16) 

( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

aL mL

aL aL aL aL mL mL mL L

aL aL aL aL mL mL mL L

d d
e t t

dt dt

t t t t

t t t t

= −

= + − +

= + − −

x x

A x B u A x B r

A x B u A x B r

 (4.17) 

Let the control law uaL(t) be given by Eq. (4.18). 

( ) ( ) ( )aL aL Lt t t= − +u Mx Nr  (4.18) 

where the matrices M and N will be described later. Substituting the control law uaL(t) into 

Eq. (4.17) and adding and subtracting AmLxaL(t) from the right-hand side of Eq. (4.17) 

yields the time derivative of the error equation as in Eq. (4.19), 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )0 0

aL aL aL aL mL mL mL L

mL aL aL mL aL aL mL L

mL aL L

e t t t t

e t t

e t t

= + − −

= + − − + −

   = +  −  +  − 

A x B u A x B r

A A B M A x B N B r

A A A x B B r

, (4.19) 
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where ( ) A  and ( ) B  are the functions that give the sufficient condition for perfect 

model-following. ( ) A  and ( ) B  are described as in Eq. (4.20), and   is the adaptive 

parameter. 

( ) ( )

( ) ( )

L L sL

L L

  = − −+

  = +

A A B K

B B G
 (4.20) 

Following this condition, Eq. (4.20), it is possible to find the parameter value 0  

such that 

( )

( )

0

0

mL

mL

  =

  =

A A

B B
. (4.21) 

Therefore, the matrices M and N are described in term of   as in Eq. (4.22). 

sL

L

= −+

= +

M K

N G
 (4.22) 

Assuming the parameter value 0  equals zero because this value satisfies Eq. 

(4.21), and substituting 0  into Eq. (4.19), the time derivative of error equation can be 

rewritten again as in Eq. (4.23). 

mL L aL L Le e= +  + A B x B r  (4.23) 

The Lyapunov function [97] is introduced based on the error equation to derive the 

adaptive mechanism as shown in Eq. (4.24). 

( ) ( )
1

,
2

T T T T T

L aL aL L LV e e e = +   +  P x x r r  (4.24) 
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In this Lyapunov function V, L  is the adaptive gain for the aircraft longitudinal 

dynamics part, and the matrix P is a positive definite matrix. Therefore, the function V is 

also a positive definite. To verify the function V is indeed a Lyapunov function, its total 

time derivative needs to be examined 

( ) ( ) ( ) ( )
1

2

T T T T T T T

L aL L L aL L L L L

dV d d
e e e e

dt dt dt
  

   
= − +  +  +  +    

   
Q x B P x r B P r  (4.25) 

where the matrix Q is a positive definite matrix and must satisfy the following equation. 

T

mL mL+ = −A P PA Q  (4.26) 

The Lyapunov functions theorem for linear systems states that the pair of positive 

definite matrices P and Q, which have the relationship as in Eq. (4.26), always exist if AmL 

is stable. Since CDM designs AmL, then stable. Therefore, the matrices P and Q exist. If 

the adaptive gain L  is the positive number and the following equations are chosen to be 

( )

( )

T

aL L L

T

L L L

d
e

dt

d
e

dt





 = −

 = −

x B P

r B P

 (4.27) 

then Eq. (4.28) is obtained as 

1

2

T

L

dV
e e

dt
= − Q  (4.28) 

By observing Eq. (4.28), the total time derivative of function V is negative 

semidefinite, implying that function V is the Lyapunov function. Using the Barbalat 

theorem, it can be concluded that the error equation goes to zero when time goes to infinity 
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under the assumption that all state variables are measurable. That implies that the response 

of the actual plant is identical to the response of the reference model. 

The control law uaL(t) can be modified by using Eq. (4.18), (4.22), and (4.27), as 

expressed in Eq. (4.29). 

( )aL aL L

aL sL aL L L L

T T

L L sL aL L L L L

sL aL L L L

t

e e 

= − +

=  − + +

= − − − +

= − + + 

 

u Mx Nr

x K x r G r

B P K x B P G r

K x G r

 (4.29) 

L  is assigned as the adaptive mechanism for the aircraft longitudinal dynamics 

part and expressed in Eq. (4.30). 

2 T

L L L e = − B P  (4.30) 

Due to the similarity between the two aircraft dynamics models, the control law 

uaLD(t) and the adaptive mechanism LD  for aircraft lateral-directional dynamics are 

derived in the same way with aircraft longitudinal dynamics part and shown in Eq. (4.31). 

( )

2

aLD sLD aLD LD LD LD

T

LD LD LD

t

e

= − + +

 = − 

u K x G r

B P

 (4.31) 

Therefore, the overall control input, u(t), for the ACDM-RAS in Figure 4.3 can be 

expressed as Eq. (4.32). 

( ) ( ) ( )
T

aL aLDt t t=   u u u  (4.32) 
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Chapter 5 

Flight Simulation 

5.1 Overview 

This chapter describes simulation results in which ACDM-RAS and ACDM-SS are 

compared in their performance. Both of these control systems are designed base on the 

CDM method as discussed in Chapter 4. The flight simulations are conducted by means of 

MATLAB® & Simulink® [98] – [100]. Section 5.2 explains the numerical models which 

are used to identify controller parameters and execute flight simulation. Section 5.3 

investigates the reference model responses to the reference command in tracking command 

and stabilizing. The final section, Section 5.4, compares ACDM-RAS with ACDM-SS 

under various flight conditions. 

5.2 Numerical Aircraft Dynamics Models 

The numerical aircraft flight dynamics models come from the geometric and 

dimensional stability derivatives of Cessna C182 aircraft. The initial and steady-state 

conditions are the situation when the aircraft is on the cruise phase. The flight condition 

data in this cruise phase are shown in Table 5.1 [81] [82]. 

Recall the aircraft longitudinal dynamics model Eq. (4.2) repeated here as Eq. (5.1). 

The numerical model of this equation according to Cessna C182 in the flight condition on 

Table 5.1 is expressed in Eq. (5.2). 
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Table 5.1. Flight condition for Cessna C182 on cruise phase. 

Parameter Symbol Value 

Altitude (ft) h 5,000 

Mach number M 0.201 

Airspeed (ft/sec) 
1pV
 220.1 

Dynamic pressure (lbs/ft2) q  49.6 

MAC CGx
 0.264 

Angle of attack (deg) 1  0 

 

( ) ( ) ( )

( ) ( )

L L L L L

L L L

d
t t t

dt

t t

= +

=

x A x B u

y C x

 (5.1) 

0.0456 19.4590 0 32.2 0

0.0013 2.0925 0.9706 0 0

0.0033 13.9387 6.8053 0 0

0 0 1 0 0

0 220.1 0 220.1 0

0 0.0117 1 0 0 0 0

0.2026 0 0 1 0 0 0

,      34.7359 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

L

L L

− − 
 
− −
 
 = − −
 
 
 − 

   
   
−
   
   = =−
   
   
     

A

B C



 (5.2) 

For the numerical model of the aircraft lateral-directional dynamics, Eq. (4.7) and 

is shown again in Eq. (5.3). Then the numerical model of this equation according to the 

same flight condition as previous can be expressed in Eq. (5.4). 
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( ) ( ) ( )

( ) ( )

LD LD LD LD LD

LD LD LD

d
t t t

dt

t t

= +

=

x A x B u

y C x

 (5.3) 

0.1868 0.0029 0.9917 0.1463 0

30.25 12.97 2.14 0 0

9.27 0.36 1.21 0 0

0 1 0 0 0

0 0 1 0 0

0 0.0889 1 0 0 0 0

75.06 4.82 0 1 0 0 0

,      3.41 10.19 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

LD

LD LD

− − − 
 
− −
 
 = − −
 
 
  

   
   
   
   = =− −
   
   
      

A

B C

 (5.4) 

These equations, Eq. (5.1) and (5.3), are used to design ACDM-SS and will be 

described in the following section. 

