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Chapter 1

Introduction

1.1 Background

In almost every culture, and perhaps even animal kingdoms, there
are games that children play. The simplest form of social interaction
between the young ones, as well as the practice for survival skill, is the
game of chasing. It is so simple that it can be played with two players
and play field. The game usually ends with the fastest runner’s win
if the play field is simple. However, when it becomes more complex,
with impassable obstacles, limited play field, or even restricted to an
equal movement speed, it becomes the battle of wits.

Such a simple game has turned into many forms and over various
platforms, such as the PAC-Man video game, pursuit-evasion [25], or
the Cops and Robbers game [8]. One player would play as a pursuer,
and the other an evader, and the goal for pursuing player is to catch
the evader, while the evader’s goal is to avoid being caught indefinitely.
When played on a graph [25, 26], each player can only occupy a vertex
at any time, and can only move through an edge. To make the game
fair, each player takes turn to move, usually the pursuer being the first
to go into the play field, allowing the evader to think of the best spot
to start (as far away from the cop as possible). More often, the pursuer
is referred to as a female, and the evader as a male. The earliest of the
video game were played on a discrete setting, see Fig. 1.1 on how the
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(a) A room for chasing game. (b) A corresponding graph.

Figure 1.1: Changing the play field from room environment into a
graph

play field is changed into a graph.
For graph theory [10, 32], it was first considered in 1978 by Quil-

iot in his doctoral thesis [30]. However, due to the language barrier
(his was published in French), Nowakowski and Winkler independently
considered and published their own result [23] in 1983. Although [30]
predated [23], the latter was often referred to as the starting point of
literature on the topic. Both works came to the same conclusion, and
both only considered one cop. But the work which is most referred to,
and the foundation of all Cops and Robbers research, came from the
work of Aigner and Fromme [1]. They have solidified the result on one
cop, introduced multiple cops, and proved that three cops are sufficient
to win on a planar graph. In their words, any graph that requires a
minimum k cop to win is called k-cop-win graph, although when k = 1
it is simply called cop-win graph. Since then, many papers on this
topic have been written about the cop number, which is the smallest
number of cops required to win.
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1.2 Cops and Robbers Game on Planar
Graphs

A graph is planar if and only if it can be drawn on a plane such that its
edges do not intersect anywhere except at the vertices. For any planar
graph, Euler has provided a theorem on the relationship between the
number of vertices, edges, and faces [32]. Moreover, the cop number
for a planar graph has been proved to be at most three [1]. These two
factors make it simpler for the Cops and Robbers game if played on a
planar graph. For the cop number problem, Maurer et al. have made
a report on many different planar graphs in 2010 [21].

In many variations of the Cops and Robbers game that are focused
on the application, the play field is usually set in a planar graph (as it
is a simplified version of any map or layout). In the game of Helicopter
Cops and Robbers, the cops can move to any locations (except on top of
the robber) in one round. This simulates the real world scenario where
the cops can use helicopters to spot and chase the criminals down. In
the game of Firefighter, the firefighters must put down the fire and can
move to any location which is not burning. In other words, it is similar
to Helicopter Cops and Robbers but the opponent can multiply itself
to adjacent vertices. The Firefighter variation is modeled to simplify
the spread of fire, diseases, or even computer viruses. This problem is
often set in grid setting (mapping a set of floor tiles into one vertex).

Moreover, the transformation from discrete setting (graph) to con-
tinuous (geometric or polygons) is easier to do so with planar graph
[6]. Thus, in order to apply the problem to real-world uses, it is easier
to consider the graph problem on planar graphs.

Another approach to the problem is to consider how long does it
take the cop player to win in a graph, or the capture time of a graph.
This was first introduced by Bonato et al. in 2009 [9] on any cop-win
graph, and later extended on to grids, which are known to be 2-cop-win
graphs, by Mehrabian [22].

In our study, the linear capture time for general planar graph is
established [28]. An important fact that is required in any 2-cop-win
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graph is identified as a new concept of winning vertices for two cops.
As a very first attack to the conjecture that dodecahedral graph is
the smallest 3-cop-win planar graph, we show the existence of wining
vertices in all the planar graphs of order at most 19 [29].

1.2.1 Pursuit-Evasion Game’s Variations

The original papers ([23, 30, 31]) only considered one cop playing
against one robber, and referred to the topic as pursuit game. The
introduction of multiple cops in [1] gave the name of the topic as it is
used now, the “Cops and Robbers” game, with plurals on both sides.
However, the new variation on how each player can “see” one another
[15] has made the name “Cops and Robbers” seem out of place, as the
game becomes more of finding patrol routes for guardsmen. To accom-
modate the new variation, the general term “pursuit-evasion game”
was adopted from the earlier works of Parsons [25, 26].

Pursuit-evasion game consists of two variations; the Cops and Rob-
bers game, in which both players can see each other’s locations, and
the graph searching game, in which the pursuer does not know the lo-
cation of the evader until they occupy the same space (the same vertex
in a graph). It also includes all the variations in between, such as being
able to “see” the robber if the cop is within certain number of edges
away from him, or even allow the robber to occupy an edge instead of
just a vertex. Many variations on limited visibility for the cop player
are detailed in the work of Alspach [3]. Two approaches to find the
cop number are often asking whether recontamination should be al-
lowed or not. Some tried to prove that the cop number can be reduced
if recontamination is allowed (see [7]), while other strictly focused on
monotonic search approach (see [20] and [19]).

Recently, a new take on the game took it closer to real world setting.
It took a different approach on the play field; instead of discrete setting
of a graph, a continuous setting inside a polygon was considered [6].
Despite the differences in settings, the result of Aigner and Fromme
[1] played the key part in proving that even with obstacles, or holes in
polygons, three cops suffice.

4



Note that for continuous setting inside a polygon, the graph search-
ing counterpart is then the visibility problem in geometry. If the cap-
ture time is limited to the start of the game, and ask how many pur-
suers are needed, then the problem can be reduced to the Art Gallery
problem in computational geometry.

1.2.2 Applications

The direct applications of the Cops and Robbers game are in chasing
or capturing objectives, such as the missile guidance system [18], but it
also has many applications beyond such scope. The Firefighter game
is modeled after the spreading of fire, but also has its use in stop-
ping computer viruses, or even diseases, from spreading. Although the
“helicopter” movement seems too unrealistic for actual firefighting, it
has perfect application in containing the computer viruses in networks.
Network infrastructures or hubs can be shut down or armed with fire-
wall by alerting the staffs at the infrastructure through telephones in
global scale problem, or disconnected manually in local scale. The
Firefighter strategy can select the fewest possible stations or hubs to
minimize the impact on network traffics, and stop the spread of viruses
effectively.

Some other applications of the Cops and Robbers game are as fol-
low.

1. Computer Gaming: Originally the Cops and Robbers game is simi-
lar to that of PAC-man game, but the player plays the robber instead.
In modern games played on mobile phone, where players must go to
certain locations in the real world to do objectives, the strategy used
in Cops and Robbers can be applied. For example, in “Pokemon Go”,
players can work together to find the Pokemon sighted near their area,
similar to cops working together to capture the robber.

In “Zombies, Run!” mobile game for fitness, a player has to run away
from virtual zombies (shown on the map in mobile phone) in the real
world. The difficulty of the game can be adjusted based on Cops and
Robbers strategy on planar graphs. For example, in easy game, one
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zombie cannot catch the player unless the player runs into a dead-
end. In the harder difficulty, there can be three or more zombies,
but only two of them are as fast as the player and follow the capture
strategy (such as going through different roads instead of just chasing
the player), so the player may still have a chance to escape. In the
hardest difficulty, the three zombies are as fast as the player and follow
the capture strategy.

In multi-players shooting game, simulation for SWAT, or even air force
training [24], the A.I opponents can be implemented to use the robber’s
strategy in order to escape. This forces the players in one team to work
together using the cops’ capture strategy in order to win.

2. Motion Planning for Swarm Robots: In a war, low-cost swarm
robots can be sent into a region and set up explosions. It is important
that the collective explosion radii must cover the entire region to max-
imize the damage, while the number of robots (or the more expensive
bombs) in that region should be kept minimal [14]. This problem is
similar to the game of absolute-win Cops and Robbers. In this game,
the cops are initially placed such that the robber would occupy the
same vertex as some cop or the neighbor of some cop no matter which
vertex he chooses in the first round, with the smallest number of cops.
This is also the same problem as the dominating set in graph, as the
initial locations for the cops are actually the members of the dominat-
ing of the smallest size. If the graph is a grid, it can be mapped to a
rectangular region, in which the explosion on a vertex would have the
radius to cover the adjacent vertices. The dominating set of the grid
is then the set of locations that the robots must detonate their bombs
in order to cover the entire region.

Swarm robots do not operate by following inputs from central control
unit. Instead, they follow a preprogrammed behavior, which act or
react on local inputs, such as sensing environments, communications
with other robots or internal timer. The preprogrammed behavior
is called distributed algorithm, and handle how the robots respond
to local inputs in order to achieve the predetermined goal (in this
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example, dominate the region with explosion). Swarm robots can be
equipped with other functionalities, such as GPS or explosives. There
are other applications using the same distributed algorithm, based on
the functionalities equipped to the robots. They can be equipped with
short-ranged motion detectors to search the region for missing persons
or intruders. When armed with land mine detectors, they can be
dropped from the plane onto a battlefield to mark the areas with land
mines. In the area where other forms of communication are cut off,
they can be employed to set up relay nodes to extend the radiophone
range.

3. Ocean Rescue: In the Helicopter Cops and Robbers [8], the cops
can move on helicopters and move faster than the robber. Instead of
capturing criminals, it can also be applied to rescue shipwrecked sur-
vivors in the ocean. Because the ocean waves can sweep some survivors
away, the objectives may not stay in one spot, which is somewhat sim-
ilar to the robber behavior in Cops and Robbers game. The strategy
for normal Cops and Robbers game on planar graph can also be used
to reduce the “search and rescue” area. This is done by using the
shoreline as natural barrier and two helicopters to set up two shortest
paths (creating triangular area with shoreline) to contain the area that
survivors can possibly be swept to.

1.3 Graph Notation

A graph G = (V (G), E(G)) is defined as a set V (G) of vertices which
are connected by a set E(G) of edges [32]. The number of vertices is
denoted by |V (G)|, and the number of edges is denoted by |E(G)|. A
cycle, denoted by C, is a path whose start vertex and end vertex are
the same. A graph is regular if every vertex has the same degree.

A graph is planar if and only if it can be drawn on a plane such
that its edges only intersect at the endpoints (which are vertices). And
such, every face of a planar graph is unique. For a planar graph G,
F (G) is defined as a set of faces, which are also called the cycles of
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G. The number of faces is denoted by |F (G)|. For a face f ∈ F (G),
the number of its sides is denoted as S(f), and also called the length
of cycle f . Note that a cycle may consist of multiple faces, but each
face has exactly one unique cycle. The graph’s girth, denoted by g(G),
is the size of its smallest cycle. A cut vertex of G is a vertex such
that when removed, either the number of connected components of G
is strictly increased or G becomes a single vertex. For a vertex set
S ⊆ V (G), G[S] is defined as the subgraph of G that is induced by the
vertex set S, i.e., an edge e ∈ E(G) belongs to G[S] if two vertices of
e belong to S.

The distance between two vertices v and u is the length of a shortest
path between them, and is denoted by d(v, u). A shortest path between
u and v is denoted by π(u, v), and |π(u, v)| denotes the length of the
shortest path between u and v (and thus the distance as well). The
diameter of G, denoted by diam(G), is the largest distance between
any two vertices of G. If two shortest paths π(a, u) and π(b, v), of
length at least two have all different vertices, excluding a, b, v, and v,
then we say that π(a, u) and π(b, v) are distinct.

For a vertex v, the degree of v, denoted by d(v), is the number of
the neighbors of v. The minimum degree of a graph G, denoted by
δ(G), is the smallest degree of all vertices in G. Let N(v) denote the
set of all neighbors of vertex v, and N̄(v) = N(v)∪{v}. For any vertex
v, if there exists a vertex u ∈ N(v) such that N̄(v) ⊆ N̄(u), then v is
called a dominated vertex.

1.4 Problem Statement

The game of Cops and Robbers is played by two players on a graph G;
one controls the cops (cop player), another controls the robbers. By
the nature of Cops and Robbers game, graph G must be connected;
otherwise the cops may not be on the same connected component as
the robber, and thus it may not be cop-win. We focus on the variation
that plays on a simple, undirected, planar graph. The game model we
use is based on k-cops model introduced in [1], in which the cop player
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controls multiple cops, and the robber player controls one robber. Both
players know the locations of one another’s pieces.

The game is played as follow. First, the cop player places her cops
on some vertices of G, and then the robber places his. Two players
take turns to move their pieces. A piece can only be moved to one of
its adjacent vertices in one turn, and the cop player can move multiple
cops simultaneously. A round in the Cops and Robbers game consists
of a cop player’s turn and a robber player’s turn, and the first round
in which each player places one’s own pieces on G is considered as
Round 0. If any cop occupies the same vertex as the robber (captures
the robber in this model), then the cop player wins. If the robber can
avoid being captured indefinitely, then the robber wins. The minimal
number of cops required to win on a graph G, or the cop number of
G, is denoted by c(G). A graph G is said to be k-cop-win if and only
if c(G) = k.

For a planar graph G, it is known that 1 ≤ c(G) ≤ 3 [1]. A
method to determine whether a graph is cop-win was given in [23, 30].
However, the method to determine whether a planar graph is 2- or
3-cop-win has not been fully given yet. Also, the conjecture that a
dodecahedral graph (of order 20) is the smallest 3-cop-win graph has
not been proved yet. It is one of the main problems studied in this
thesis.

The problem of the capture time in the game of Cops and Robbers
is to find how long it takes for the cop player to capture the robber.
The unit of measurement used in this study is the number of rounds.
For a planar graph, the bound has not been established yet, but there
already exists a winning strategy using three cops [1]. However, the
capture time for that strategy is observed to be quadratic [28]. In this
thesis, we will present a new strategy of linear length for planar graphs.

1.5 Previous Results

We review some known results which are related to our works.
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(a) Petersen graph
(b) Dodecahedral graph

Figure 1.2: Petersen graph and dodecahedral graph

Theorem 1.1. [[23], Theorem 1, and independently [30]] Graph G is
a 1-cop-win if and only if by successively removing dominated vertices,
G can be reduced to a single vertex.