5.3 The Reference Model by ACDM-SS 

The reference model in the proposed ACDM-RAS is the Aircraft flight control by 

CDM-designed Servo State-feedback system or ACDM-SS. The structure of ACDM-SS is 

shown in Figure 4.2. Procedures to design ACDM-SS by using CDM are the same as those 

described in Section 4.3. The CDM's parameters, the stability index and the equivalent time 

constant, have to be identified first. Then the closed-loop poles according to the CDM's 

monic characteristic polynomial are obtained. Finally, based on these poles, the controller 

gains are determined by using the conventional technique. 
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5.3.1 The CDM's parameter 

The CDM's parameters comprise the stability index, i , the stability limit, *

i , and 

the equivalent time constants,  . The standard stability index values are chosen as the 

initial value of i  following the CDM's recommendation, Eq. (3.23). At the same time,   

are adjusted by following Eq. (3.24), and the *

i  relates to i  in Eq. (3.5). After tunning 

until obtained the desired system's response, the CDM's parameters are described as 

followed. 

For the aircraft longitudinal dynamics part, i  and   are expressed in Eq. (5.5), 

and the coefficient diagram is shown in Figure 5.1. 

1 2 3 42.5 and 2   = = = =  (5.5 a) 

1.1 =  (5.5 b) 

 

Figure 5.1. The coefficient diagram of the aircraft longitudinal dynamics part. 

(Cited and partially modified from ref. 80). 

For the aircraft lateral-directional dynamics part, i  and   are expressed in Eq. 

(5.6), and the coefficient diagram is shown in Figure 5.2. 
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1 2 3 42.5 and 2   = = = =  (5.6 a) 

4 =  (5.6 b) 

 

Figure 5.2. The coefficient diagram of the aircraft lateral-directional dynamics part. 

(Cited and partially modified from ref. 80). 

By observing both coefficient diagrams illustrated, found that both aircraft 

dynamics systems are stable. And both systems have the same values of i . However, the 

aircraft longitudinal dynamics system has a faster response than the aircraft lateral-

directional dynamics system since it has less   value. 

5.3.2 The controller gains of ACDM-SS 

The overall servo state-feedback gain matrices, KsL and KsLD, can be determined 

after the desired system response is obtained. First, the pole placement technique is used 

to determine the values of KsL and KsLD. The feedback loop gain (KL and KLD) and the 

servo loop gain (GL and GLD) for both aircraft dynamics systems can be calculated by Eq. 

(4.4) and (4.9). 
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The controller gain matrices of the aircraft longitudinal dynamics system are given 

in Eq. (5.7). 

0.0044 3.6018 0.2123 6.0210 0.0367

221.7777 4.8475 3 283.3598 6.5117 3 66.4017
sL

e e

− − − 
=  

− + + 
K  (5.7 a) 

3.6018 0.2123 6.0210

4.8475 3 283.3598 6.5117 3
L

e e

− − 
=  

− + + 
K  (5.7 b) 

0.0044 0.0367

221.7777 66.4017
L

− 
=  
 

G  (5.7 c) 

The controller gain matrices of the aircraft lateral-directional dynamics system are 

given in Eq. (5.8). 

0.2621 0.1354 0.0275 0.0462 0.1090

1.3603 0.0705 0.1325 0.2260 0.8185
sLD

− − 
=  

− − − − − 
K  (5.8 a) 

0.1354 0.0275 0.0462

0.0705 0.1325 0.2260
LD

− 
=  

− − − 
K  (5.8 b) 

0.2621 0.1090

1.3603 0.8185
LD

− 
=  

− − 
G  (5.8 c) 

5.3.3 ACDM-SS response to tracking command 

To investigate the performance of ACDM-SS, the A/C model uses the integrated 

aircraft flight dynamics model, Eq. (4.11), as the system's plant with the numerical values 

as stated in the previous sections. The reference commands or input command for 

investigating tracking command behaviors are the altitude changing command and heading 

changing command, as shown in Figure 5.3. 
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(a) Altitude versus time 

 

(b) Heading versus time 

Figure 5.3. The altitude and heading commands. 

When these commands are applied to ACDM-SS, which is the reference model of 

ACDM-RAS, the altitude and heading responses are shown in Figure 5.4. 
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(a) Altitude response versus time 

 

(b) Heading response versus time 

Figure 5.4. Responses of the reference model to tracking command. 

Observing the reference model response from Figure 5.4 shows that the reference 

model by ACDM-SS exhibits excellent behavior in tacking the changing commands both 

in altitude and heading. However, the altitude response is faster than the heading response 

when the command change occurs due to the difference in the value of  . The following 

section will investigate the system's performance in stabilization under the constant 

conditions. 
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5.3.4 ACDM-SS in stabilization investigating 

In this section, the Altitude Hold and Heading Hold are applied to ACDM-SS for 

investigating the system stability. The Altitude is held at 5,000 feet, and the Heading is 

held at 0 degrees. The Altitude Hold and Heading Hold responses are shown in Figure 5.5. 

 

(a) Altitude versus time 

 

(b) Heading versus time 

Figure 5.5. The Altitude Hold and Heading Hold responses of the reference model. 

From Figure 5.5, ACDM-SS also exhibits excellent behavior in aircraft stabilizing 

at the constant altitude and heading without the steady-state error. The altitude disturbance 
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signal and heading disturbance signals are assumed to occur to the system for investigating 

the disturbance rejection behavior, as shown in Figure 5.6. 

 

(a) Disturbance signal occurs at 30 seconds 

 

(b) Disturbance signal occurs at 90 seconds 

Figure 5.6. The altitude and heading disturbance signals. 

The disturbance signals are the impulse signal occur to altitude and heading at 30 

and 90 seconds. The responses of ACDM-SS to these disturbances are shown in Figure 

5.7. The disturbance rejection responses from both altitude and heading have overshoots 
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when the disturbance signals occur. However, the overshoots are compensated in a short 

period. Therefore, the response of the tracking command and the disturbance's rejection 

leads to a conclusion that ACDM-SS is suitable to be the reference model for ACDM-RAS. 

 

(a) Altitude response versus time 

 

(b) Heading response versus time 

Figure 5.7. Responses of the disturbance rejection behavior of ACDM-SS. 
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5.4 ACDM-RAS Simulation 

The proposed Aircraft flight control by CDM-designed Model-Reference Adaptive 

System or ACDM-RAS has two essential parts. First is the reference model already 

discussed in the previous section. What is left undiscussed is its adaptive mechanism. 

Considering the adaptive mechanism from Eq. (4.30) and (4.31), two parameters have to 

be stated: the adaptive gain   and the positive definite matrix P. The following sections 

show the numerical value of the matrices P and the effect of various values of   followed 

by the comparisons between ACDM-RAS and ACDM-SS. 

5.4.1 The numerical values of the matrix P 

The numerical values of the matrix P can be obtained by using Eq. (4.26) and let 

the positive definite matrix Q be as in Eq. (5.9). 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

Q  (5.9) 

Although the exact value of the matrix Q is used for Eq. (4.26), the values of the 

matrix P are different for each aircraft dynamics part, the system matrices AmL and AmLD 

are different. 

The positive definite matrix PL for the aircraft longitudinal dynamics part is 

expressed in Eq. (5.10). 
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0.1863 0.6148 0.0500 0.9552 0.0027

0.6148 1.2925 3 32.3412 1.6843 3 24.1243

0.0500 32.3412 0.9490 42.7897 0.5316

0.9552 1.6843 3 42.7897 2.2025 3 30.8544

0.0027 24.1243 0.5316 30.8544 0.5602

L

e e

e e

− − 
 

− − −
 
 = − −
 
− − 
 − 

P  (5.10) 

The positive definite matrix PLD for the aircraft lateral-directional dynamics part is 

expressed in Eq. (5.11). 

10.2537 0.5650 0.4463 1.9661 9.9438

0.5650 0.4469 0.0988 0.4491 0.3731

0.4463 0.0988 0.3333 0.1123 0.0447

1.9661 0.4491 0.1123 1.6859 1.8824

9.9438 0.3731 0.0447 1.8824 11.6369

LD

− 
 

−
 
 = − − − −
 

− 
 − 

P  (5.11) 

According to the adaptive mechanism L , Eq. (4.30), when the positive definite 

matrices PL and PLD are obtained from the previous section, the remainder essential part is 

the adaptive gain L  and LD . 

5.4.2 The effect of the adaptive gain   

In this section, the effect of varying the value of   is investigated. For this purpose, 

the Airlib [101] [102] tool block in the Simulink® program is used as the system's plant or 

the A/C model in Figure 4.3. Airlib is a library of nonlinear general aircraft models. By 

assigning the specific data of Cessna C182 on the mask of the Airlib model, the desired 

aircraft model to be the plant of ACDM-RAS is obtained. The investigation of the effect 

of   in ACDM-RAS is done similarly with the investigation performance of the reference 

model in the previous section. 

Nevertheless, obtaining the adaptive gain   is different from the matrix P. Because 

there are no exact criteria for determining the value of  . However, consideration from 
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Eq. (4.28) implies that the value of   must be the positive number. Then, the time 

derivative of function V is always the negative semidefinite function. Therefore, to 

illustrate the effect of   in ACDM-RAS, each simulation compares the response of 

ACDM-RAS with the reference command by various values of  . The values of   are 

varied in five steps from 10 until 10,000, both in the longitudinal and lateral-direction 

dynamics. The reference commands or input commands applied to ACDM-RAS have the 

same pattern as in Figure 5.3. The altitude responses of ACDM-RAS are shown in Figures 

5.8 to 5.9, while the heading responses are shown in Figure 5.10. 

 

Figure 5.8. The altitude response of ACDM-RAS with the various  . 

From observing Figure 5.8, ACDM-RAS exhibits excellent altitude command 

tracking in every value of  . However, there are two periods that altitude response is 

disturbed. These disturbances come from the effect of heading changing at 100 and 200 

seconds. These effects of heading changing on altitude response are shown in Figure 5.9. 

Although there are disturbances in those two periods, the magnitudes of responses are 

different as shown in Figure 5.9 (a) and Figure 5.9 (b). 
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(a) At 100 seconds 

 

(b) At 200 seconds 

Figure 5.9. The heading changing effect on the altitude response. 

Meanwhile, ACDM-RAS exhibits excellent performance in heading response in 

every value of   too. Significantly, the changes in altitude do not have any effect on the 

heading response. However, the heading response seems slower than the altitude response. 

For illustration, the heading response of ACDM-RAS is shown in Figure 5.10. 

 

Figure 5.10. The heading response of ACDM-RAS with the various  . 

In the next step, the stabilization performance of ACDM-RAS is investigated. The 

command is applied to hold the system's altitude constant at 5,000 feet, and the heading is 

held at 0 degrees. The ACDM-RAS's stabilization responses are shown in Figure 5.11. 
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Figure 5.11 (a) shows that increasing the value of   reduces the settling time of 

the altitude response and reduces the steady-state error. While in Figure 5.11 (b), increasing 

  does not affect the Heading Hold response, ACDM-RAS exhibits excellent behavior in 

the Heading Hold command with every value of  . 

 

(a) Altitude response with the various   

 

(b) Heading response with the various   

Figure 5.11. The altitude and heading stabilization response of ACDM-RAS. 

The last step is a disturbance rejection investigation. By using the disturbance 

signal as in Figure 5.6, the disturbance rejection responses are shown in Figure. 5.12. 
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(a) Altitude response with various values of   

 

(b) Heading response with various values of   

Figure 5.12. Responses of the disturbance rejection behavior of ACDM-RAS. 

In disturbance rejection, changing the values of   makes significant differences 

between the altitude and heading response. In the altitude response, increasing   yields 

that the overshoot responses due to the disturbance signal have a similar shape and 

magnitude of the first-half circle in every  . Nevertheless, in the second-half circle, the 

shape and magnitude of the overshoot are considerably different when   is 10,000 

compares with others. However, this value of   gives the system the fastest settling time 
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and less steady-state error. While in the heading response, the disturbance signals are 

compensated quickly and faster than the altitude response. In the meantime, the response's 

oscillations are smoother, and the magnitudes are reduced when   increases. 

From the previous discussion, the value-changing effect of the adaptive gain 

lambda on ACDM-RAS influences the aircraft longitudinal dynamics part more than the 

aircraft lateral-directional dynamics part. Changing in the value of the   resulted in a 

significant change in the aircraft longitudinal dynamics part compared to the aircraft 

lateral-directional dynamics part, for example, as in the system's stabilization. 

5.5 ACDM-RAS vs. ACDM-SS 

This section illustrates the comparison between ACDM-RAS and ACDM-SS. For 

reasonable comparison, the Cessna C182 Airlib model is adopted to be the A/C model for 

both systems. At the same time, the controller parameters of ACDM-SS are the same as in 

the reference model, Eq. (5.7) and (5.8). ACDM-RAS uses the reference model from 

Section 5.3, and the adaptive gains are L  = 30,000 and LD  = 30 for longitudinal and 

lateral-directional dynamics parts, respectively. 

5.5.1 ACDM-RAS vs. ACDM-SS in tracking behavior 

Apply the altitude and heading command from Figure 5.3 to both ACDM-RAS and 

ACDM-SS. The responses of these two systems due to these commands are shown in 

Figures 5.13 to 5.15. 
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Figure 5.13. The altitude response due to altitude changing command. 

From Figure 5.13, both ACDM-RAS and ACDM-SS exhibit excellent command 

tracking behavior in altitude changing. However, although both systems have similar 

effects from the heading changing, these effects are more significant differences in 

magnitude on the ACDM-SS than ACDM-RAS, as shown in Figure 5.14 (a) and (b). 

 

 

(a) At 100 seconds 

 

(b) At 200 seconds 

Figure 5.14. The effect of heading changing on the altitude response. 

From Figure 5.15, ACDM-RAS and ACDM-SS are still exhibiting good 

performance in changing heading. However, the response of ACDM-SS is faster, but the 

response of ACDM-RAS is smoother than ACDM-SS. From the previous discussion, it 
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can be seen that ACDM-RAS exhibits better performance than ACDM-SS in tracking 

command. Although in the heading response, ACDM-RAS response is slower than 

ACDM-SS, this does not compensate for the effect of heading changing on the altitude 

response. 

 

Figure 5.15. The heading response due to the changing heading command. 

5.5.2 ACDM-RAS vs. ACDM-SS in the stabilization 

In the aircraft stabilization investigation, the aircraft altitude is held at 5,000 feet, 

and the heading is held at 0 degrees. Figure 5.16 shows the stabilization response compared 

between ACDM-RAS and ACDM-SS. The altitude response from Figure 5.16 (a) shows 

that both ACDM-RAS and ACDM-SS have an overshoot at the initial state and have the 

error at steady-state. However, the magnitude of the overshoot and the steady-state error 

of ACDM-RAS are smaller than ACDM-SS. There are no significant differences in the 

heading response between ACDM-RAS and ACDM-SS. Both systems exhibit excellent 

behavior in holding the heading without any overshoot or error at steady-state. Although 

both ACDM-RAS and ACDM-SS have an overshoot at the initial state and the steady-state 

error in altitude response, they have good efficiency in heading response. Therefore, it can 
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be concluded that both ACDM-RAS and ACDM-SS have an excellent performance to 

stabilize the aircraft at steady state. 