Theorem 1.1 can be applied to any tree, since we can simply chase
down the robber from some vertex to a dead end at some leaf.

Theorem 1.2. [[1], Theorem 3] If a graph G has g(G) ≥ 5 then c(G) ≥
δ(G).

Theorem 1.2 gave useful insight on determining the cop number
for any graph without any 3- or 4-cycle. Aigner and Fromme have
also given two examples along with the proof; a Petersen graph (Fig.
1.2(a)) and a dodecahedral graph (Fig. 1.2(b). Both of which were
conjectured to be the smallest 3-cop-win graph and planar graphs,
respectively, as they are 3-regular (every vertex is of degree three)
without any 3- or 4-cycle. Only until recently, the former conjecture
was proved by Baird et al. [5].

Theorem 1.3. [[5], Theorem 1 and 2] The Petersen graph is the small-
est 3-cop-win graph.
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The proof for Theorem 1.3 is rather straightforward (by showing
that all the possible graphs of order at most 10, except Petersen graph,
are 2-cop-win). The following observation can be made.

Observation 1.4. For any planar graph of order 10 or smaller, the
cop number is at most two.

The conjecture that the dodecahedral graph is the smallest 3-cop-
win planar graph has not yet been proven. The dodecahedral graph is
a planar graph of order 20, whose all vertices are of degree three and
all faces are 5-cycles, as shown in Fig. 4.7(a). From Theorem 1.2, the
following observation can be made.

Observation 1.5. The dodecahedral graph is 3-cop-win.

Also, for a planar graph, the largest cop number was proved to be
three.

Theorem 1.6. [[1], Theorem 6] For any planar graph G, the cop num-
ber of G is at most three.

Aigner and Fromme’s proof of Theorem 1.6 provided a series of
concepts and tools that can be used in actual capture strategy. One is
the concept of the guarded paths, is devoted to diminishing the area in
which the robber can move freely.

Lemma 1.7. [Guarded Shortest Path [1], Lemma 4] Let G be any
graph, u, v ∈ V (G), u 6= v and P = π(u, v). We assume that at least
two cops are in the play. Then a single cop c on P can, after the
movements no more than twice the diameter of G, prevent the robber
r from entering P . That is, r will immediately be caught if he moves
into P .

It is imperative that we provide the proof of Lemma 1.7 as well,
particularly for the new claim that “a single cop c on P can, after
the movements no more than twice the diameter of G, prevent r from
entering P”.
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Modified Proof of Lemma 1.7. Suppose the cop c is on vertex i ∈ P
and the robber r is on vertex j ∈ V (G). Assume ∀z ∈ P, |π(z, j)| ≥
|π(z, i)|; denote this as (*).

Claim A. No matter what the robber does, the cop, by moving in the
appropriate direction on P , can preserve condition (*). If the robber
r does not move, then neither does c, and (*) holds. If r moves to a
vertex k, then ∀z ∈ P, |π(k, z)| ≥ |π(j, z)| − 1 ≥ |π(i, z)| − 1. If z0 ∈ P
exists with |π(k, z0)| ≥ |π(i, z0)|−1, then c, by moving on P toward z0,
also reduces the distance by 1 and (*) still holds. In the case that such
a z0 does not exist, there must be some vertices x, y ∈ P such that they
are on the different sides of i on the path P , and |π(k, x)| = |π(i, x)|−1,
|π(k, y)| ≤ |π(i, y)| or |π(k, x)| ≤ |π(i, x)|, |π(k, y)| = |π(i, y)|−1. This
is impossible, since by the triangle inequality and minimality of P ;
|π(x, y)| ≤ |π(k, x)|+ |π(k, y)| ≤ |π(i, x)|+ |π(i, y)| − 1 = |π(x, y)| − 1,
a contradiction.

Claim B. It takes a number of movements no more than twice the
diameter of G for c to enforce (*). First, c moves to some i ∈ P ,
which takes at most diam(G) movements. By the same argument as
described above, |π(j, z)| < |π(i, z)| only holds for z’s on P on one side
of i. By moving toward z on P , which takes at most |P | or diam(G)
movements, (*) is eventually forced. �

By Lemma 1.7, the cops can limit the robber’s movement to one side
of the path, and thus diminishes the area the robber can safely enter.
Aigner and Fromme have introduced two related concepts, which are
the stages and the robber territories, in order to construct a method
for three cops to capture a robber, as the proof of Theorem 1.6.

Definition 1.8. [[1], Proof of Theorem 6] The stage i, 0 ≤ i ≤ t, is
the assignment of a subgraph Ri which has all the vertices the robber
can still safely enter. The assignment of Ri is done after the cop player
has fixed her pieces at the end of stage i− 1, and we assume R0 = G.
The subgraph Ri is called the robber territory.

We assume that stage 0 exactly coincides with Round 0 and thus
R1 = G[V (G)− {v}], where v denotes the vertex initially occupied by
the cops. At a stage i (≥ 1), the cop player constructs a new guarded
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path so that Ri is reduced to Ri+1 ( Ri. Thus, stage i may consist of
several rounds. The length of stage i is then the number of rounds it
takes for the cop player to fix her pieces, and the length of stage 0 is
assumed to be zero.

At a stage, an unoccupied (free) cop c will move to position herself
on some vertex of a guarded path P so as to enforce the condition (*),
i.e., be on the vertex such that she takes less time than the robber to
move to any other vertex on P . Until (*) is enforced by c, the robber
r may cross P safely. Once (*) is enforced and constantly preserved
by c, r can no longer cross P without being captured. The locations
satisfying (*) on P change as the robber moves, and there always exists
at least one at any time [1].

Observation 1.9. If a cop c is already on P , then the number of
rounds it take for c to eventually enforce (*) is bounded above by the
length of P .

Observation 1.10. When a cop successfully controls (i.e., enforce (*)
on) a shortest path, all vertices of that path do not belong to the
robber territory.

From Lemma 1.7, capturing the robber can be done by letting the
cops alternatively take the role of a free cop and move to guard a new
shortest path within the robber territory. Once the free cop success-
fully guards the path, she becomes occupied and another cop, whose
guarded path no longer interacts with the robber territory, becomes
free at the next stage. At stage j (j > i), the path once guarded at
stage i by a now-free cop is called an obsolete path.

Aigner and Fromme’s method is to repeatedly find a new guarded
path that differs from previous ones (they are not required to be dis-
tinct), until the robber territory is eventually reduced to one vertex.
However, the capture time of their strategy is not examined in [1].

Remark. From Lemma 1.7, the length of each stage of Aigner
and Fromme’s strategy [1] is bounded by 2diam(Ri), or loosely by
2|V (Ri)|, as their guarded paths are usually not distinct [28]. Suppose
each stage only reduces one vertex in the worst case. Then, the capture

13



time of Aigner and Fromme’s strategy can roughly be bounded by∑n
i=1 2i = n(n−1). Note that the capture time of Aigner and Fromme’s

strategy may be much faster than O(n2), but it needs a more careful
calculation, so as to give a smaller bound.

1.6 The Objective of This Thesis

The capture time for planar graphs using three cops has been observed
to be quadratic. This capture time is still very loose and the strategy
was not constructed with capture time in mind. It is an open problem
to propose a new strategy whose capture time is linear.

Also, for a planar graph, although the maximum cop number is
know to be three, a method to determine whether a graph is 2- or 3-
cop-win has not been given. Finding a method to determine 2-cop-win
will also lead to finding another, using pigeonhole principle.

The major objectives of this study are as follow:

1. We present a new 3-cop-win strategy on a planar graph and show
that its capture time is linear. This is the first result with the linear
capture time for planar graphs. The strategy and the evaluation of its
capture time involves many new concepts which requires deep obser-
vation. A few notable concepts are the method of outer cycles used to
select end vertices for the guarded path, the types of movements that
contribute to the capture time, and a life time of a path that can be
mapped to some types of movements made by the cops.

2. We try to prove the conjecture that the smallest 3-cop-win planar
graph is the dodecahedral graph. Although the problem is still open,
we show that in any 2-cop-win planar graph, there exists a winning
vertex in which two cops can capture the robber. We also prove that
any planar graph of order at most 19 has such a vertex. This finding
supports the conjecture. We also examined many classes for planar
graphs, and found some new 3-cop-win and 2-cop-win graphs, along
with the proofs. Some notable are 3-regular planar graphs whose all
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vertices are winning vertices for two cops, and a special graph of order
42 with a few winning vertices.

3. We give an application of the dominating set problem, which is re-
lated to the Cops and Robbers game, particularly in swarm robots.
The absolute-win Cops and Robbers game requires the cop player to
win on the first turn (after initial placement) using the smallest num-
ber of cops possible. This problem is exactly the same as the domi-
nating set in graph. The distributed algorithm is required for swarm
robots, since they do not have centralized control unit and rely solely
on preprogrammed behavior and communications with other robots.
A distributed algorithm for computing the dominating set on grid is
proposed.

1.7 The Organization of This Thesis

This thesis is organized into seven chapters. A brief outline is as fol-
lows:

Chapter 1 In this chapter, brief explanations on the game of Cops
and Robbers are presented. In addition, the background of the study,
problem statement, previous researches, research objectives, and orga-
nization of the thesis are described.

Chapter 2 This chapter proposes the new strategy for the Cops and
Robbers game using three cops on planar graphs with improved capture
time. The strategy revises upon the method of Aigner and Fromme
in such that all guarded paths are distinct, excluding the end vertices.
The important concepts of outer cycles and its enlarged counterpart
are described. The enlarged outer cycle is used to find an end vertex of
a guarded path, such that the robber territory is reduced in size much
more quickly than the old method. The strategy is separated into two
phases; initial phase, which handles the initial placement and the first
round, and recursive phase, which is case-base and repeated until the
robber territory becomes a tree. At any point of time, if the robber
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territory becomes a tree, one cop is then employed to chase the robber
until the dead end at some leaf, and the game ends as the cop player’s
win. The strategy is proved to be correct and complete.

Chapter 3 This chapter discusses the evaluation of the capture time
on the strategy proposed in Chapter 3. Only some movements done
by the cops affect the length of a stage. The types of movements
which contribute to the capture time are identified and discussed. The
guarded paths are treated as a state machine in order to map the
movements of the cops onto the path’s length. The movements of the
cops which contribute to the capture time is mapped to the portions
of a path. It is proved that any path is used by such movements for
no more than twice of its length. The linear time of 2n, where n is
the number of vertices of a planar graph, is obtained. This greatly
improved upon the previous time bound of O(n2)

Chapter 4 This chapters introduces the new concept of winning ver-
tex, and the fact that it must exist in any 2-cop-win graph. It is then
used to attack the conjecture that the dodecahedral graph of order
20 is the smallest 3-cop-win planar graph, by showing that any planar
graph of order at most 19 has at least a winning vertex. The contradic-
tion proof method is employed to show the existence of cycles of length
five, as well as the winning vertex of degree three and four in planar
graph whose minimum degree are three and four. The existences of a
winning vertex in all planar graphs, whose minimum degrees are 2, 3,
4, and 5 are showed (for a planar graph, the largest minimum degree
is 5). An edge-contracted dodecahedral, which may be considered as
the worst case in finding a winning strategy using two cops, and the
3-regular graph of order 16 (the largest one whose order is below 20),
are showed to be 2-cop-win as the capture strategies utilizing winning
vertices are provided.

Chapter 5 This chapter provides a list of 3-cop-win and 2-cop-win
graphs, most of them are newly found in this thesis. Fore example,
two vertex-symmetric graphs (icosidodecahedral and truncated icosi-
dodecahedral), in which all vertices are winning vertices for two cops,
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are 3-cop-win. Some other graphs with winning vertices for two cops,
such as Grinberg’s 42 graph and also a maximal planar graph con-
structed from dodecahedral, are 3-cop-win. This study may help to
give the characterization of 2-cop-win or 3-cop-win planar graph.

Chater 6 This chapter introduces the dominating set problem and
the distributed algorithm to calculate the set in grids. The relation-
ship of Cops and Robbers game and the dominating set problem is
discussed. Previous results in centralized method is briefly reviewed
and simplified. A new distributed algorithm for computing the domi-
nating set in grids is proposed. For a given m×n grid, our distributed
algorithm improved upon the number of robots required in the previ-

ous algorithm, from b (m+2)(n+2)
2 c + 1 to b (m+2)(n+2)

2 c − 3. This is the

closest to the lower bound of b (m+2)(n+2)
2 c − 4 [12].

Chapter 7 In the last chapter, the overall conclusion of the performed
study is given. Some insights and recommendations for further study
are also presented.
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Chapter 2

A New 3-Cop-Win
Strategy on a Planar
Graph

2.1 Introduction

In this chapter, we focus on the capture time of the Cops and Robbers
game on a planar graph, which has only been studied recently [9, 22,
28]. We present a new capture strategy by refining the work of Aigner
and Fromme [1] in the following two sides: (i) a new guarded path
introduced at a stage shares only its end vertices with any current
path, and (ii) the end vertices of a newly introduced guarded path
are on or very close to the outer cycle, whose all vertices belong to the
infinite face of the robber territory. These two refinements are involved,
specially the second needs some deep observations. All guarded paths
in our strategy are so chosen that they are almost distinct, excluding
their end vertices. A strategy with capture time less than 2n can then
be obtained.
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(a) Robber territory Ri. (b) Outer Cycle C(Ri).

Figure 2.1: A robber territory and its outer cycles.

2.2 Outer Cycles of a Planar Graph

In order to establish a better upper bound on capt3(G), we make two
refinitions over [1]. The first one is that a new path shares only its end
vertices with any current path. (In [1], a new path may share more
than just end vertices with a current path.) The guarded paths in our
strategy are almost distinct, excluding their starting/ending vertices.
Our second refinition is to choose the end vertices of the new guarded
path to be on or very close to the infinite face of robber territory.
To precisely describe how to choose the end vertices, we need a new
concept called the outer cycles.

Definition 2.1. The subgraph C(Ri) of Ri is defined as the set of
the outer cycles, whose all the vertices and edges belong to the infinite
(exterior) face of Ri (Fig. 2.1). In the case of a polyhedral graph, where
all of its faces can be considered as interior ones, we can choose any
face as the infinite face. For graphs with multiple planar embeddings,
outer cycles are made from the infinite face of the planar straight line
drawing.