 

(a) Altitude comparison 

 

(b) Heading comparison 

Figure 5.16. The Altitude Hold and Heading Hold response comparison. 

The systems are still commanded to hold the altitude and the heading at 5,000 feet 

and 0 degrees. Then the disturbance signals as in Figure 5.6 are applied to both ACDM-

RAS and ACDM-SS. The results are shown in Figure 5.17. 
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(a) Altitude comparison 

 

(b) Heading comparison 

Figure 5.17. The disturbance rejection comparison. 

The results in Figure 5.17 clearly show that ACDM-RAS is more efficient than 

ACDM-SS regardless of whether the altitude response or heading response is considered. 

Although in the altitude response, ACDM-RAS has a full circle of the overshoot due to the 

disturbance, which is directly applied to the altitude, ACDM-RAS does not affect altitude 

response from the disturbance, which is directly applied to the heading. At the same time, 
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both systems do not have any effect from the altitude disturbance in the heading response. 

However, ACDM-SS has a massive overshoot due to the heading disturbance. 

5.6 ACDM-RAS Flight Path 

For an illustration of the response of ACDM-RAS due to each altitude and heading 

command, the 3-dimension flight paths are used to express more detail about the aircraft's 

physical motion. Figure 5.18 shows the flight path I of ACDM-RAS, which is the flight 

path of the response of ACDM-RAS from Figures 5.13 and 5.15. The flight path in Figure 

5.19 is the response of ACDM-RAS when the altitude command is the ramp signal with 

the slope of 20 feet per second, and the heading command is the ramp signal with the slope 

of 0.5 degrees per second. The initial point coordinates of both flight paths are [0, 0, 5000] 

in the [north, west, up] system. 
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(a) Isometric view 

 

(c) Top view 

 

 

 

 

(b) Side view 

 

(d) Front view 

Figure 5.18. ACDM-RAS flight path I. 
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(a) Isometric view 

 

(c) Top view 

 

(b) Side view 

 

(d) Front view 

Figure 5.19. ACDM-RAS flight path II. 
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Chapter 6 

Summary 

This thesis aims to develop the aircraft flight control system based on the 

Coefficient Diagram Method or CDM. CDM is used to design the two-servo state-feedback 

systems for aircraft longitudinal and lateral-directional dynamics control. These servo 

systems are called the Aircraft flight control by CDM-designed servo state-feedback 

system or ACDM-SS. After the performance of ACDM-SS was investigated, the concept 

of the Model-reference adaptive system was implemented for performance improvement 

of ACDM-SS in case of dealing with a nonlinear aircraft model. Secondly, another type of 

aircraft flight control system was introduced which is called the Aircraft flight control by 

CDM-designed Model Reference Adaptive System or abbreviated as ACDM-RAS. 

ACDM-RAS is the Model Reference Adaptive System, which uses ACDM-SS as the 

reference model. Performance comparison was made between ACDM-SS and ACDM-

RAS through simulation in various situations. The simulation results show that both 

ACDM-SS and ACDM-RAS exhibited a satisfactory performance as aircraft flight control 

system, while ACDM-RAS tuned out to perform better than ACDM-SS, especially under 

the presence of nonlinearity in aircraft model. 

6.1 Conclusions 

ACDM-RAS and ACDM-SS can control aircraft longitudinal and lateral-direction 

dynamics motion simultaneously. Satisfactory responses to the reference commands of 

changing altitude and heading are confirmed for both systems. Both ACDM-RAS and 

ACDM-SS respond to the Altitude Hold command with small error values at the steady-
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state, while the Heading Hold command has no error values. ACDM-RAS and ACDM-SS 

can also compensate for the disturbance signals which come from the external systems. 

Using the servo state-feedback system as the central controller in ACDM-SS makes the 

structure of ACDM-SS straightforward and can be modified easily to meet the designer's 

requirement. These benefits of using the servo state-feedback system can be verified by 

comparing ACDM-SS with the previous aircraft flight control systems based on the servo 

state-feedback system [77] – [80]. Use of CDM as the controller design technique for 

ACDM-SS can dramatically reduce the complexity in controller design processes. CDM is 

an algebraic approach in controller design with only three design parameters, the stability 

index, i , the equivalent time constant,  , and the stability limit, *

i . These parameters 

make CDM's concept easy to understand even for ordinary engineers or technicians. CDM 

recommends the standard stability index values, and the coefficient diagram allows the 

designer to have excellent criteria or decision-making for design parameter tuning, 

guaranteeing the balance of system stability, response, and robustness. Although ACDM-

SS exhibits excellent performance in the simulation with the linear aircraft model as 

verified in sections 5.3.3 and 5.3.4, there are some defects in the nonlinear aircraft model. 

In order to keep the excellent characteristic of ACDM-SS when applied to the linear 

aircraft model while eliminating or reducing the defect observed in case of a nonlinear 

aircraft model, the model reference adaptive system technique is implemented to ACDM-

SS. This reason is that the derivation of ACDM-RAS and ACDM-RAS is designed based 

on the Lyapunov stability theory. There is only one controller gain, adaptive gain  , in the 

adaptive part. Although there is no exact rule for tunning the  , the value of   is easily 

obtained. It can be concluded that the value of   must be only a positive number. 

Therefore, the value of   can be obtained by simple trial and error with the positive 

number. 
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The comparison between ACDM-RAS and ACDM-SS applied to nonlinear aircraft 

models is done through the simulation with the same procedure done with ACDM-SS. The 

results show that ACDM-RAS can eliminate or compensate for the defects of ACDM-SS 

all in tracking, stabilization, and disturbance rejection. Mainly, ACDM-RAS exhibits 

excellent behavior in stabilization both with or without the disturbance signals. Both 

ACDM-SS and ACDM-RAS were found to achieve a good performance as an aircraft 

flight control system, and the presence of ACDM-RAS helps improve the performance of 

ACDM-SS even better. The structures of both systems are straightforward, while the 

design processes are not complex and do not need deep control background and 

mathematical background. 

6.2 Suggestions 

Although ACDM-RAS can be considered as an efficient flight control system, there 

are still guidelines for further development in many ways. An example is the aircraft model 

development, and it is clear that the aircraft model is of paramount importance in designing 

the aircraft flight control system. Many essential variables are needed for aircraft modeling, 

such as the aerodynamic coefficient, static stability, and dynamic derivative characteristics. 

These variables usually depend on various factors, such as the aircraft type or flight 

condition. If the vast data of these essential variables can be obtained, the accuracy of the 

aircraft modeling will be immensely increased and yield more effective aircraft flight 

control system designing. Solutions to determine these essential data can be explored in 

many ways, such as physical methods or calculations. An example of the physical method 

is the use of a wind tunnel. Although a wind tunnel has high accuracy, this method needs 

high operation costs and maintenance. An example of the calculation method is the use of 

a computer program or application. Using these programs to determine the essential data 
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for aircraft modeling may be less accurate than using the wind tunnel, but this method has 

less operation cost and no maintenance. There are many programs which can be used to 

determine the essential data for aircraft modeling, such as Digital Datcom [103] [104], 

Athena Vortex Lattice AVL [105], and OpenVSP [106]. Another method for further 

development is to use a flight simulator. The main advantages of the flight simulator are 

safety and sparing costs. A simulator can display the dynamics of test aircraft, which is an 

advantage before an actual flight test. The use of a flight simulator program also helps to 

increase the credibility of the aircraft modeling and response. Examples of flight simulators 

are FlightGear [107] and JSBsim [108]. 

6.3 Future Work 

This thesis focuses on developing the aircraft flight control system, an effective 

system with powerful design techniques. The following is a list of future works that can be 

explored based on these proposed systems. 