Suppose that at the beginning of stage i, one or two current paths
are guarded by the cops so as to prevent the robber from leaving Ri.
These paths will be denoted by P α

i and P β
i . Since P α

i and P β
i are

assigned at the end of Ri−1, P
α
i ∩Ri = ∅ and P β

i ∩Ri = ∅. We assume
that P α

i always exists, i.e., Ri (i > 0) can NOT be assigned without
P α
i . The newly introduced path at stage i will be denoted by P .
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P
α

i

C(Ri)

a

(a) Pα
i and C(Ri).

a

(b) G[S], S = V (Ri ∪
Pα
i ).

a

(c) B(Ri) = C(G[S]).

Figure 2.2: An example of B(Ri) constructed from outer cycles of
subgraph S = V (Ri ∪ P α

i ).

For two end vertices of a new guarded path, one may consider to
choose them from C(Ri). But, it is difficult or even impossible in some
cases for the new path to share only one common vertex with P α

i or

P β
i . To overcome this difficulty, we will select the end vertices from

the outer cycle of the subgraph, which is induced by the vertices of the
union of Ri, P

α
i and P β

i .

Definition 2.2. Let S = V (Ri ∪ P α
i ∪ P

β
i ). The graph B(Ri) (of

enlarged outer cycles) is defined as C(G[S]).

Note that B(Ri) consists of only cycles, and thus not all vertices of

Ri, P
α
i and P β

i belong to B(Ri). For instance, the vertex a of P α
i (Fig.

2.2(a)) does not belong to B(Ri) (Fig. 2.2(c)).

2.3 Capture Strategy on a Given Graph

This section focuses on how to construct the guarded paths at each
stage of our strategy. The analysis on the capture time of the strategy
will be given in Section 7. We first give two propositions, which are
used throughout our capture strategy.
Proposition 1. At the end of each stage i, we have at least one free
cop.

22



Proposition 2. During our strategy, any guarded path introduced at
stage i shares only its end vertices with each of the current paths.

Before we begin, keep in mind that at some stage the robber terri-
tory may become a tree; in this case, only one cop suffices (Theorem
1.1). The main idea of our strategy is to let at most two cops guard
two different paths, and then employ a free cop to guard the new path.
This makes one of the current guarded paths obsolete and thus reduces
the robber territory.

Our capture strategy consists of two phases.
1. Initial Phase: We first find a location to place the cops, based
on the structure of the graph G. This phase also constructs the very
first guarded path, and thus goes from the start to the end of stage 1.
When it is over, R1 is reduced to R2.
2. Recursive Phase: At a stage i (≥ 2), we construct a new guarded
path using a case-analysis method. At the end of stage i, Ri is reduced
to Ri+1. We do this recursively until Ri becomes the tree case.

2.3.1 Initial Phase

The initial phase has the following two objectives: (i) find a vertex to
place the cops at stage 0, and (ii) establish the first guarded path at
stage 1 or in R1.

At stage 0, if B(R0) is empty, then we know that the graph is a
tree, which can be easily dealt with as stated in Lemma 1. In the case
that B(R0) is not empty, we choose a vertex v0 ∈ B(R0) such that v0

is not a cut vertex (for the simplicity of assigning R1). We place all
cops c1, c2 and c3 at v0, and then wait for the robber player to place
his piece r on the graph.

Suppose r is now located at some vertex of V (R0)−{v0}. At stage
1, we have R1 = G[V (R0) − {v0}] and B(R1) = B(R0) (as P 1

1 is the
vertex v0 and P 2

1 = ∅). Note that v0 ∈ B(R1) is on some cycle C1 of
B(R1). Let v be the vertex of C1, which is farthest to v0 on C1. We
find a shortest path P = π(v0, v) in G[V (R1) ∪ {v0}] and send a cop,
say, c1 to guard P . In the case that there are multiple shortest paths
for the pair of end vertices, an arbitrary (shortest) path can be used
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here. We let c2 guard the vertex v0, and thus c3 is free at v0 until stage
1 ends.

At the end of the initial phase, if P separates R1 into two or more
components, R2 is then the connected component containing the rob-
ber r. Otherwise, R2 = G[V (R1) − V (P )]. The reduced robber terri-
tory R2 is either a subgraph with at least one outer cycle, or a tree. If
it is the tree case, the robber can simply be captured (Theorem 1.1).
Otherwise, we enter Recursive Phase.

2.3.2 Recursive Phase

In this phase, we recursively reduce the robber territory Ri into Ri+1,
until Ri becomes a tree. The reduction of Ri into Ri+1 is done by
constructing and controlling a new guarded path (Observation 1.10).

Recall that the current paths P α
i and P β

i were given at the end of
stage i− 1, and Ri can never be assigned without P α

i . We distinguish
the following situations.

Case (a): B(Ri) ∩ P α
i = ∅ and P β

i = ∅.

P

x
P

α

i

w

Ri

Ci

(a) Instance of case (a)

wP

P
α

i

Ci

Ri
x

(b) Illustration of case (a)

Figure 2.3: An example of case (a).

Case (a) occurs only when P α
i contains a cut vertex and the robber

r is on the other component separated by that cut vertex (Fig. 2.3(a)).
We find a vertex x ∈ P α

i and a vertex w ∈ B(Ri) such that |π(x,w)|
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is the minimum among the shortest paths between a vertex of P α
i and

a vertex of B(Ri). Since B(Ri) ∩ P α
i = ∅, the pair (x,w) is unique,

and all vertices of π(x,w) are cut ones, see Fig. 2.3(a). We designate
π(x,w) as P , and move all the cops to x, then along P to w. Since P
consists of only cut vertices, guarding the end vertex w suffices. When
all cops occupy w, the stage ends and Ri+1 = G[V (Ri)− V (P )].

Case (b): B(Ri) ∩ P α
i 6= ∅ and P β

i = ∅.

e

fP α

i

w v

P

Ci

(a) Instance of case (b)

f

e

w

v

PP α

i Ci

(b) Illustration of case
(b) when Pα

i is not a
single vertex

w

Ci

P

P
α

i = fwg
(c) Illustration of case (b)
when Pα

i is a single vertex

Figure 2.4: An example of case (b).

Figure 2.4(a) gives an example for this case. Let w be an end vertex
of B(Ri) ∩ P α

i , and Ci ⊆ B(Ri) be the cycle containing w. Since one
cop, say, c1 can guard P α

i (including w), two cops are free in this case.
Note that w has some neighbors in Ri. Let v be the vertex of Ci, which
belongs to Ri and farthest to w on Ci. We then find a shortest path
P = π(w, v) in G[V (Ri) ∪ {w}], and send a free cop, say, c2 to guard
P (another free cop is put on standby at w). In G[V (Ri)− V (P )], the
component containing r is then Ri+1. There are two possible situations
in this case; when P α

i is not a single vertex (Fig. 2.4(b)), or otherwise
(Fig. 2.4(c)). Note that in the former case, one region needs to be
guarded by two paths, P α

i and P ; if that region becomes Ri+1, then
stage i+ 1 falls into the next case.
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Case (c): B(Ri) ∩ P α
i 6= ∅ and B(Ri) ∩ P β

i 6= ∅.

y

x

e

f
P α
i

P
β
i

P

g

Ci

(a) Instance of case (c)

e

f

g

x

y
P α
i

P
β
i

P
Ci

(b) Illustration of case (c)

Figure 2.5: An example of case (c).

Note that if P β
i 6= ∅, then B(Ri) ∩ P β

i 6= ∅ because some portions

of P α
i , P β

i and Ri form a cycle in B(Ri). In this case, two cops have

to guard P α
i and P β

i , and thus we have only one free cop, say, c3. It

can be deduced from Proposition 2 that P α
i and P β

i have a common

vertex, say, e. Instead of the whole paths P α
i and P β

i , we use only

some portions of P α
i and P β

i starting from e. Let f (g) be the other end

vertex of P α
i (P β

i ). By the denotations, P α
i = π(e, f) and P β

i = π(e, g).

Note that f or g may not be on any outer cycle of G[V (Ri∪P α
i ∪P

β
i )],

and thus it may not belong to B(Ri).

We then find two vertices x ∈ N(Ri) ∩ P β
i and y ∈ B(Ri) ∩ P α

i

such that x and y are the vertices of P β
i and P α

i , which are closest

to e and f along P β
i and P α

i , respectively. See Fig. 2.5 for example.
Note that x has to be chosen from N(Ri), instead of B(Ri), because
we want it to have some neighbor in Ri. It is also possible for x = e if
e ∈ N(Ri), and for y = f if f ∈ B(Ri). Finally, we find a shortest path
P = π(x, y) in G[V (Ri)∪{x}∪{y}], and send the free cop c3 to guard
P . Again, Ri+1 is the component containing r in G[V (Ri)− V (P )].
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2.4 Correctness and Completeness

In this section we show that our capture strategy is correct and com-
plete.

Theorem 2.3. Proposition 1 is upheld for the whole of capture strat-
egy.

Proof. In case (b) and the initial phase, only one new path is intro-
duced, and one cop is put on standby. Therefore, at least one cop is
free at the next stage. In case (a), only one cop has to guard a vertex
w of P , and thus two others are free.

In case (c), as shown in Fig. 2.5(b), the new guarded paths P may
partition Ri into two components; each of them is a candidate of Ri+1.
No matter which component becomes Ri+1, either P α

i or P β
i becomes

obsolete and its cop is free at the next stage. �

Theorem 2.4. Proposition 2 is upheld for the whole of capture strat-
egy.

Proof. The path P introduced in the initial phase, case (a), or case (b)
always has a common vertex with the current path P α

i , which is v0, x,
or w, respectively.

In case (c), the newly introduced path P = π(x, y) shares y with

P α
i , and x with P β

i and possibly P α
i (e.g., when x=e ∈ P α

i ). Hence, P
shares only its end vertices with each of the current paths. �

Theorem 2.5. At the end of each stage i, Ri+1 ( Ri.

Proof. As shown in Section 5, a new path introduced at a stage i con-
sists of some vertices of Ri, excluding its end vertices. Since stage i
ends when newly introduced paths are guarded by the cops, all the ver-
tices of those paths do not belong to Ri+1 (Observation 1.10). Hence,
Ri+1 ( Ri. �

The completeness of our strategy follows from Theorems 2.3 and
2.4, and the correctness follows from Theorem 2.5.
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2.5 Summary

We have given the new strategy for a planar graph using three cops,
and proved that it works correctly and completely. The refinitions
made to the method will provide a better bound for the capture time
on a planar graph, which we will discuss in the next chapter.
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Chapter 3

Linear Bound on the
Capture Time for a
Planar Graph

3.1 Introduction

In this chapter, we prove the linear bound of the capture time on a
planar graph. To get a better understanding of the capture time, we
will focus on the movements of the cops in our strategy [28]. More
specifically, we evaluate the movements of the cops on every path,
from its introduction to its end (that is, the path is no longer used
again).

Recall that a current path Q at stage i may have some vertices,
whose neighbors are not in Ri. We introduce below another concept,
called the active portion of a current path.

Definition 3.1. [[28], Definition 4]Active Portion: Let Q = π(p, q) be
a current guarded path at stage i, x (y) the first vertex of Q from p (q)
that has a neighbor in Ri. The subpath P (x, y), from x to y, is called
an active portion of Q.

Path Q as whole may be an active portion if both of its end vertices
are in N(Ri). If Q persists through many stages without becoming
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obsolete, its active portion may become shorter due to the change of the
robber territory. This active portion can be represented as Q ∩B(Rj)
(j > i), since Q is still a current path and thus the active portion of Q
at stage j belongs to B(Rj).

Lemma 3.2. Suppose that path Q is guarded by some cop c. Then it
suffices for c to guard the active portion of Q.

Proof. Let Q(x, y) be the active portion of Q in the current stage i. By
Definition 1.8, the robber territory Ri has no vertex adjacent to any
vertex on Q − Q(x, y). Suppose the robber r wants to travel to some
vertex u ∈ Q − Q(x, y). Clearly, u cannot be reached in Ri without
traversing through Q. So, the robber has to enter Q(x, y) first, and by
Lemma 1.7, he will get captured. �

We treat each path in similar fashion to a state machine; each is in
a single state at any time and can change state. We discuss in details
on how a single path proceeds from one state to the next.

Path’s states: Assume that path U is introduced at stage i. Path U
has four states in its life as follow.

1. Initializing: When U is first introduced at stage i but not fully
guarded by a cop, it is in this state. Initializing state ends when the
free cop successfully enforces the condition (*) on U at stage i, or in
case (a) of the recursive phase, occupies the cut vertex w. When this
state ends, U enters the active state.

2. Active: Path U is in this state as long as it has an active portion
at stage k (k ≥ i+1). Path U enters the deactivating state when U does
not belong to B(Rk) or the active portion of U degenerates into vertex,
which is also an end vertex of some active path that is introduced after
U .

3. Deactivating: Path U is in this state while the cop who was
guarding it is still on U . When the cop finally leaves U , this state ends
and U becomes inactive.

4. Inactive: When path U reaches this state, it will never be
traversed by the cops again, and is no longer needed in our strategy.

Initializing state lasts for only one stage. So, if a path U is intro-
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duced at stage i, it enters the active state at the beginning of stage
i + 1. Active state may last through several stages of the strategy.
In some situations, active state may end and proceed to deactivating
state instantly. For example, when a path U is introduced at stage i
but U has a cut vertex x and the robber r is on the other component
separated by that cut vertex (stage i+ 1 falls into case (a)), our strat-
egy requires all the cops to move to some cut vertex w of B(Ri), and
thus puts U in the deactivating state.

Note that in earlier chapters we used obsolete paths to describe both
deactivating and inactive states. But since we need to be more precise
in evaluating the capture time, we now use two states to describe
an obsolete path. The transition from deactivating to inactive state
occurs in the same stage. That is, if U enters deactivating state at the
beginning of stage j > i, then it enters inactive state at some round
before the end of stage j.

3.2 Evaluation of the Capture Time

Instead of counting the number of movements taken by a free cop, we
will give the bound on the number of movements taken by the free
cops on each individual path. This makes it possible to not care about
which cop has the largest number of movements at a stage.

3.2.1 Different types of movements on shortest

paths

In order to understand which movements affect the capture time and
which do not, we distinguish the following types of movements taken
by the cops.

Types of Movements: the guarding action of a cop requires three
types of movements; (i) moving into a guarded path, (ii) moving along
the path to satisfy (*), and (iii) moving along the path while keeping
to preserve (*). The length of a stage is mainly determined by the
action of the free cop trying to control a new path. As soon as a free
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cop successfully controls the path by enforcing (*), that stage is over.
Hence, movements (iii) can be ignored.

We will count movements (i) and (ii) of the free cops, whose move-
ments determine the stages’ lengths. We focus on how a path is tra-
versed by the free cops, from its introduction until it is no longer used
by any cop.

3.2.2 A life of a used shortest path

We will consider all movements on a path U from its introduction at
a stage i (i ≥ 1) until it enters inactive state at some later stage j > i.
Generally, U is traversed in at most three stages (in its life): (1) by the
cop designated to guard U at stage i, (2) by some other cop at stage
i + 1, who becomes free due to the introduction of U at stage i, and
is required to move into her newly designated path at stage i + 1, by
passing through some portion of U , and (3) by the same cop at stage
j as at stage i, who moves into her newly designated path. It is clear
that the number of movements (ii) made by the cop at stage i is at
most |U |. From now on, we focus on movements (i) on U , or to be
exact, the movements of free cops on U at stage i+ 1 and j.

3.2.3 Summation of all movements on a shortest

path

Let us first consider the special situation where j = i+ 1. This occurs
when the path U is introduced at stage i which falls into case (a), see
Fig. 3.1. In this situation, Path U = π(x,w) (vertex w belongs to
B(Ri)) consists of only cut vertices and stage i ends when all three
cop occupy w. Thus, at the end of stage i, all the cops are at the end
vertex w of U . Hence, movements (i) are not needed to be made on U
in this situation.

For all other situations (j ≥ i + 2), let U = π(p, q) be a path
introduced at stage i (i ≥ 1), and U has an active portion at stage
i+ 1. Also, let W be the deactivating path when U becomes active at
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x w
U

B(Ri)

Figure 3.1: An instance in which a path U become deactivated at stage
i+ 1.

x w
U

B(Ri+1)

Figure 3.2: An instance in which stage i+ 1 falls into case (a).

stage i+1. Note that W and U share a common vertex p or q, and that
the cop guarding W is free and required to guard a newly introduced
path, say, X, at stage i+ 1. We discuss below how the portion of U is
traversed by the free cop at stage i+ 1.

If stage i + 1 falls into case (a), then we have vertices x ∈ U and
w ∈ B(Ri+1), such that π(x,w) is minimum. See Fig. 3.2 for an
example. The active portion of U at stage i+ 1 is then a cut vertex x.
All the cops are required to move into w as described in Section 5.2,
which is done by first moving into U , along U to x, then along π(x,w)
to w. We only need to count the number of movements of the cop
who is farthest from x on U , which clearly is at most |U |. Hence, U is
traversed by the free cops for at most |U | movements (i). Note that in
this situation, U directly enters inactive state at the end of stage i+ 1,
and thus the evaluation of movements (i) is completed.
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(a) Initializing path U is traversed by ci at stage i

X
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(b) Active path U is traversed by ci+1 ( 6= ci) at
stage i+ 1

Y

cj

TT

p

s0W

X

U

q

s
r = r0

(c) Deactivating path U is traversed by cj (= ci)
at stage j

Figure 3.3: A single path U is traversed by free cops on three separate
occasions.
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In the case that stage i+ 1 falls into case (b) or (c), assume that r
and s are the end vertices of the active portion of U at stage i+ 1. Let
w be the common vertex of X and U , and ci+1 the cop who guarded
W at stage i and becomes free at stage i+ 1. Thus, w is either r or s.
The free cop ci+1 is either somewhere on W or on standby at p at the
end of stage i, before she moves to guard X. In the former case, we
assume ci+1 does so by moving along W to p or q (the common vertex
of W and U), then along U to w. In the latter, we assume ci+1 does
so by moving along U to w. In either case, the number of movements
(i) on U at stage i+ 1 is at most |U(p, r)| or |U(s, q)| (Fig. 3.3(b)).

Finally, we evaluate the number of movements (i) on U at stage
j. Let Y be the path introduced at stage j − 1, and t the common
vertex of Y and U . That is, the introduction of path Y makes u enter
deactivating state at stage j. Let r′ and s′ be the end vertices of the
active portion of U at stage j−1, and cj the cop who guarded U(r′, s′)
at stage j − 1 and becomes free at stage j. Thus, t is either r′ or
s′. If j = i + 2, then Y = X and U(r′, s′) = U(r, s). Otherwise
U(r′, s′) ⊆ U(r, s).

At stage j, the cop cj is designated to guard a new path. We
assume she does so by moving along U(r′, s′) to t, then along Y to
the common vertex between Y and the new path. Hence, U(r′, s′) is
traversed by cj for at most |U(r′, s′)| movements (i) to move out of
U at stage j (Fig. 3.3(c)). Note that |U(r′, s′)| + |U(p, r)| ≤ |U | and
|U(r′, s′)|+ |U(s, q)| ≤ |U |.

In summary, the total number of the movements (i) on U , done by
the free cops, is no more than |U |, either. Hence, we have the following
results.

Lemma 3.3. In our capture strategy, each guarded path is traversed
by the free cops, whose movements determine the stages’ lengths, no
more than twice of its own length.

Theorem 3.4. In our capture strategy, all the paths used in evaluating
the lengths of stages are distinct, excluding their end vertices.

Proof. Supposed the guarded paths Pi and Pi+1 are introduced during
stage i and stage i+ 1, respectively. It follows from Theorem 2.4 that,
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excluding their end vertices, Pi is distinct from Pi+1. (For complete-
ness, in a tree case, the length of the chase on a tree is simply bounded
above by the diameter of the tree.) Hence, the theorem follows. �

Theorem 3.5. For Cops and Robbers game on a planar graph G of n
vertices with three cops, capt3(G) ≤ 2n.

Proof. The theorem directly follows from Theorem 3.4 and Lemma
3.3. �

3.3 Summary

We have presented a new capture strategy for Cops and Robbers game
on a planar graph with three cops, and shown that the capture time
of our strategy is no more than 2n. This gives the first linear result on
capt3(G).
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Chapter 4

On the Smallest
3-Cop-Win Planar
Graph

4.1 Introduction

In this chapter, the smallest 3-cop-win planar graph is studied. Some
useful insights and one new property of 2-cop-win graphs are given.
We conjecture that the dodecahedral graph of order 20 is the smallest
planar graph, whose cop number is three. Although a proof has not
yet been given, we make some progress on it.

First, we show our conjecture in the following.

Conjecture 4.1. The dodecahedral graph is the smallest 3-cop-win
planar graph.

In other words, any graph of order at most 19 has a winning strategy
using two cops. Such a strategy requires two important parts: (1) a
goal, and (2) a method for the cop player to move each piece to its
individual goal [29]. We name the goal as a winning vertex.

In an attempt to prove the conjecture, we provide the following
evidences: (1) any planar graph of order at most 19 has a winning
vertex at which the robber is captured by two cops, and (2) a special
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planar graph of order 19 that is constructed from the dodecahedral
graph is 2-cop-win.

4.2 The 2-Cop-Winning Vertices on Pla-
nar Graphs

Let us consider the robber’s final location on G before being captured
by two cops. If the robber does not surrender, then the cops must
trap him by restricting his movement just before he is captured [5].
The trapping condition using k cops against the robber r requires that
N̄(r) ⊆ N̄(C), N(C) = {c1, c2, . . . , ck}.

Definition 4.2. For a vertex v, the vertices c1, c2 are called the winning
positions against v if N̄(v) ⊆ N̄(c1) ∪ N̄(c2). If the winning positions
c1, c2 against v exist, then v is called a 2-cop-winning vertex.

A 2-cop-winning vertex and the winning positions against it are
important parts of any capture strategy using two cops. That is, to
successfully capture the robber, two cops must force him to be at a 2-
cop-winning vertex, and at the same time, the cops occupy the winning
positions against that vertex. If a 2-cop-winning vertex does not exist,
then it is impossible to capture the robber with only two cops.

In this chapter, we make an important progress on the conjecture
that dodecahedral is the smallest 3-cop-win planar graph. We show
that any planar graph of order at most 19 has a 2-cop-winning vertex.

Lemma 4.3. [32] For any planar graph G, δ(G) ≤ 5.

Since δ(G) ≤ 5, we focus on the existences of 2-cop-winning vertices
whose degrees are at most five. The 2-cop-winning vertices v and their
winning positions c1 and c2 when d(v) = 3, 4, and 5 are shown in Fig.
4.1. It can be seen that when d(v) = 3, if v belongs to a 3- or a 4-cycle,
then there exist winning positions a and b against v. In the case that
d(v) = 4, if v is a common vertex of two 3-cycles, or a 3-cycle and a
4-cycle which do not have a common edge, then there exist winning
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v
c1 c2
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i-cycle

(a) d(v) = 3
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j-cycle

i-cycle

(b) d(v) = 3

v
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i-cycle

(c) d(v) = 4

v

j-cycle
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c1 c2

(d) d(v) = 4

v
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i-cycle

(e) d(v) = 4

v
c1 c2

j-cycle

i-cycle

(f) d(v) = 5

v

j-cycle

i-cycle

c1 c2

(g) d(v) = 5

Figure 4.1: All possible instances of the 2-cop-winning vertex v (d(v) =
3, 4, and 5, resp.) in which N̄(v) ⊆ N̄(c1) ∪ N̄(c2), and the cops’
winning positions c1 and c2. Note that i ≥ 3 or/and j ≥ 3.
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positions against v. In the case that d(v) = 5, if v is a common vertex
of two 3-cycles that share a common edge and one 3- or 4-cycle which
does not share any common edge with those two 3-cycles, then the
winning positions against v exist.

In the next section, we prove that a planar graph of order at most
19 has a 2-cop-winning vertex v. We separate the graphs into different
cases, based on the minimum degree of the graphs (so as to eliminate
the existence of vertices of lower degrees).

4.3 Winning Vertices for Planar Graphs
of Order At Most 19

Our proof consists of a series of lemmas, mainly on the relationships
between δ(G) and the number of cycles of length at least four or five.
For a graph G, denote by S(F (G)) the summation of sides of all faces
in F (G).

First, we show that for a planar graph G of order at most 19, there
exists at least a 3- or 4-cycle.

Lemma 4.4. Suppose G is a planar graph of order at most 19. If
δ(G) = 3, then g(G) ≤ 4.

Proof. It follows from Euler’s Formula that |V (G)|−|E(G)|+|F (G)| =
2. Note also that |V (G)| ≤ 19. Since δ(G) = 3, we have this inequality:

|E(G)| ≥ d3|V (G)

2
e (4.1)

Since each edge is shared by two faces, we have S(F (G)) = 2|E(G)|.
Suppose (by contradiction) that g(G) ≥ 5. Then, we have the second
inequality: 2|E(G))| ≥ 5|F (G)|. We derive from Euler’s Formula that
|F (G)| = |E(G)|−|V (G)|+2. Substitute |F (G)| with |E(G)|−|V (G)|+
2 in the inequality:
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2|E(G)| ≥ 5|E(G)| − 5|V (G)|+ 10

5|V (G)|+ 2|E(G)| − 10 ≥ 5|E(G)|
5|V (G)| − 10 ≥ 3|E(G)|

|E(G)| ≤ b5|V (G)| − 10

3
c (4.2)

However, these two inequalities (4.1) and (4.2) contradict each other
for |V (G)| ≤ 19. Hence, the lemma follows.

Let us consider a planar graphG of order at most 19 when δ(G) = 5.
From the implication of Euler’s Formula, the number of cycles whose
length are at least four is smaller than when δ(G) = 3. We obtain the
exact numbers of such cycles in the following lemma.

Lemma 4.5. Suppose G is a planar graph of order at most 19. If
δ(G) = 5, then: (i) G has at most one 6-cycle and all the remaining
faces are 3-cycles, (ii) G has at most one 4-cycle and one 5-cycle, or
(iii) G has at most three 4-cycles.

Proof. Similar to the proof of Lemma 4.4, for G with δ(G) = 5, we
have this condition:

|E(G)| ≥ d5|V (G)|
2

e (4.3)

For statement (i), suppose by contradiction that there is a cycle of
length at least seven, or there exist a 6-cycle and a cycle of length at
least four in G. Since all the remaining faces are 3-cycles, we have the
following inequalities: S(F ((G)))| ≥ 7+3(|F (G)|−1) = 3|F (G)|+4 for
the former and S(F ((G)))| ≥ (6 + 4) + 3(|F (G)|−2) = 3|F (G)|+ 4 for
the latter, both of which yield the same inequality. Thus, we simplify
them into 2|E(G)| ≥ 3|F (G)|+ 4. Similar to the proof of Lemma 4.4,
we substitute |F (G)| with |E(G)| − |V (G)|+ 2 in the inequality:
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2|E(G)| ≥ 3|E(G)| − 3|V (G)|+ 6 + 4

3|V (G)|+ 2|E(G)| − 10 ≥ 3|E(G)|
3|V (G)| − 10 ≥ |E(G)|

|E(G)| ≤ 3|V (G)| − 10 (4.4)

However, these two inequalities (4.3) and (4.4) contradict each other
for any |V (G)| ≤ 19. Hence, for any planar graph G, |V (G)| ≤ 19,
there exists at most one 6-cycle, and all the remaining faces of G are
3-cycles.

For statement (ii), suppose by contradiction that there exist two
5-cycles, or one 5-cycle and two 4-cycles, in G. Since all the remaining
faces are 3-cycles, we have the following inequalities: S(F ((G)))| ≥
(5×2) + 3(|F (G)|−2) = 3|F (G)|+ 4 for the former and S(F ((G)))| ≥
(4× 2 + 5) + 3(|F (G)| − 3) = 3|F (G)|+ 4 for the latter, both of which
yield the same inequality. Thus, we simplify them into 2|E(G)| ≥
3|F (G)| + 4. Since this inequality is the same as (4.4) in the proof of
statement (i), it contradicts (4.3) for any |V (G)| ≤ 19.

Similarly, for statement (iii), suppose by contradiction that there
exist four 4-cycles inG. We have the following condition: (2) S(F ((G)))| ≥
(4× 4) + 3(|F (G)| − 4) = 3|F (G)|+ 4, which is the same as (4.4). The
proof can thus be omitted. �

Lemma 4.6. Suppose that G is a planar graph of order at most 19,
with δ(G) = 5. Then, there exists a vertex v of degree five that does
not belong to a 6-cycle, and is not common to a 4-cycle and a 5-cycle,
nor to three 4-cycles.