• The loss in flight or the malfunctioning flight control surface: Use ACDM-RAS as 

the baseline to develop a flexible aircraft flight control system for C182 aircraft. 

When encountering a situation in which some flight control surfaces are damaged 

or malfunction during flight, this flexible aircraft flight control system should have 

the ability to retain the stability of the aircraft to continuously safe flight or landing. 

• The flight control system for the new aircraft type: Based on ACDM-RAS, the 

flight control system for the new aircraft type can be developed. This aircraft may 

be equipped with the different control surfaces from C182, but it still has the flight 

quality with the ACDM-RAS.
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Appendix A 

Cessna 182 

The Cessna 182 (called C182) is a light utility aircraft from Cessna Aircraft 

Company, USA. The Cessna 182 was first introduced in 1956 and is still in production 

since C182 is the one of most popular aircraft models of Cessna Company. The C182 is a 

four-seat, single-engine light airplane, tricycle gear, and has various options to meet the 

objectives such as adding two child seats by installed in the baggage area or modify to be 

retractable gear type aircraft. 

The useful information used in the thesis are described as follows. 

 

General characteristics 

• Crew:   1 

• Capacity:  3 passengers 

• Length:  28 ft 0 in (8.53 m) 

• Wingspan:  36 ft 0 in (10.97 m) 

• Height:  9 ft 3 in (2.82 m) 

• Wing area:  174 sq ft (16.2 m2) 

• Empty weight:  1,700 lb (771 kg) 

• Max takeoff weight: 2,950 lb (1,338 kg) 

• Powerplant:  1 × Lycoming O-470-U 230 hp (170 kW) 

• Propellers:  3-bladed constant speed 
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Performance 

• Maximum speed: 148 kn (170 mph, 274 km/h) 

• Cruise speed:  144 kn (166 mph, 267 km/h) 

• Stall speed:  56 kn (65 mph, 104 km/h) 

• Range:   880 nmi (1,013 mi, 1,630 km) 

• Service ceiling: 16,500 ft (5,029 m) 

• Rate of climb:  1010 ft/min (5.13 m/s) 

 

Dynamics mode approximation 

Longitudinal dynamics part 

• Short period:  0.8442 5.2709SP nSP = =  

• Phugoid:  0.1284 0.1713Ph nPh = =  

Lateral-directional dynamics part 

• Dutch roll:  0.2064 3.2456DR nDR = =  

• Spiral:   55.8659ST =  

• Rolling:  0.0769RT =  
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(a) Side view 

 

(b) Front view 

Figure A.1. Cessna C182 from FligthGear Flight Simulator 
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Appendix B 

MATLAB® M-File 

An M-files are the text files with an extension ‘.m’ containing MATLAB® 

commands. When the M-file is run, all MATLAB® commands in the file are executed 

together. An M-file can be created or modified through the MATLAB® editor. This thesis 

uses the following M-file to calculate the controller's parameters for both ACDM-RAS and 

ACDM-SS and cooperates with Simulink® for flight simulation. 
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%****************************************************** 

% Cessna 182 Model  

% Aircraft Dynamics, Marcello N apolitano 

% Modern Flight Dynamics, David K. Schmidt 

%****************************************************** 

clear; 

clc; 

ver = 'acdm_ras'; 

ver 

 

%****************************************************** 

% Cessna 182 data 

%****************************************************** 

% Geometric data 

S  = 174; % Wing surface, ft^2 

c_bar = 4.9; % Mean Aerodynamic Chord (MAC), ft 

b  = 36; % Wing span, ft 

% Flight conditions data 

H  = 5000; % Altitude, ft 

M  = 0.201; % Mach number 

V_p1  = 220.1; % True airspeed, ft/sec 220.1 

Qbar  = 49.6; % Dynamic pressure, lbs/ft^2 

xbar_CG = 0.264; % Location of CG (% of MAC) 

alpha_1 = 0;  % Steady state angle of attack, deg 

theta_1 = 0; 

g  = 32.2; 

% Mass and Inertial data 

M = 2650; % Mass, lbs 

I_XX = 948; % Moment of Inertia x-axis, slug ft^2 

I_YY = 1346; % Moment of Inertia y-axis, slug ft^2 

I_ZZ = 1967; % Moment of Inertia z-axis, slug ft^2 

I_XZ = 0;  % Product of Inertia x-axis, slug ft^2 

% Longitudinal dimensional stability derivatives 

X_u             = -0.0304; 

X_Tu            = -0.0152; 

X_alpha         = 19.459; 

X_deltaE        = 0; 

X_deltaT        = 0.0117; 

  

Z_u             = -0.2919; 

Z_alpha         = -464.71; 

Z_alphaDot      = -1.98; 

Z_q             = -4.542; 

Z_deltaE        = -44.985; 

Z_deltaT        = 0; 

  

M_u             = 0; 
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M_Tu            = 0; 

M_alpha         = -19.26; 

M_Talpha        = 0; 

M_alphaDot      = -2.543; 

M_q             = -4.337; 

M_deltaE        = -35.251; 

M_deltaT        = 0; 

  

% Lateral-Directional dimensional stability derivatives 

Y_beta          = -41.11; 

Y_p             = -0.642; 

Y_r             = 1.831; 

Y_deltaA        = 0; 

Y_deltaR        = 19.56; 

  

L_beta          = -30.25; 

L_p             = -12.97; 

L_r             = 2.14; 

L_deltaA        = 75.06; 

L_deltaR        = 4.82; 

  

N_beta          = 9.27; 

N_Tbeta         = 0; 

N_p             = -0.36; 

N_r             = -1.21; 

N_deltaA        = -3.41; 

N_deltaR        = -10.19; 

%****************************************************** 

  

%****************************************************** 

% Longitudinal aircraft dynamics equation 

%****************************************************** 

% x_Long = [u; alpha; q; theta; h] 

% y_Long = [u; alpha; q; theta; h] 

% u_Long = [deltaE; deltaT] 

% u  = velocity (along the X axis), fps 

% alpha = longitudinal angle of attack, rad 

% q  = pitch angular rate (around the Y axis), 

rad/sec 

% theta = Euler pitch angle, rad 

% h = altitude in an earth-fixed reference frame, ft 

% deltaE = elevator deflection, rad 

% deltaT = Thrust, lbf 

  

Xprime_u        = X_u + X_Tu; 

Xprime_alpha    = X_alpha; 

Xprime_q        = 0; 
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Xprime_theta    = -1*g*cos(theta_1); 

  

Zprime_u        = Z_u/(V_p1 - Z_alphaDot); 

Zprime_alpha    = Z_alpha/(V_p1 - Z_alphaDot); 

Zprime_q        = (Z_q + V_p1)/(V_p1 - Z_alphaDot); 

Zprime_theta = -1*g*sin(theta_1)/(V_p1 - Z_alphaDot); 

  

Mprime_u        = (M_alphaDot*Zprime_u) + M_u; 

Mprime_alpha    = (M_alphaDot*Zprime_alpha) + M_alpha; 

Mprime_q        = (M_alphaDot*Zprime_q) + M_q; 

Mprime_theta    = M_alphaDot*Zprime_theta; 

  

a_L11           = Xprime_u; 

a_L12           = Xprime_alpha; 

a_L13           = Xprime_q; 

a_L14           = Xprime_theta; 

a_L15           = 0; 

  

a_L21           = Zprime_u; 

a_L22           = Zprime_alpha; 

a_L23           = Zprime_q; 

a_L24           = Zprime_theta; 

a_L25           = 0; 

  

a_L31           = Mprime_u; 

a_L32           = Mprime_alpha; 

a_L33           = Mprime_q; 

a_L34           = Mprime_theta; 

a_L35           = 0; 