Proof. First, recall the maximum number of edges lemma derived
from Euler’s formula that, for any planar graph G of order at least
three, |E(G)| ≤ 3|V (G)|−6 [32]. From Lemma 4.5, we distinguish the
following three situations.

Case 1. there exists a 6-cycle in G. So, there are six vertices
v1, v2, . . . , v6 that belong to the 6-cycle. If there is the other vertex
(than v1, v2, . . . , v6) of degree five, then the lemma is true (Lemma
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(a)

v
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Figure 4.2: Illustration of Case (2) in Lemma 4.6

4.5 statement (i)). Otherwise, all other vertices are of degree at least
six. Since δ(G) = 5, at least one of the six vertices (v1, v2, . . . , v6)
must be of degree five. Thus, we have

∑
d(v) ≥ (5× 6) + 6(|V (G)| −

6) = 6|V (G)| − 6, for all v ∈ V (G). Since |E(G)| =
∑ d(v)

2 , we have:

|E(G)| ≥ 6|V (G)|−6
2 = 3|V (G)|−3 , contradicting |E(G)| ≤ 3|V (G)|−6.

Thus, there is a vertex of degree five that does not belong to the 6-cycle.
Case 2. there are at most two vertices v and v′ that are common

to a 4-cycle and a 5-cycle in G (see Fig. 4.2). If there is the other
vertex (than v and v′) of degree five, then the lemma is true (Lemma
4.5 statement (ii)). Otherwise, all other vertices are of degree at least
six. Similar to the proof of Case 1, we have

∑
d(v) ≥ (5 × 2) +

6(|V (G)| − 2) = 6|V (G)| − 2. Since |E(G)| =
∑
d(v)/2, we have:

|E(G)| ≥ 6|V (G)|−2
2 = 3|V (G)| − 1, contradicting |E(G)| ≤ 3|V (G)| − 6.

Thus, there must be other vertex of degree five in G.
Case 3. there exists a vertex v that is common to three 4-cycles. If

there is another vertex u of degree five, then the lemma is true (Lemma
4.5 statement (iii)). Otherwise, all other vertices are of degree at least
six. Similar to the proof of Case 1, a contradiction occurs. Thus, there
must be another vertex u of degree five in G. �
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Next, we focus on the planar graph of order at most 19 whose
minimum degree is four. For the given graph G with δ(G) = 4, we
have the following result.

Lemma 4.7. Suppose that G is a planar graph of order at most 19,
with δ(G) = 4. Then, there exists a vertex v of degree four such that
v is the common vertex of two 3-cycles.

Proof. Suppose by contradiction that there exists no vertex v that
belongs two 3-cycles. Since δ(G) = 4, there must be at least a vertex
u of degree four in G, and it does not belong to two 3-cycles.

First, we consider the situation in which there is only one vertex u
in G. We prove it by first constructing a graph of the smallest order
such that there is only one u which belongs to at most one 3-cycle,
and all other vertices are of degree at least five. Let us start a graph
with vertex u of degree four belonging to a 3-cycle and three 4-cycles
(so that the starting graph is of the smallest order), see Fig. 4.3(a).
We then construct a graph such that all the vertices, except for u,
are of degree at least five, by adding the minimum number of vertices
and edges. From the starting graph of order 8, the sum of missing
degrees required to make the vertices (other than u) be of degree five
is 17. This construction is shown step-by-step in Fig. 4.3(d), until our
desired graph is obtained. But, its order is 21 (this number cannot be
further decreased), contradicting |V (G)| ≤ 19.

Similarly, for the situation in which there are more than one vertices
of degree four, the order of the starting graph is also increased. For
the starting graph be of the smallest order, vertices of degree four
have to form a connected subgraph (Fig. 4.3(b)), otherwise the order
of starting graph is not the smallest (at least 14 for two disjoint vertices
of degree four, see Fig. 4.3(c)). In either case, the order of the resulting
graph is larger than 19. The proof is complete. �

Next, for the given planar graph G of order at most 19, δ(G) = 3,
we show that G has the following property.

Lemma 4.8. Suppose that G is a planar graph of order at most 19,
and δ(G) = 3. In G, either (i) there exists a vertex v of degree three
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u

(a) Starting graph with
one vertex u of degree
four

u

u
0

(b) Starting graph with
two adjacent vertices u
and u′ of degree four

u

u
0

(c) Starting graph with
two disjoint vertices u
and u′ of degree four

(a) u

u
u

(d) The graph constructed from the starting graph shown in (a)

Figure 4.3: Illustration of the proof of Lemma 4.7.
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k1-cycle

k2-cycle k3-cycle

k4-cycle

(a) Case (a): the vertices of
degree three cannot form a
cycle.

k2-cycle

k1-cycle

k3-cycle

k4-cycle

k5-cycle

k6-cycle

(b) Case (b): the vertices of de-
gree three may form a cycle.

Figure 4.4: Illustrations of Cases (a) and (b) in Lemma 4.8.

such that v belongs to a 3- or 4-cycle, or (ii) there exists a vertex v of
degree four such that v belongs to two 3-cycles.

Proof. For any G of order at most 19 with δ(G) = 3, at least one 3- or
4-cycle exists (Lemma 4.4). So, if some vertex of degree three belongs
to a 3- or 4-cycle, (i) is true. In the following, we prove that if (i) is
false, then (ii) is true.

Suppose by contradiction that (ii) is false, even when (i) is false.
Let i (≥ 1) denote the number of vertices of degree three, and j (≥ 0)
the number of vertices of degree four.

Consider first the situation in which j = 0 (so (ii) is false). Since
all other vertices are of degree at least five, we have this inequality:∑
d(v) ≥ (3 × i) + 5(|V (G)| − i). Since

∑
d(v) = 2|E(G)|, we can

rewrite it as follow:

|E(G)| ≥ d5|V (G)| − 2i

2
e (4.5)

Next, we consider S(F (G)) for this situation. Since the vertices of
degree three cannot belong to any cycle of length at most four (other-
wise (i) is true), we further distinguish two following cases: (a) when
1 ≤ i ≤ 4, the vertices of degree three cannot form a cycle, and thus
there exist at least i+ 2 cycles of length at least five (Fig. 4.4(a)), and
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v

u

(a) Starting graph with vertices v
of degree three and u of degree
four, u and v are adjacent

v
u

(b) Starting graph with vertices
v of degree three and u of degree
four, u and v are disjoint

Figure 4.5: Illustration of the proof of Lemma 4.8.

(b) when i ≥ 5, there exist at least i + 1 cycles of length at least five
(Fig. 4.4(b)).

For case (a) (1 ≤ i ≤ 4), by considering all other faces to be
cycles of length at least three, we have this inequality: 2|E(G)| ≥
5(i + 2) + 3(|F (G)| − (i + 2)) = 3|F (G)| + 2i + 4. Substitute |F (G)|
with |E(G)| − |V (G)|+ 2, we obtain:

2|E(G)| ≥ 3|E(G)| − 3|V (G)|+ 2i+ 10

3|V (G)|+ 2|E(G)| − 2i− 10− ≥ 3|E(G)|
3|V (G)| − 2i− 10 ≥ |E(G)|

|E(G)| ≤ 3|V (G)| − 2i− 10 (4.6)

However, these two inequalities (4.5) and (4.6) contradict each other
for |V (G)| ≤ 19 and 1 ≤ i ≤ 4.

Similarly, for case (b) (i ≥ 5), we have the following inequality:
2|E(G)| ≥ 5(i+1)+3(|F (G)|−(i+1)) = 3|F (G)|+2i+2. From it, we
obtain |E(G)| ≤ 3|V (G)| − 2i− 8, contradicting (4.5) for |V (G)| ≤ 19
and i ≥ 5 again. Hence, it is impossible to construct a planar graph G,
δ(G) = 3, with i ≥ 1 vertices of degree three, which do not satisfy (i),
and the remaining vertices are of degree at least five. This also implies
that if (i) is false, then there exists at least one vertex of degree four.

Let us now consider the situation in which j ≥ 1. We first construct
a graph of the smallest order such that i = 1, j = 1 and both (i) and
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(ii) are false. We start from vertex v of degree three, which is common
to three 5-cycles. Then, we assign one neighbor of v to be a vertex u
of degree four. Since (ii) is false, u can belong to at most one 3-cycle.
This results in the starting graph of order 12, in which v is common to
three 5-cycles and u is common to two 5-cycles, a 4-cycle and a 3-cycle,
as shown in Fig. 4.5(a). If v and u are disjoint, then the starting graph
is not the smallest (see the graph of order 14, shown in Fig. 4.5(b) for
an example). From the starting graph of Fig. 4.5(a), we construct a
graph such that all the vertices, except for v and u, are of degree at
least five, by adding the minimum number of vertices. As discussed in
the proof of Lemma 4.7, the resulting graph is of order larger than 19,
contradicting |V (G)| ≤ 19.

In the case that the value of i or j is increased, the order of the
starting graph is also increased, and thus so is the order of the resulting
graph. Hence, it is impossible to have a planar graph G of order at
most 19 with δ(G) = 3, in which both (i) and (ii) are false. The proof
is complete. �

Theorem 4.9. There exists at least one 2-cop-winning vertex in any
planar graph of order at most 19.

Proof. Recall first that for any planar graph G, δ(G) ≤ 5 (Lemma 4.3).
If δ(G) = 1, any vertex of degree one is clearly a 2-cop-winning vertex.
Also, if δ(G) = 2, any vertex v of degree two is a 2-cop-winning vertex,
because two cops at two neighbors of v can trap the robber at v. In
the following, we consider the three different situations for δ(G) = 3,
4, 5.

For the situation where δ(G) = 3, by Lemma 4.8, there exist either
vertices v of degree three belonging to a 3- or 4-cycle, or vertices v
of degree four which are common to two 3-cycles. In Fig. 4.6(a) and
Fig. 4.6(b) (resp. Figs. 4.6(c)-4.6(d)), we show the winning positions
occupied by two cops c1 and c2 as well as the 2-cop-winning vertex v
of degree three (resp. degree four).

For the situation where δ(G) = 4, by Lemma 4.7, there exists a
vertex v of degree four, which is common to two 3-cycles. As shown in
Figs. 4.6(c)-4.6(d), vertex v is the winning one.
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v
c1 c2

j-cycle

i-cycle

(a) d(v) = 3

vc1 c2

j-cycle

i-cycle

(b) d(v) = 3

v
c1 c2

j-cycle

i-cycle

(c) d(v) = 4

v
c1 c2

j-cycle

i-cycle

(d) d(v) = 4

v
c2c1

(e) d(v) = 5

v
c2c1

(f) d(v) = 5

vc1
c2

(g) d(v) = 5

v
c2c1

(h) d(v) = 5

Figure 4.6: Instances of the 2-cop-winning vertex v and the cops’ win-
ning positions c1 and c2 on planar graph G of order at most 19. Note
that for (a) to (d), i ≥ 3 or/and j ≥ 3.
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Finally, consider the situation in which δ(G) = 5. Let v be a vertex
of degree five. From Lemma 4.5, v is common to five 3-cycles, or to
two 4-cycles or belongs to a 5-cycle, while the remaining faces are
all 3-cycles. The winning positions c1 and c2 against v are shown in
Fig. 4.6(e), Figs. 4.6(f)-(h) and Fig. 4.6(h), respectively. Again, the
2-cop-winning vertex exists. �

4.4 Winning Strategies for Two Cops on
Some Graphs

In this section, we provide some examples of new strategies for two
hard cases of planar graphs, whose order at 19 and 16. These two
graphs are edge-contracted dodecahedral and 3-regular graph of order
16 (the largest 3-regular planar graph in the graphs of order at most
19). They have no known strategy so far, as it requires more complex
strategy than tandem-win graphs.

4.4.1 The edge-contracted dodecahedral graph

In a graph G, when contraction of an edge e ∈ E(G) with endpoints
u and v is performed on G, the edge e is replaced by a single vertex
such that the edges incident to the new vertex are those, other than
e, which were incident to u or v (see Fig. 4.7). The contraction of
e on G results in a graph with one edge and one vertex fewer than
G. This graph operation is called an edge contraction. We call the
resulting graph the edge-contracted version of the original graph, e.g.,
the edge-contracted dodecahedral graph is the result of performing an
edge contraction on the dodecahedral graph.

In this subsection, we show that the edge-contracted dodecahedral
graph, which might be considered as the worst case of the planar graphs
of order at most 19, has the cop number of two. Studying on the edge-
contracted dodecahedral graph may give some insights on the proof of
the smallest 3-cop-win planar graph and even on giving a method for
determining whether a graph is 2-cop-win or 3-cop-win.
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(a) Regular dodecahedral graph.

(b) Edge-contracted dodecahedral
graph.

Figure 4.7: Regular dodecahedral and its edge-contracted graphs

Note that since the dodecahedral graph is vertex-symmetric, per-
forming an edge contraction on any edge results in the same graph
with different embedding. For instance, the graph in Fig. 4.9(b) can
be relabeled into the graph in Fig. 4.8(a). For simplicity, we will use
the embedding shown in Fig. 4.8(a) to represent the edge-contracted
dodecahedral graph.

Let the triple (c1, c2, v) denote the two winning positions c1 and c2

against v. For the instance shown in Fig. 4.8(b), we have the following
triples: (v5, v18, v2), (v6, v19, v3), (v1, v10, v4), (v2, v8, v5), (v3, v9, v6), and
(v1, v13, v7). The main part of a winning strategy is how to enforce the
robber into such a vertex v, and at the same time, two cops occupy the
winning positions against v. Since the edge-contracted dodecahedral
graph is specific, we provide below a full strategy for it.

Initial placement of two cops and the robber. In our strategy,
two cops c1 and c2 occupy v13 and v15 in the labeling shown in Fig.
4.8(b). If the robber initially occupies a vertex in N̄(C) = N̄(v13) ∪
N̄(v15), he will be captured by the cops in the first round. So, the
robber can initially occupy one of the following eleven vertices: v1, v2,
v3, v4, v5, v6, v8, v9, v11, v14, and v19.
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v16
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(a) (b)

Figure 4.8: The labeling in the edge-contracted dodecahedral graph,
and the initial positions of two cops c1 and c2 in our strategy.
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Figure 4.9: Another example of edge-contracted dodecahedral graph
with same labeling.
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In the strategy below, we provide the movements of the cops, as
well as the possible positions the robber can move to. We use ci(v → u)
to denote the movement of ci from v to u, i = 1 or 2, and the robber’s
movement after the cops’ turn (in the same round) is written after a
semicolon. Note that our goal is to show the existence of a capture
strategy (which may not be optimal). We separate the vertices into
three groups; (1) the vertices whose distances to both v13 and v15 are
two, (2) the vertices whose distances to one of v13 and v15 are two
and the other are at least three, and (3) the vertices whose distances
to both v13 and v15 are at least three. We will give the strategy till
the robber is trapped, since the robber can then be captured with one
more round.