  

a_L41           = 0; 

a_L42           = 0; 

a_L43           = 1; 

a_L44           = 0; 

a_L45           = 0; 

  

a_L51           = 0; 

a_L52           = -1*V_p1; 

a_L53           = 0; 

a_L54           = V_p1; 

a_L55           = 0; 

  

Xprime_deltaE   = X_deltaE; 

Zprime_deltaE   = Z_deltaE/(V_p1 - Z_alphaDot); 

Mprime_deltaE   = (M_alphaDot*Zprime_deltaE) + 

M_deltaE; 

Xprime_deltaT   = X_deltaT; 

Zprime_deltaT   = Z_deltaT; 
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Mprime_deltaT   = M_deltaT; 

  

b_L11           = Xprime_deltaE; 

b_L12           = Xprime_deltaT; 

  

b_L21           = Zprime_deltaE; 

b_L22           = Zprime_deltaT; 

  

b_L31           = Mprime_deltaE; 

b_L32           = Mprime_deltaT; 

  

b_L41           = 0; 

b_L42           = 0; 

  

b_L51           = 0; 

b_L52           = 0; 

  

A_Long = [a_L11 a_L12 a_L13 a_L14 a_L15; 

          a_L21 a_L22 a_L23 a_L24 a_L25; 

          a_L31 a_L32 a_L33 a_L34 a_L35; 

          a_L41 a_L42 a_L43 a_L44 a_L45; 

          a_L51 a_L52 a_L53 a_L54 a_L55]; 

  

B_Long = [b_L11  b_L12; 

          b_L21  b_L22; 

          b_L31  b_L32; 

          b_L41  b_L42; 

          b_L51  b_L52]; 

  

C_Long = eye(5); 

  

D_Long = zeros(5,2); 

%****************************************************** 

 

%****************************************************** 

% Servo system for Longitudinal aircraft dynamics 

%****************************************************** 

% Servo output u and h 

H_L          = [1 0 0 0 0; 

                0 0 0 0 1]; 

H_rL         = [0 1 0 0 0; 

                0 0 1 0 0; 

                0 0 0 1 0]; 

% Characteristic polynomial of servo system (Open Loop) 

P_A_sL          = poly(A_Long); 

R_P_A_sL        = roots(P_A_sL); 

%****************************************************** 
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%****************************************************** 

% Longitudinal servo state feedback system by CDM  

%****************************************************** 

% Longitudinal stability index 

g_sL1           = 2.5; 

g_sL2           = 2; 

g_sL3           = 2; 

g_sL4           = 2; 

tau_sL          = 1.1; % 1.1 

  

% Longitudinal CDM coefficient 

a_sL0           = 0.2; 

a_sL1           = a_sL0*tau_sL; 

a_sL2           = (a_sL1*tau_sL)/g_sL1; 

a_sL3           = (a_sL2*tau_sL)/(g_sL1*g_sL2); 

a_sL4           = (a_sL3*tau_sL)/(g_sL1*g_sL2*g_sL3); 

a_sL5           = 

(a_sL4*tau_sL)/(g_sL1*g_sL2*g_sL3*g_sL4); 

  

% Longitudinal CDM monic polynomial & poles 

% P_cdm_sL = [a_sL5 a_sL4 a_sL3 a_sL2 a_sL1 a_sL0]; 

P_cdm_sL = [a_sL5/a_sL5 a_sL4/a_sL5 a_sL3/a_sL5 

a_sL2/a_sL5 a_sL1/a_sL5 a_sL0/a_sL5]; 

R_cdm_sL  = roots(P_cdm_sL); 

  

% Longitudinal CDM gains 

Ks_L            = place(A_Long,B_Long,R_cdm_sL); 

K_L             = [Ks_L(:,2) Ks_L(:,3) Ks_L(:,4)]; 

G_L             = [Ks_L(:,1) Ks_L(:,5)]; 

  

pLfb = poly(A_Long - B_Long*Ks_L); 

%****************************************************** 

  

%****************************************************** 

% Lateral-Directional aircraft dynamics equation 

%****************************************************** 

% x_LatDir      = [beta; p; r; phi; psi] 

% y_LatDir      = [beta; p; r; phi; psi] 

% u_LatDir      = [deltaA; deltaR] 

% beta          = sidesplip angle, rad 

% p             = roll rate, rad/sec 

% r             = yaw rate, rad/sec 

% phi           = bank angle, rad 

% psi           = heading angle, rad 

% deltaA        = aileron deflection, rad 

% deltaR        = rudder deflection, rad 
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Yprime_beta     = Y_beta/V_p1; 

Yprime_p        = Y_p/V_p1; 

Yprime_r        = (Y_r - V_p1)/V_p1; 

Yprime_phi      = g*cos(theta_1)/V_p1; 

  

I_1             = I_XZ/I_XX; 

I_2             = I_XZ/I_ZZ; 

Lprime_beta     = (L_beta + I_1*N_beta)/(1 - I_1*I_2); 

Lprime_p        = (L_p + I_1*N_p)/(1 - I_1*I_2); 

Lprime_r        = (L_r + I_1*N_r)/(1 - I_1*I_2); 

  

Nprime_beta     = (I_2*L_beta + N_beta)/(1 - I_1*I_2); 

Nprime_p        = (I_2*L_p + N_p)/(1 - I_1*I_2); 

Nprime_r        = (I_2*L_r + N_r)/(1 - I_1*I_2); 

  

a_LD11          = Yprime_beta; 

a_LD12          = Yprime_p; 

a_LD13          = Yprime_r; 

a_LD14          = Yprime_phi; 

a_LD15          = 0; 

  

a_LD21          = Lprime_beta; 

a_LD22          = Lprime_p; 

a_LD23          = Lprime_r; 

a_LD24          = 0; 

a_LD25          = 0; 

  

a_LD31          = Nprime_beta; 

a_LD32          = Nprime_p; 

a_LD33          = Nprime_r; 

a_LD34          = 0; 

a_LD35          = 0; 

  

a_LD41          = 0; 

a_LD42          = 1; 

a_LD43          = 0; %tan(theta_1) or 0(IREASE) 

a_LD44          = 0; 

a_LD45          = 0; 

  

a_LD51          = 0; 

a_LD52          = 0; 

a_LD53          = 1; % 0 or 1(IREASE); 

a_LD54          = 0; % g/V_p1 or 0(IREASE); 

a_LD55          = 0; 

  

Yprime_deltaA   = Y_deltaA/V_p1; 

Yprime_deltaR   = Y_deltaR/V_p1; 

Lprime_deltaA = (L_deltaA+I_1*N_deltaA)/(1-I_1*I_2); 
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Lprime_deltaR = (L_deltaR+I_1*N_deltaR)/(1-I_1*I_2); 

Nprime_deltaA = (I_2*L_deltaA+N_deltaA)/(1-I_1*I_2); 

Nprime_deltaR = (I_2*L_deltaR+N_deltaR)/(1-I_1*I_2); 

  

b_LD11          = Yprime_deltaA; 

b_LD12          = Yprime_deltaR; 

  

b_LD21          = Lprime_deltaA; 

b_LD22          = Lprime_deltaR; 

  

b_LD31          = Nprime_deltaA; 

b_LD32          = Nprime_deltaR; 

  

b_LD41          = 0; 

b_LD42          = 0; 

  

b_LD51          = 0; 

b_LD52          = 0; 

  

A_LatDir = [a_LD11 a_LD12 a_LD13 a_LD14 a_LD15; 

            a_LD21 a_LD22 a_LD23 a_LD24 a_LD25; 

            a_LD31 a_LD32 a_LD33 a_LD34 a_LD35; 

            a_LD41 a_LD42 a_LD43 a_LD44 a_LD45; 

            a_LD51 a_LD52 a_LD53 a_LD54 a_LD55]; 

  

B_LatDir = [b_LD11 b_LD12; 

            1*b_LD21 b_LD22; 

            b_LD31 b_LD32; 

            1*b_LD41 b_LD42; 

            1*b_LD51 b_LD52]; 

  

C_LatDir = eye(5); 

  

D_LatDir = zeros(5,2); 

%****************************************************** 

 

%****************************************************** 

% Servo system for Lateral-Directional aircraft 

dynamics 

%****************************************************** 

% Servo output beta and psi 

H_LD        = [1 0 0 0 0; 

               0 0 0 0 1]; 

H_rLD       = [0 1 0 0 0; 

               0 0 1 0 0; 

               0 0 0 1 0]; 

  

% Characteristic polynomial of servo system (Open Loop) 
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P_A_sLD         = poly(A_LatDir); 

R_P_A_sLD       = roots(P_A_sLD); 

%****************************************************** 

  

%****************************************************** 

% Lateral-Directional servo state feedback system by 

CDM  

%****************************************************** 

% Lateral-Directional stability index 

g_sLD1          = 2.5; 

g_sLD2          = 2; 

g_sLD3          = 2; 

g_sLD4          = 2; 

tau_sLD         = 4; % 4(IREASE) 

  

% Lateral-Directional CDM coefficient 

a_sLD0 = 0.2; 

a_sLD1 = a_sLD0*tau_sLD; 

a_sLD2 = (a_sLD1*tau_sLD)/g_sLD1; 

a_sLD3 = (a_sLD2*tau_sLD)/(g_sLD1*g_sLD2); 

a_sLD4 = (a_sLD3*tau_sLD)/(g_sLD1*g_sLD2*g_sLD3); 

a_sLD5 = 

(a_sLD4*tau_sLD)/(g_sLD1*g_sLD2*g_sLD3*g_sLD4); 

  

% Lateral-Directional CDM monic polynomial & poles 

% P_cdm_sLD = [a_sLD5 a_sLD4 a_sLD3 a_sLD2 a_sLD1 

a_sLD0]; 

P_cdm_sLD  = [a_sLD5/a_sLD5 a_sLD4/a_sLD5 a_sLD3/a_sLD5  

a_sLD2/a_sLD5 a_sLD1/a_sLD5 

a_sLD0/a_sLD5]; 

R_cdm_sLD  = roots(P_cdm_sLD); 

  

% Lateral-Directional CDM gains 

Ks_LD  = place(A_LatDir,B_LatDir,R_cdm_sLD); 

K_LD   = [Ks_LD(:,2) Ks_LD(:,3) Ks_LD(:,4)]; 

G_LD   = [Ks_LD(:,1) Ks_LD(:,5)]; 

  

pLDfb = poly(A_LatDir - B_LatDir*Ks_LD); 

%****************************************************** 

  

%****************************************************** 

% Entrie aircraft dynamics equation 

%****************************************************** 

% x = [u; alpha; q; theta; h; beta; p; r; phi; psi] 

% y = [u; alpha; q; theta; h; beta; p; r; phi; psi] 

% u = [deltaE; deltaT; deltaA; deltaR] 
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A = [A_Long   zeros(5); 

     zeros(5) A_LatDir]; 

  

B = [B_Long     zeros(5,2); 

     zeros(5,2) B_LatDir]; 

  

C = [C_Long     zeros(5,5); 

     zeros(5,5) C_LatDir]; 

  

D = zeros(10,4); 

%****************************************************** 

  

coefplot_2_3;   % CDM diagram plot 

  

%****************************************************** 

% Adaptive Control section 

%****************************************************** 

  

%****************************************************** 

% Longitudinal reference model 

%****************************************************** 

AmL = A_Long - B_Long*Ks_L; 

 

% Amv's elements from matrix_test.m 

AmvL =  [2*AmL(1,1) 0 0 0 0 2*AmL(2,1) 2*AmL(3,1) 

2*AmL(4,1) 2*AmL(5,1) 0 0 0 0 0 0; 

 

0 2*AmL(2,2) 0 0 0 2*AmL(1,2) 0 0 0 2*AmL(3,2)       

2*AmL(4,2) 2*AmL(5,2) 0 0 0; 

 

0 0 2*AmL(3,3) 0 0 0 2*AmL(1,3) 0 0 2*AmL(2,3)       

0 0 2*AmL(4,3) 2*AmL(5,3) 0; 

 

0 0 0 2*AmL(4,4) 0 0 0 2*AmL(1,4) 0 0  

2*AmL(2,4) 0 2*AmL(3,4) 0 2*AmL(5,4); 

 

0 0 0 0 2*AmL(5,5) 0 0 0 2*AmL(1,5) 0 0       

2*AmL(2,5) 0 2*AmL(3,5) 2*AmL(4,5); 

 

AmL(1,2) AmL(2,1) 0 0 0 AmL(1,1)+AmL(2,2) 

AmL(3,2) AmL(4,2) AmL(5,2) AmL(3,1)         

AmL(4,1) AmL(5,1) 0 0 0; 

 

AmL(1,3) 0 AmL(3,1) 0 0 AmL(2,3) 

AmL(1,1)+AmL(3,3) AmL(4,3) AmL(5,3)         

AmL(2,1) 0 0 AmL(4,1) AmL(5,1) 0; 
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AmL(1,4) 0 0 AmL(4,1) 0 AmL(2,4) AmL(3,4)         

AmL(1,1)+AmL(4,4) AmL(5,4) 0 AmL(2,1) 0            

AmL(3,1) 0 AmL(5,1); 

 

AmL(1,5) 0 0 0 AmL(5,1) AmL(2,5) AmL(3,5) 

AmL(4,5) AmL(1,1)+AmL(5,5) 0 0 AmL(2,1) 0               

AmL(3,1) AmL(4,1); 

 

0 AmL(2,3) AmL(3,2) 0 0 AmL(1,3) AmL(1,2) 0     

0 AmL(2,2)+AmL(3,3) AmL(4,3) AmL(5,3) AmL(4,2)         

AmL(5,2) 0; 

0 AmL(2,4) 0 AmL(4,2) 0 AmL(1,4) 0 AmL(1,2)         

0 AmL(3,4) AmL(2,2)+AmL(4,4) AmL(5,4)         

AmL(3,2) 0 AmL(5,2); 

 

0 AmL(2,5) 0 0 AmL(5,2) AmL(1,5) 0 0 AmL(1,2)         

AmL(3,5) AmL(4,5) AmL(2,2)+AmL(5,5) 0 AmL(3,2)         

AmL(4,2); 

 

0 0 AmL(3,4) AmL(4,3) 0 0 AmL(1,4) AmL(1,3) 0               

AmL(2,4) AmL(2,3) 0 AmL(3,3)+AmL(4,4) AmL(5,4)         

AmL(5,3); 

 

0 0 AmL(3,5) 0 AmL(5,3) 0 AmL(1,5) 0 AmL(1,3)         

AmL(2,5) 0 AmL(2,3) AmL(4,5) AmL(3,3)+AmL(5,5) 

AmL(4,3); 

 

0 0 0 AmL(4,5) AmL(5,4) 0 0 AmL(1,5) AmL(1,4)         

0 AmL(2,5) AmL(2,4) AmL(3,5) AmL(3,4)         

AmL(4,4)+AmL(5,5)]; 

 

qL1 = 1; 

qL2 = qL1; 

qL3 = qL2; 

qL4 = qL3; 

qL5 = qL4; 