Let us first describe the scenarios in which the robber initially oc-
cupies a vertex in group (1). The vertices in group (1) are v14 and
v19.

Scenario V19: the robber initially occupies v19.

Round 1 c1(v13 → v13), c2(v15 → v18); r(v19 → v3).
Round 2 c1(v13 → v7), c2(v18 → v18); r(v3 → v1).
Round 3 c1(v7 → v7), c2(v18 → v2); r(v1 → v5).
Round 4 c1(v7 → v6), c2(v2 → v4); r(v5 → v8).
Round 5 c1(v6 → v9), c2(v4 → v10); r(v8 → v5).
Round 6 c1(v9 → v6), c2(v10 → v11); (a) r(v5 → v5) or (b) r(v5 → v4).
Case (a): r(v5 → v5) at the end of Round 6.

Round 7 c1(v6 → v1), c2(v11 → v11); r(v5 → v4).
Round 8 c1(v1 → v1), c2(v11 → v10); the robber r is trapped.

(Round 9 one cop moves to r.)

Case (b): r(v5 → v4) at the end of Round 6.

Round 7 c1(v6 → v1), c2(v11 → v10); the robber r is trapped.

Scenario V19 ends within nine rounds (the longest one is Case (a)).

Scenario V14: the robber initially occupies v14.

Round 1 c1(v13 → v12), c2(v15 → v15); r(v14 → v11).
Round 2 c1(v12 → v12), c2(v15 → v10); r(v11 → v8).
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Round 3 c1(v12 → v9), c2(v10 → v10); r(v8 → v5).
Round 4 c1(v9 → v6), c2(v10 → v11); the same as the robber’s turn at

Round 6 in Scenario V19.

Scenario V14 ends within seven rounds (it uses the final three
rounds from Scenario V19).

Next, we describe the scenarios in which the robber initially occu-
pies a vertex in group (2). The vertices in group (2) are v2, v3, v4, v6,
v9, and v11.

Scenario V2: the robber initially occupies v2.

Round 1 c1(v13 → v7), c2(v15 → v18); (a) r(v2 → v1), or (b) r(v2 →
v4).

Case (a): r(v2 → v1) at the end of Round 1.

Round 2 the same as Round 3 in Scenario V19.

Case (b): r(v2 → v4) at the end of Round 1.

Round 2 c1(v7 → v6), c2(v18 → v15); (b.1) r(v4 → v2), (b.2)
r(v4 → v4), or (b.3) r(v4 → v5)

Case (b.1): r(v4 → v2) at the end of Round 2 in Case (b).

Round 3 c1(v6 → v1), c2(v15 → v15); r(v2 → v4).
Round 4 c1(v1 → v1), c2(v15 → v10); the robber is trapped.

Case (b.2): r(v4 → v4) at the end of Round 2 in Case (b).

Round 3 c1(v6 → v1), c2(v15 → v10); the robber is trapped.

Case (b.3): r(v4 → v5) at the end of Round 2 in Case (b).

Round 3 c1(v6 → v1), c2(v15 → v10); r(v5 → v8).
Round 4 c1(v1 → v6), c2(v10 → v11); r(v8 → v5).
Round 5 the same as Round 7 in Case (a) of Scenario V19.

In Scenario V2, the robber is captured within seven rounds (the
longest one is Case (b.3), which uses final three rounds from Scenario
V19).

Scenario V3: The robber initially occupies v3.

Round 1 c1(v13 → v7), c2(v15 → v18); r(v3 → v1).
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Round 2 the same as Round 3 in Scenario V19.

Scenario V3 ends within eight rounds (one fewer round than Sce-
nario V19).

Scenario V4: The robber initially occupies v4.

Round 1 c1(v13 → v7), c2(v15 → v15); (a) r(v4 → v2), (b) r(v4 → v4),
or (c) r(v4 → v5).

Case (a): r(v4 → v2) at the end of Round 1.

Round 2 c1(v7 → v3), c2(v15 → v18); r(v2 → v4).
Round 3 c1(v3 → v1), c2(v18 → v15); r(v4 → v4).
Round 4 c1(v1 → v1), c2(v15 → v10); the robber is trapped.

Case (b): r(v4 → v4) at the end of Round 1.

Round 2 c1(v7 → v6), c2(v15 → v15); the same as the robber’s
turn at Round 2 in Case (b) of Scenario V2.

Case (c): r(v4 → v5) at the end of Round 1.

Round 2 c1(v7 → v6), c2(v15 → v10); (c.1) r(v5 → v5), or (c.2)
r(v5 → v8).

Case (c.1): r(v5 → v5) at the end of Round 2 in Case (c).

Round 3 c1(v6 → v1), c2(v10 → v11); r(v5 → v4).
Round 4 c1(v1 → v1), c2(v11 → v10); the robber is trapped.

Case (c.2): r(v5 → v8) at the end of Round 2 in Case (c).

Round 3 c1(v6 → v6), c2(v10 → v11); r(v8 → v5).
Round 4 the same as Case (a) at the end of Round 6 in Sce-

nario V19.

Scenario V4 ends in at most seven rounds (the longest one is Case
(b)).

Scenario V6: The robber initially occupies v6.

Round 1 c1(v13 → v13), c2(v15 → v18); (a) r(v6 → v1), (b) r(v6 → v6)
or (c) r(v6 → v9).

Case (a): r(v6 → v1) at the end of Round 1.

Round 2 c1(v13 → v7), c2(v18 → v2); r(v1 → v5).
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Round 3 c1(v7 → v6), c2(v2 → v4); r(v5 → v8).
Round 4 c1(v6 → v9), c2(v4 → v10); r(v8 → v5).
Round 5 the same as Round 4 in Scenario V14.

Case (b): r(v6 → v6) at the end of Round 1.

Round 2 c1(v13 → v12), c2(v18 → v2); (b.1) r(v6 → v6), or (b.2)
r(v6 → v7).

Case (b.1): r(v6 → v6) at the end of Round 2 in Case (b).

Round 3 c1(v12 → v12), c2(v2 → v1); r(v6 → v7).
Round 4 c1(v12 → v13), c2(v1 → v1); the robber is trapped.

Case (b.2): r(v6 → v7) at the end of Round 2 in Case (b).

Round 3 c1(v12 → v13), c2(v2 → v1); the robber is trapped.

Case (c): r(v6 → v9) at the end of Round 1.

Round 2 c1(v13 → v12), c2(v18 → v2); (c.1) r(v9 → v6), or (c.2)
r(v9 → v8).

Case (c.1): r(v9 → v6) at the end of Round 2 in Case (c).

Round 3 the same as Round 3 in Case (b.1) of Scenario V6.

Case (c.2): r(v9 → v8) at the end of Round 2 in Case (c).

Round 3 c1(v12 → v9), c2(v2 → v4); r(v8 → v11).
Round 4 c1(v9 → v12), c2(v4 → v10); r(v11 → v8).
Round 5 the same as Round 3 in Scenario V14.

Scenario V6 ends within eight rounds (the longest one is Case (c.2)).

Scenario V9: The robber initially occupies v9.

Round 1 c1(v13 → v12), c2(v15 → v18); (a) r(v9 → v6) or (b) r(v9 →
v8).

Case (a): r(v9 → v6) at the end of Round 1.

Round 2 c1(v12 → v12), c2(v18 → v2); (a.1) r(v6 → v6), or (a.2)
r(v6 → v7).

Case (a.1): r(v6 → v6) at the end of Round 2 in Case (a).

Round 3 c1(v12 → v12), c2(v2 → v1); r(v6 → v7).
Round 4 c1(v12 → v13), c2(v1 → v1); the robber is trapped.
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Case (a.2): r(v6 → v7) at the end of Round 2 in Case (a).

Round 3 c1(v12 → v13), c2(v2 → v1); the robber is trapped.

Case (b): r(v9 → v8) at the end of Round 1.

Round 2 c1(v12 → v9), c2(v18 → v15); (b.1) r(v8 → v5), or (b.2)
r(v8 → v11).

Case (b.1): r(v8 → v5) at the end of Round 2 in Case (b).

Round 3 c1(v9 → v6), c2(v15 → v10); the same as the robber’s
turn at Round 2 in Case (c) of Scenario V4.

Case (b.2): r(v8 → v11) at the end of Round 2 in Case (b).

Round 3 c1(v9 → v12), c2(v15 → v10); r(v11 → v8).
Round 4 the same as Round 3 in Scenario V14.

Scenario V9 ends within eight rounds (the longest one is Case
(b.1)).

Scenario V11: The robber initially occupies v11.

Round 1 c1(v13 → v12), c2(v15 → v10); r(v11 → v8).
Round 2 the same as Round 3 in Scenario V14.

Scenario V11 ends within six rounds.

Lastly, we describe the scenarios in group (3), which consists of v1,
v5, and v8.

Scenario V1: The robber initially occupies v1.

Round 1 c1(v13 → v7), c2(v15 → v18); r(v1 → v5).
Round 2 c1(v7 → v6), c2(v18 → v2); (a) r(v5 → v5), or (b) r(v5 → v8).
Case (a): r(v5 → v5) at the end of Round 2.

Round 3 c1(v6 → v9), c2(v2 → v2); r(v5 → v5).
Round 4 c1(v9 → v8), c2(v2 → v2); the robber is trapped.

Case (b): r(v5 → v8) at the end of Round 2.

Round 3 c1(v6 → v9), c2(v2 → v4); r(v8 → v11).
Round 4 c1(v9 → v12), c2(v4 → v10); r(v11 → v8).
Round 5 the same as Round 4 in Case (b.2) of Scenario V9.
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Scenario V1 ends within seven rounds (the longest one is Case (b)).

Scenario V5: The robber initially occupies v5.

Round 1 c1(v13 → v12), c2(v15 → v10); (a) r(v5 → v1), (b) r(v5 → v5),
or (c) r(v5 → v8).

Case (a): r(v5 → v1) at the end of Round 1.

Round 2 c1(v12 → v9), c2(v10 → v4); (a.1) r(v1 → v1), or (a.2)
r(v1 → v3).

Case (a.1): r(v1 → v1) at the end of Round 2 in Case (a).

Round 3 c1(v9 → v6), c2(v4 → v4); r(v1 → v3).
Round 4 c1(v6 → v7), c2(v4 → v2); r(v3 → v19).
Round 5 c1(v7 → v13), c2(v2 → v18); r(v19 → v3).
Round 6 the same as Round 2 in Scenario V19.

Case (a.2): r(v1 → v3) at the end of Round 2 in Case (a).

Round 3 c1(v9 → v6), c2(v4 → v2); (a.2.1) r(v3 → v3), or
(a.2.2) r(v3 → v19).

Case (a.2.1): r(v3 → v3) at the end of Round 3 in Case (a.2).

Round 4 c1(v6 → v6), c2(v2 → v18); r(v3 → v3).
Round 5 c1(v6 → v6), c2(v18 → v19); the robber is trapped.

Case (a.2.2): r(v3 → v19) at the end of Round 3 in Case (a.2).

Round 4 c1(v6 → v7), c2(v2 → v18); r(v19 → v17).
Round 5 c1(v7 → v13), c2(v18 → v15); r(v17 → v19).
Round 6 the same as Round 1 in Scenario V19.

Case (b): r(v5 → v5) at the end of Round 1.

Round 2 c1(v12 → v9), c2(v10 → v4); r(v5 → v1).
Round 3 the same as Round 3 in Case (a.1).

Case (c): r(v5 → v8) at the end of Round 1.

Round 2 the same as Round 3 in Scenario V14.

Scenario V5 ends within fourteen rounds (the longest one is Case
(a.1)).

Scenario V8: The robber initially occupies v8.
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Round 1 c1(v13 → v12), c2(v15 → v10); (a) r(v8 → v5) or (b) r(v8 →
v8).

Case (a) : r(v8 → v5) at the end of Round 1.

Round 2 the same as Round 2 in Case (b) of Scenario V5.

Case (b) : r(v8 → v8) at the end of Round 1.

Round 2 the same as Round 3 in Scenario V14.

Scenario V8 ends within seven rounds.

Theorem 4.10. The edge-contracted dodecahedral graph of order 19 is
2-cop-win.

Proof. We have given the full capture strategy using two cops for the
edge-contracted dodecahedral graph. As described above, the robber
can be captured within fourteen rounds. �

Finally, it is interesting to note that the distance between two cops
is always kept to be at most three in our capture strategy. This dif-
ferentiates our strategy from that of tandem-win graph, in which the
distance is kept to be one [13].

4.4.2 The 3-regular graph of order 16

Among the 3-regular planar graphs, the next largest graphs that are
smaller than dodecahedral graph are of order 16 (shown in Fig. 4.10).
We choose one which has the largest number of 5-cycled faces possible,
and provide a strategy for it. In the one for edge-contracted dodecahe-
dral graph, the strategy can be divided into three phases: (1) forcing
phase, whose goal is to control the robber’s movement and force him
toward a 2-cop-winning vertex, and (2) trapping phase, whose goal is
to trap the robber at one of the 2-cop-winning vertices. Figure 4.10
shows the two unique scenarios in which the robber is located on two
different vertices. Any other vertices that are not in N̄(C) will fall into
one of the scenarios.

60



(1) Initial placements (2) Forcing phase

(3) Forcing phase (4) Trapping phase

c1 c1

c1

c1

c2 c2

c2

c2

r r

r r

(a) Scenario in which the robber is initially located on a vertex belonging to three
5-cycles.

(1) Initial placements (2) Forcing phase

(3) Forcing phase (4) Trapping phase

c1 c1

c1

c1

c2 c2

c2

r r

r

r

c2

(b) Scenario in which the robber is initially located on a vertex belonging to a 4-cycle.

Figure 4.10: Two scenarios of the winning strategy using two cops on
3-regular planar graph of order 16.
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4.5 Summary

We have proved in this chapter that a 2-cop-winning vertex, at which
the robber is captured by two cops, exists in any planar graph of order
at most 19. We have also shown that the planar graph resulted by
performing a single edge contraction on the dodecahedral graph is 2-
cop-win. Although our strategy for the edge-contracted dodecahedral
graph is very elementary, we hope a clever strategy can be developed in
future, not only for the edge-contracted dodecahedral graph, but also
for any planar graph of order at most 19, so as to prove the conjecture
that the dodecahedral graph is the smallest 3-cop-win planar graph.
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Chapter 5

Towards a
Characterization of
2-Cop-Win or
3-Cop-Win Planar
Graphs

5.1 Introduction

One of our study objectives is to give a characterization of 2-cop-win
or 3-cop-win planar graph. Although it is not obtained in this thesis,
we provide some useful evidences. For this purpose, we will give a list
of new 3-cop-win planar graphs as well as a list of 2-cop-win graphs.

We investigated whether there exist a 3-cop-win planar graph that
have 2-cop-winning vertices. Three new 3-cop-win planar graphs as
well as their proofs are given. Some graphs can simply be identified as
3-cop-win using the non-existence of 2-cop-winning vertex.
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5.2 The 3-Cop-Win Planar Graphs That
Have 2-Cop-Winning Vertices

In Chapter 4, one fact on any 2-cop-win graph is identified and used to
prove that an edge-contracted dodecahedral graph is 2-cop-win. The 2-
cop-winning vertices are necessary for capture strategy using two cops
[29]. However, we mentioned also that another fact, which is a method
to move all pieces to their respective goals, is required. And such,
even if a 2-cop-winning vertex exists, a graph may not be 2-cop-win.
In the following, some planar graphs that have 2-cop-winning vertices
are proved to be 3-cop-win.

5.2.1 Vertex-symmetric graphs

Vertex-symmetric graphs are regular graphs whose every vertex has
exactly the same local adjacency and incidence. So, if a 2-cop-winning
vertex exists on a vertex-symmetric graph, then all vertices are winning
ones. Note that every vertex-symmetric graph is polyhedral, which can
be drawn on a spherical object, and has many pairs of vertices whose
distances are equal to the graph’s diameter.

Icosidodecahedral graph, shown in Fig. 5.1(b), is a 4-regular pla-
nar graph of 30 vertices, 60 edges, and 32 faces, whose diameter is
five. It is vertex-symmetric because every vertex is common to two
5-cycles and two 3-cycles. It is also a line graph of a dodecahedral
graph (the edges of dodecahedral graph are represented by vertices of
the icosidodecahedral).

In icosidodecahedral graph, every vertex is a 2-cop-winning vertex,
with the winning positions c1 and c2 belong to two different 3-cycles
whose common vertex v is the winning one (see Fig. 5.2).

Lemma 5.1. Icosidodecahedral graph is 3-cop-win.

Proof. Icosidodecahedral can be transformed into dodecahedral
graph, by transforming a 3-cycle into a vertex, and the vertex shared
by two 3-cycles into an edge between the transformed vertices. The
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(a) Each vertex of dodecahedral is trans-
formed into a 3-cycle, and each edge into
the common vertex between two 3-cycles.

(b) An icosidodecahedral graph.

Figure 5.1: A transformation from dodecahedral to icosidodecahedral.

v

c1

c2

Figure 5.2: The winning positions c1 and c2 against a vertex v.
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r
c2

c1

(a) The robber watches
how the cops move on
their turn on icosidodec-
ahedral.

r

c1

c2

(b) The movements are
mapped to dodecahedral.
The robber then deter-
mines his next movement
on it according to his
strategy.

r
c2

c1

(c) The robber’s move-
ment on dodecahedral is
mapped back to icosido-
decahedral.

Figure 5.3: How the robber maps the winning strategy against two
cops from dodecahedral to icosidodecahedral.

transformation can also be made from dodecahedral into icosidodeca-
hedral as well, see Fig. 5.1 for an example.

The movements of the cops on icosidodecahedral graph can be
mapped into the movements on dodecahedral graph. For a cop to move
out of a 3-cycle in icosidodecahedral graph, two consecutive movements
are required; one to determine the source 3-cycle (whose edge is tra-
versed by the cop on this step), and another to move into a new 3-cycle
(destination). This two-part sequence of movements on icosidodecahe-
dral is mapped into one movement (moving from one vertex to another)
on dodecahedral graph.

Since the robber has a winning strategy against two cops on the
dodecahedral graph, he can map the strategy into icosidodecahedral
graph, as follows. First, he maps the movements of the cops from
icosidodecahedral graph to dodecahedral graph. Any two consecutive
movements of the cops on icosidodecahedral can be mapped into one
movement on dodecahedral. Note that the mapping can be done by
treating odd rounds as first step and even round as second step, or
vice versa. After mapping the movements of the cops to dodecahedral
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graph, the robber finds his next action on it (following his winning
strategy), and map that action to icosidodecahedral graph. Since the
cop’s movement on icosidodecahedral to determine the source 3-cycle
also lets the robber know the destination 3-cycle (Fig. 5.3(a)), the rob-
ber can always map the cops’ movements from icosidodecahedral (by
predicting the destination 3-cycles of the cops) to dodecahedral, and
determine his next movement on dodecahedral according to the win-
ning strategy (Fig. 5.3(b)). The sequence of the robber’s movements
on dodecahedral graph is then mapped into the two-part sequence
of movements on icosidodecahedral graph (Fig. 5.3(c)). By moving
on icosidodecahedral following the mapped movement sequences, the
robber can avoid being captured by two cops indefinitely. Hence, icosi-
dodecahedral is 3-cop-win.

Another example of vertex-symmetric 3-cop-win planar graph with
2-cop-winning vertices is truncated icosidodecahedral graph (also known
as great rhombicosidodecahedral graph), shown in Fig. 5.4(a). It is 3-
regular graph, has graph diameter 15, and its faces are made of twelve
10-cycles, twenty 6-cycles, and thirty 4-cycles.

In truncated icosidodecahedral graph, every vertex v belongs to a
4-cycled face, a 6-cycle face, and a 10-cycled face. And thus, every
vertex v is a 2-cop-winning vertex. See Fig. 5.4(b) for the winning
positions c1 and c2 against a vertex v.

Lemma 5.2. Truncated icosidodecahedral graph is 3-cop-win.

Proof. Similar to icosidodecahedral, truncated icosidodecahedral
graph can be transformed into dodecahedral graph, and vice versa.
This is done by transforming 4-cycle into an edge, a 6-cycle into a
vertex, and a 10-cycle into a 5-cycle of the dodecahedral graph. Again,
for a cop (or the robber) to move from one 6-cycle to another, at least
two steps are required (first step is to move into a 4-cycle, then another
step is into the new 6-cycle).

Since the robber has winning strategy against two cops on dodec-
ahedral graph, he can map the movements of two cops on truncated
icosidodecahedral to dodecahedral, find the next action according to
the strategy, then map it back to truncated icosidodecahedral graph
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(a) Truncated icosidodecahedral graph

v c2

c1

(b) The local adjacency and incidence of every vertex v of icosidodecahedral graph,
and the winning positions c1 and c2 against it.

Figure 5.4: A truncated icosidodecahedral graph and the winning po-
sitions against each vertex.

69



c1

v

c2

Figure 5.5: A Grinberg’s 42 graph.

and follow the mapped sequence of movements. Hence, truncated icosi-
dodecahedral graph is 3-cop-win.

5.2.2 Grinberg’s 42 graph

Grinberg’s 42 graph (Fig. 5.5) is a 3-regular graph of order 42, with
one 4-cycled face. It can be observed that 2-cop-winning vertices exist
on such a face, see Fig. 5.6(a). Note that one of the winning positions
is the vertex whose distance to the 2-cop-winning vertex is two on the
same 4-cycle.

Lemma 5.3. Grinberg’s 42 graph is 3-cop-win.

Proof. Using the strategy given in Chapter 4, we assume that two
cops can successfully force the robber to move into a winning vertex.
To this end, they have to move into the winning positions against it.
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v

c1

c2

8-cycle

8-cycle

(a) A 2-cop-winning vertex and the
winning positions against it.

r

c1

c2

8-cycle

8-cycle

(b) The locations of the cops and
the robber after the cops successfully
forced the robber into a 2-cop-winning
vertex.

Figure 5.6: Portions of Grinberg’s 42 in different embedding, where
4-cycle is located in the center.

Because they have to force the robber through a series of 5-cycled faces
and vertices of degree three, two cops must prevent the robber from
moving into any vertices other than the ones that lead him into 2-cop-
winning vertex. So, when the robber is forced to move into it, two cops
on the same side of a 4-cycled face in the graph, see Fig. 5.6(b).

At the beginning of the next round, no matter how the cops move,
the robber can simply move along the edge belonging to 4- and 8-cycle
once, and in the next round escape from the 2-cop-winning vertices
and the cops. Since the cops cannot capture the robber anywhere else,
they must force the robber to move into a 2-cop-winning vertex again,
and the robber can get away using the same escape strategy. Hence,
two cops cannot capture the on Grinberg’s 42 graph, and thus, it is
3-cop-win.

The existence of choke-point-like structure contributes to the 3-
cop-win for Grinberg’s 42 graph. However, we could not get a correct
definition yet, and 3-cop-win graphs with such a structure, along with
proofs, are needed to classify this type of 3-cop-win planar graphs.
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While Grinberg’s 42 are 3-regular, it is not vertex-symmetric, since
only four vertices belong to 4-cycle (and thus they are different from
the rest).

5.2.3 The maximal planar graph of order 92

A simple graph is called maximal planar graph if it is planar but adding
any edge would destroy that property. A maximal planar graph thus
has all the faces as 3-cycles. It is also known by other names such as
triangular graph or triangulated graph, but they are often used to refer
to the line graph of a complete graph (dual graph in which edges are
transformed into vertices) and to the chordal graph, respectively. We
use the name maximal planar graph to avoid ambiguity.

One may conjecture that a maximal planar graph are either cop-
win (if dominated vertices can be successively removed until a graph
becomes single vertex) or 2-cop-win (otherwise). The minimum degree
for any planar graph is at most five, and thus 2-cop-winning vertex of
degree five, similar to that of Fig. 4.6(e), must also exist. However,
there exists a 3-cop-win maximal planar graph.

Theorem 5.4. [[21], Theorem 12.4] There exist maximal planar graphs
with cop number three.

An example graph was constructed from the dodecahedral graph,
but instead of directly connecting edges between a pair of vertices in
the original graph, they added more vertices such that the paths on
the original graph are still the shortest paths for any pair of vertices
belonging to the original graph. The construction method can be seen
in Fig. 5.7, which adds six extra vertices to each face. Note that the
inner pattern shown inside the center face of Fig. 5.7(b), excluding the
5-cycle itself, is maximal. Note also that all the six extra vertices of
the inner pattern are 2-cop-winning vertices. By adding this pattern
to all twelve faces, the final graph is made maximal, and has 72 more
vertices, thus it is of order 92.

The robber can win against two cops in this graph, by moving only
on the vertices of the original graph (dodecahedral). It is inefficient to
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(a) A dodecahedral graph. (b) One face of dodecahedral is made
maximal.

Figure 5.7: The construction of 3-cop-win maximal planar graph from
dodecahedral.

move through the added vertices, so two cops are forced to move along
the original graph as well. And since the original graph is 3-cop-win,
so is this graph. It should be noted that the vertices in the original
graphs are of degree nine, while the added vertices are of degree five.
This makes the graph neither regular, nor vertex-symmetric

5.3 Other 3-Cop-Win Planar Graphs

Following the new concept of 2-cop-winning vertices, its non-existence
can be used to identify more 3-cop-win planar graphs, or even construct
a new one. First, we state the following:

Corollary 5.5. Any planar graph with no 2-cop-winning vertex is 3-
cop-win.

It is clear that any planar graph with no 2-cop-winning vertex is
3-cop-win. The first example we found in our study is the Wiener-
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(a) Wiener-Araya graph

(b) Hemispheres graph

Figure 5.8: Examples of graphs with no 2-cop-winning vertex.
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Araya graph [4]. The graph was intentionally constructed for a dif-
ferent purpose, but it also happens to be 3-cop-win. Figure 5.8(a)
shows Wiener-Araya graph. Note that it has one 4-cycle, whose all
vertices are of degree four (and thus the graph is neither regular nor
vertex-symmetric).

With Corollary 5.5, we purposely constructed the hemispheres graph
so that it has two 4-cycles but no 2-cop-winning vertex, similar to that
of Wiener-Araya graph. The construction of it starts with a 4-cycle
whose all vertices are degree four. Then, we added more 5- and 6-
cycles to make the remaining vertices be of degree three, and consider
the possibility of repeating the pattern on the other half, hence its
name. Figure 5.8(b) shows the complete hemispheres graph. It should
be noted also that this graph is neither regular nor vertex-symmetry.

5.4 The known 2-Cop-Win Planar Graphs

As more of 3-cop-win planar graphs are discovered, a list of known
classes of 2-cop-win should also be made. These examples and their
property may be useful in the characterization of 2-cop-win planar
graphs. The followings are known classes of 2-cop-win planar graphs.

1. Grid graphs: Grids are known to be 2-cop-win and the 2-cop-
winning vertices (the final vertices for the robber prior to his
capture) are four vertices at the corners of grids.

2. Tandem-win graphs: Clarke and Nowakowski have classified
some 2-cop-win graphs in which two cops move together and
maintain the distance between them at one [13]. The method of
determining a tandem-win graph is by using domination elimina-
tion ordering to retract the graph into single vertex. For tandem-
win planar graphs, they do not have any cycle of length at least
five.

3. 4-regular graphs of order at most 29: The smallest 4-
regular, 3-cop-win planar graph known so far is the icosidodec-
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ahedral, which was proved in this thesis. All 4-regular planar
graphs, whose order are at most 29, are known to be 2-cop-win.

It should be noted that our strategy provided in Chapter 4 for edge-
contracted dodecahedral graph is not tandem-win strategy. And such,
there are more 2-cop-win graphs without known method of determina-
tion yet.