  

qL6 = 0; 

qL7 = qL6; 

qL8 = qL7; 

qL9 = qL8; 

qL10 = qL9; 

qL11 = qL10; 

qL12 = qL11; 

qL13 = qL12; 

qL14 = qL13; 

qL15 = qL14; 
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QL = [qL1 qL6  qL7  qL8  qL9;          

      qL6 qL2  qL10 qL11 qL12; 

      qL7 qL10 qL3  qL13 qL14; 

      qL8 qL11 qL13 qL4  qL15; 

      qL9 qL12 qL14 qL15 qL5]; 

  

QvL = -

1*[qL1;qL2;qL3;qL4;qL5;qL6;qL7;qL8;qL9;qL10;qL11;qL12;q

L13;qL14;qL15]; 

  

PvL = AmvL\QvL; 

  

PL = [PvL(1,1) PvL(6,1)  PvL(7,1)  PvL(8,1)  PvL(9,1); 

      PvL(6,1) PvL(2,1)  PvL(10,1) PvL(11,1) PvL(12,1); 

      PvL(7,1) PvL(10,1) PvL(3,1)  PvL(13,1) PvL(14,1); 

      PvL(8,1) PvL(11,1) PvL(13,1) PvL(4,1)  PvL(15,1); 

      PvL(9,1) PvL(12,1) PvL(14,1) PvL(15,1) PvL(5,1)]; 

  

lambdaL = 30000; % 30000(IREASE) 200000 1000000 

  

% Test matrix PL 

ePL = eig(PL); 

nQL = (AmL.'*PL)+(PL*AmL); 

  

%****************************************************** 

  

%****************************************************** 

% Lateral-directional reference model 

%****************************************************** 

AmLD = A_LatDir - B_LatDir*Ks_LD; 

  

% Amv's elements from matrix_test.m  

AmvLD = [2*AmLD(1,1) 0 0 0 0 2*AmLD(2,1) 2*AmLD(3,1)       

2*AmLD(4,1) 2*AmLD(5,1) 0 0 0 0 0 0; 

 

0 2*AmLD(2,2) 0 0 0 2*AmLD(1,2) 0 0 0 

2*AmLD(3,2) 2*AmLD(4,2) 2*AmLD(5,2) 0 0 0; 

 

0 0 2*AmLD(3,3) 0 0 0 2*AmLD(1,3) 0 0 

2*AmLD(2,3) 0 0 2*AmLD(4,3) 2*AmLD(5,3) 0; 

 

0 0 0 2*AmLD(4,4) 0 0 0 2*AmLD(1,4) 0 0 

AmLD(2,4) 0 2*AmLD(3,4) 0 2*AmLD(5,4); 

 

0 0 0 0 2*AmLD(5,5) 0 0 0 2*AmLD(1,5) 0 0 

2*AmLD(2,5) 0 2*AmLD(3,5) 2*AmLD(4,5); 
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AmLD(1,2) AmLD(2,1) 0 0 0 AmLD(1,1)+AmLD(2,2) 

AmLD(3,2) AmLD(4,2) AmLD(5,2) AmLD(3,1) 

AmLD(4,1) AmLD(5,1) 0 0 0; 

 

AmLD(1,3) 0 AmLD(3,1) 0 0 AmLD(2,3) 

AmLD(1,1)+AmLD(3,3) AmLD(4,3) AmLD(5,3) 

AmLD(2,1) 0 0 AmLD(4,1) AmLD(5,1) 0; 

 

AmLD(1,4) 0 0 AmLD(4,1) 0 AmLD(2,4) AmLD(3,4)         

AmLD(1,1)+AmLD(4,4) AmLD(5,4) 0 AmLD(2,1) 0               

AmLD(3,1) 0 AmLD(5,1); 

 

AmLD(1,5) 0 0 AmLD(5,1) AmLD(2,5) AmLD(3,5)         

AmLD(4,5) AmLD(1,1)+AmLD(5,5) 0 0 AmLD(2,1)         

0 AmLD(3,1) AmLD(4,1); 

 

0 AmLD(2,3) AmLD(3,2) 0 0 AmLD(1,3) AmLD(1,2)         

0 0 AmLD(2,2)+AmLD(3,3) AmLD(4,3) AmLD(5,3)         

AmLD(4,2) AmLD(5,2) 0; 

 

0 AmLD(2,4) 0 AmLD(4,2) 0 AmLD(1,4) 0 

AmLD(1,2)         0 AmLD(3,4) 

AmLD(2,2)+AmLD(4,4) AmLD(5,4)         

AmLD(3,2) 0 AmLD(5,2); 

 

0 AmLD(2,5) 0 0 AmLD(5,2) AmLD(1,5) 0 0 

AmLD(1,2) AmLD(3,5) AmLD(4,5) 

AmLD(2,2)+AmLD(5,5) 0 AmLD(3,2) AmLD(4,2); 

 

0 0 AmLD(3,4) AmLD(4,3) 0 0 AmLD(1,4) 

AmLD(1,3)         0 AmLD(2,4) AmLD(2,3) 0 

AmLD(3,3)+AmLD(4,4) AmLD(5,4) AmLD(5,3); 

 

0 0 AmLD(3,5) 0 AmLD(5,3) 0 AmLD(1,5) 0 

AmLD(1,3) AmLD(2,5) 0 AmLD(2,3) AmLD(4,5)         

AmLD(3,3)+AmLD(5,5) AmLD(4,3); 

 

0 0 0 AmLD(4,5) AmLD(5,4) 0 0 AmLD(1,5) 

AmLD(1,4) 0 AmLD(2,5) AmLD(2,4) AmLD(3,5) 

AmLD(3,4) AmLD(4,4)+AmLD(5,5)]; 

 

qLD1 = 1; 

qLD2 = qLD1; 

qLD3 = qLD2; 

qLD4 = qLD3; 

qLD5 = qLD4; 

 

qLD6 = 0; 
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qLD7 = qLD6; 

qLD8 = qLD7; 

qLD9 = qLD8; 

qLD10 = qLD9; 

qLD11 = qLD10; 

qLD12 = qLD11; 

qLD13 = qLD12; 

qLD14 = qLD13; 

qLD15 = qLD14; 

 

QLD = [qLD1 qLD6  qLD7  qLD8  qLD9;          

       qLD6 qLD2  qLD10 qLD11 qLD12; 

       qLD7 qLD10 qLD3  qLD13 qLD14; 

       qLD8 qLD11 qLD13 qLD4  qLD15; 

       qLD9 qLD12 qLD14 qLD15 qLD5]; 

 

QvLD = -

1*[qLD1;qLD2;qLD3;qLD4;qLD5;qLD6;qLD7;qLD8;qLD9;qLD10;q

LD11;qLD12;qLD13;qLD14;qLD15]; 

  

PvLD = AmvLD\QvLD; 

  

PLD = [PvLD(1,1) PvLD(6,1)  PvLD(7,1)  PvLD(8,1) 

PvLD(9,1); 

PvLD(6,1) PvLD(2,1)  PvLD(10,1) PvLD(11,1) 

PvLD(12,1); 

PvLD(7,1) PvLD(10,1) PvLD(3,1)  PvLD(13,1) 

PvLD(14,1); 

PvLD(8,1) PvLD(11,1) PvLD(13,1) PvLD(4,1)  

PvLD(15,1); 

PvLD(9,1) PvLD(12,1) PvLD(14,1) PvLD(15,1) 

PvLD(5,1)]; 

  

lambdaLD = 30; % 30(IREASE) 1000 

  

% Test matrix P 

ePLD = eig(PLD); 

nQLD = (AmLD.'*PLD)+(PLD*AmLD); 

%****************************************************** 

% table_to_excel_thesis 

% plot_from_excel_thesis 
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Appendix C 

Simulink® 

The diagrams of ACDM-RAS and ACDM-SS in Simulink® are shown in the 

following figures. This Simulink® cooperates with the M-file for flight simulation 

purposes. 
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Figure B.3. The Simulink® of the controller part of ACDM-RAS 
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