5.5 Summary

We have given the new 3-cop-win planar graphs that are the results of
in our study. Interestingly, some graphs with 2-cop-winning vertices
are proved to be 3-cop-win. We have also provided a list of known 2-
cop-win planar graphs. The icosidodecahedral graph and its truncated
version are vertex-symmetric. Some known 3-cop-win planar graphs,
particularly the fullerenes (3-regular graph whose twelve faces are 5-
cycles and all other faces are 6-cycles), are also vertex-symmetric. It
should be noted that not all 3-cop-win graph are vertex-symmetric,
as can be seen in Grinberg’s graphs, Wiener-Araya graph, and hemi-
spheres graph. We are working to find and classify more graphs that
are 2-cop-win or 3-cop-win.
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Chapter 6

An Algorithm for
Computing a
Dominating Set for
Grids

6.1 Introduction

In this chapter, a real world application of the Cops and Robbers
game’s variation is studied, and new algorithm is given. The problem
of finding a dominating set for a graph is a well-studied problem in
graph theory, and has many potential applications in sensor networks
and swarm robots, as well as routing problems in mobile networks. The
dominating set [16] is a graph problem where every vertex of a given
graph G = (V (G), E(G)) must be either in a dominating set U ⊆ V (G)
or adjacent to a member of the dominating set, and the goal is to find a
smallest set U in the graph G. For path graphs and trees, a linear-time
algorithm to find a dominating set has been given[12].

Finding a domination number (i.e., the size of a smallest dominat-
ing set) of an arbitrary graph is NP-hard [16], and planar graph is
also proven to be NP-hard. Grid graphs, which lie in a class of planar
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graph, have a special structure that allows their domination number
to be determined optimally. For m × n grid, the size of the optimal
dominating set was unknown until recently, but the upper bound of

b (m+2)(n+2)
5 c − 4 was shown in [12]. It has also been shown that the

lower bound of domination number is equal to the upper bound for
m,n ≥ 16, thus characterizing the domination number of grids [17].

Previous efforts were focused on the problem of computing the
dominating numbers for grids [2, 12, 16, 17]. Two previous works
for computing a dominating set were Chang’s doctoral thesis [12] and
Fata et al.’s conference paper [14]. The domination number and the
upper bound was made through observation of brute-force computa-
tional techniques [2]. With that in mind, we aim to develop the algo-
rithms for both centralized and distributed systems. Chang’s method
is constructive, and one can simply derive from his method to give a
centralized algorithm so as to find a dominating set of optimal size

b (m+2)(n+2)
5 c−4. A distributed algorithm was given in [14], which com-

putes a dominating set of size d (m+2)(n+2)
5 e.

It should be pointed out that the algorithm of Fata et al. [14] is
incomplete in its termination stage. A set of agents is initially located
at vertices of the grid. The number of agents may be larger than

d (m+2)(n+2)
5 e, and some agents may even be at the same grid vertex.

The agents have three modes: (a) sleep, (b) active, and (c) settled.
All the agents, in the sleep mode at the beginning, will activate in
a randomized or previously scheduled manner. The very first agent
becomes settled just at its original vertex. Each active agent can com-
municate with the settled agents so as to find the place (vertex) where
it becomes settled. As soon as settled agents no longer have to com-
municate, each settled agent goes back to sleep mode. The remaining
non-activated agents are required to leave the grid afterwards, but the
final operation is NOT a distributed one (see page 5 of [14]). Follow-
ing their algorithm, the agent being active after the dominating set is
found will simply restart the algorithm again, due to the fact that she
cannot know whether the dominating set has already been found.

The goal of this chapter is to give a new algorithm to compute a
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dominating set on grids in a distributed manner [27] (that can ter-
minate correctly). We first define a distributed system model. In
particular, each agent is equipped with an answering machine that can
record a broadcast message at a time, which is the most updated mes-
sage. This makes it possible to let the remaining non-activated agents
leave the grid. Next, we explore the techniques of Chang’s corner han-
dling so that they can work in the distributed system. Our distributed

algorithm can produce a dominating set of size b (m+2)(n+2)
5 c− 3, which

improves upon the previous result [14] by 4. This is the best result to
our knowledge.

Distributed grid domination algorithms can be adopted by dis-
tributed systems for many applications. For example, swarm robots
equipped with short-ranged land mine detection devices can be de-
ployed from an airplane into a designated area (considered as a grid).
These robots can move to align themselves in optimized formation to
maximize the coverage on their own without having to manually con-
trol them or using the centralized system.

6.2 Dominating Set Computation and the
Cops and Robbers Game

A dominating set with minimum cardinality is called an optimal dom-
inating set of a graph G; its cardinality is called the domination num-
ber of G and is denoted by γ(G). Note that although the domi-
nation number of a graph, γ(G), is unique, there may be different
optimal dominating sets [2]. In this study, we focus the dominat-
ing set problem on a special class of graphs called grid graphs. An
m × n grid graph G = (V (G), E(G)) is defined as a graph with
vertex set V (G) = {vi,j|1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge set
E(G) = {(vi,j, vi,j′)||j − j′| = 1}

⋃
{(vi,j, vi′,j)||i − i′| = 1} [10]. For

ease of presentation, we will fix an orientation and labeling of the ver-
tices, so that vertex v0,0 is the lower-left vertex and vertex vm−1,n−1 is
the upper-right vertex of the grid. In this paper we will include super-
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grid in grid indices. We denote the domination number of an m × n
grid G by γm,n = γ(G).

For a subset U ⊆ V (G), we define N(U) as
⋃
u∈U N(u). For a

subset U ⊆ V (G), we say the vertices in N(U) are dominated by the
vertices in U . For graph G, a set of vertices U ⊆ V (G) is a dominating
set if each vertex v ∈ V (G) is either in U or is dominated by U .

The Cops and Robbers game can be reduced to dominating set
problem with the introduction of the capture time. If the cop player
is put under pressure to capture the robber in the very first round
with the fewest cops as possible, then the cop number is exactly the
domination number of the given graph, and the initial positions for the
cops are the vertices of the dominating set.

In the followings, we introduce some important results and terms
used in domination problem, especially on grids.

Theorem 6.1. [Gonçalves et al., [17]]. For an m× n grid with 16 ≤
m ≤ n, γm,n = b (m+2)(n+2)

5 c − 4

Definition 6.2. (Grid Boundary) For anm×n gridG = (V (G), E(G)),
we define the boundary of G, denoted by B(G), as the set of vertices
with less than 4 neighbors

Definition 6.3. (Sub-Grids and Super-Grids) An m × n grid G =
(V (G), E(G)) is called a sub-grid of an m′×n′ grid G′ = (V (G′), E(G′))
if G is induced by vertices v′i,j ∈ V (G′), where 1 ≤ i ≤ m′ − 2 and
1 ≤ j ≤ n′ − 2. If G is a sub-grid of G′, G′ is called the super-grid of
G (see Fig. 6.1).

Definition 6.4. (Optimal Grid Pattern) A subset U ⊆ V (G) con-
stitutes an optimal grid pattern on grid G = (V (G), E(G)) if there
exists a fixed r ∈ 0, 1, 2, 3, 4 such that for any vertex vx,y ∈ U we have
x− 2y ≡ r(mod 5).

One can also define an optimal grid pattern as a set of vertices
whose (x, y) coordinates satisfy y − 2x ≡ r(mod 5), for some fixed r.
This corresponds to swapping the x and y axes. For the proofs we
only analyze the case mentioned above; the other case can be treated
similarly.
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(a) (b)

Figure 6.1: A grid G′ is demonstrated and its sub-grid G is highlighted
in dashed square. Vertices in U ′ \V (G) are projected onto their neigh-
bors, which are orphans, in G

Definition 6.5. (Grid Optimization) A subset U ⊆ V (G) optimizes
grid G = (V (G), E(G)) if it constitutes an optimal grid pattern and
there exists no vertex v ∈ V (G) \U that can be added to U so that U
remains an optimal grid pattern. See Fig. 6.1(a).

Definition 6.6. (Orphans) Let U ⊆ V (G) be a set of vertices that
optimizes grid G = (V (G), E(G)). A vertex v ∈ V (G) that has no
neighbor in U is called an orphan (see Fig. 6.1a).

Definition 6.7. (Projection) Consider a grid G = (V (G), E(G)) and
its super-gridG′ = (V (G′), E(G′)). For a set U ′ ⊆ V (G′), its projection
is defined as the set U ′′ = (N(U ′ \ V (G)) ∪ U ′) ∩ V (G). Similarly, we
say a vertex v ∈ U ′ \ V (G) is projected if it is mapped to its neighbor
in V (G). See Fig. 6.1.

Definition 6.8. (Slot) Given a m × n grid G = (V (G), E(G)), let
vi,j ∈ V (G) be a vertex occupied by a settled agent. The four vertices
{vi+2,j+1, vi−1,j+2, vi−2,j−1, vi+1,j−2} from vi,j within the boundary of G
are called slots of the settled agent occupying vi,j.

Definition 6.9. (Pseudo-Slot) When an agent settles at corner points,
the agent may assign a vertex as pseudo-slot. Pseudo-slots have the
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same priority as slots when an active agent seeks a location to occupy,
but the agent who settles there will not calculate its slots and instead
go into sleep mode. See Fig. 6.6.

6.3 Chang’s Centralized Constructive Me-
thod Revisited

In this section we revisit Chang’s centralized constructive method that

can produce a dominating set of size b (m+2)(n+2)
5 c−4 for an m×n grid,

m,n ≥ 8. Chang’s constructive method consists of the following three
main ideas:

(i) Initialization: At this step, a subset U ′ ⊆ V (G′) that optimizes
the super-grid G′ is provided. Basically, it can select the smaller be-
tween two permutations (of super-grid) of the optimal grid pattern.
See Fig. 6.1(a).

(ii) Corner Handling: Each corner (i.e., a 5 × 5 portion) of the
super-grid has one vertex removed from U ′, and the vertices around
four corners of the super-grid are moved into the original grid. See Fig.
6.3.

(iii) Projection: Using a process called projection, the vertices in
U ′ \ V (G) except for four corners are characterized and put into the
original grid G.

Initialization: As stated in Definition 3 and proven in [12], for
a given m × n grid graph, there exist some r in x − 2y ≡ r(mod

5) such that |S| ≤ b (m+2)(n+2)
5 c. Careful observation showed that the

optimal grid pattern repeats itself every 5 × 5 block. It is known
that when the pattern is shifted around in one super-grid, it produces
different number of the dominating vertices. There are five disjoint
permutations of the pattern, based on r ∈ {0, 1, 2, 3, 4} in Definition
3. For one grid size, some permutations produce smaller number of
dominating vertices, but when the size changed, others may produce
smaller number.

For a known size of grid, picking a suitable permutation can further
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(a) Permutation α (b) Permutation β

Figure 6.2: Two permutations

reduce the number of elements. We can simply use two permutations
whose maximum sizes of produced sets in all possible grid size do not
overlap.1 That is, one can always choose smaller number of dominating
vertices between the two and get the minimum size. We refer to these
two permutations as Permutation α and β (shown in Fig. 6.2). The
derived algorithm uses these two disjoint permutations in Initialization
step.

Corner Handling and Projection: One can further reduce the
number of dominating vertices around the corners of a grid. Recall that
using Projection (Definition 6.7) from super-grid, we can dominate
the orphans (as stated in Definition 6.6). For grid with large size,
the vertices on the boundary that are not a part of a corner must
be dominated by projected vertices. However, at each corner, some
elements overlap and the placement is not ideal.

By performing Corner Handling step before Projection step, we
can reduce one vertex at each corner before moving all the vertices
at boundary of super-grid and while doing so, move vertices around

1Note also that Chang’s constructive method has to choose from five different permutations
based on input grid size.
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Permutation A Permutation B

Permutation C Permutation D

Permutation E

Handled A Handled B

Handled C Handled D

Handled E

Figure 6.3: Handling each corner’s permutation
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the corner to the original grid. Chang’s case-based handling method
considers each corner as a 5 × 5 block and handles each permutation
differently, as shown in Fig. 6.3.

Lastly, as previously stated in Definition 6.7, we use projection
process to move the remaining vertices on the boundary of super-grid to
its sub-grid (the original grid), and dominating the remaining orphans.

6.4 Our Distributed Algorithm for Com-
puting a Dominating Set

In this section, we first introduce the distributed system model. (A
prototype model can be found in [14].) Next, we show that Chang’s
centralized constructive method, especially the Corner Handling Step,

can be extended so as to compute a dominating set of size b (m+2)(n+2)
5 c−

3 for a given m× n grid in a distributed manner, m,n ≥ 8.
Assume that the environment is an m× n grid G = (V (G), E(G))

with m,n ∈ N. The goal is to dominate the grid environment in a dis-
tributed fashion using several robots (or agents) without any knowl-
edge of environment size. At the start, there exist k agents in the
environment, where k can be smaller or greater than the number of
agents needed to dominate the grid. The following assumptions are
made for the grid and agents.

Assumption A: Agents can be located only on the vertices of the
grid, and can move between the grid vertices only on the edges of the
grid. More than one agent can be at the same vertex at any given
time. We refer to the vertices using standard Cartesian coordinates
defined in Section 6.22.

Assumption B : The agents, denoted by a1, . . . , ak are initially lo-
cated at arbitrary vertices on the grid. The agents have three modes;
(a) sleep, (b) active, and (c) settled. The sleep mode in this algorithm
means that the agent will not contribute to the distributed algorithm,

2We include vertices of super-grid in labeling for the ease of presentation.
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but can still perform other unrelated functions, such as detecting in-
truders or land mines.

Assumption C : Each agent is equipped with an answering machine
that can record a broadcast message at a time when the agent is in
sleep mode. At the beginning of the procedure, all agents are in sleep
mode. During each epoch, or time interval with specific length, one
agent goes into active mode. The activation sequence of agents is
arbitrary; it can be scheduled in advance, or randomized, but each
agent will activate at fix length of time after the previous one.

Assumption D : Agents in active mode and settled mode can com-
municate. The active agent can communicate with the settled agents
to perform the distributed dominating set algorithm. Once an agent
activates and performs its parts, it goes into settled mode. After the
settled agents form a dominating set, all of them go back to sleep mode
and will not activate again.

Assumption E : Each agent is equipped with suitable bearing sensor
(incoming direction) and range sensor to help computing the location
of the sender of signal it receives from, in its own local coordinates
with itself as origin and an arbitrary orientation.

Additionally, agents are equipped with short-ranged proximity sen-
sors to sense the environment boundary. Agents are able to sense the
boundary only if they are on a vertex v whose neighbor is a boundary
vertex of the grid.

The idea of our algorithm is to implement the optimal grid pat-
tern used in the centralized algorithm in a distributed manner, using
communications among active and settled agents.

Agents will keep track of surrounding four locations (vertices) that
are correctly aligned in optimal grid pattern. These locations are called
slots (Definition 6.8), and any new agents becoming active later will
communicate and attempt to occupy these slots to contribute to the
optimal grid pattern. An agent at vi,j uses itself as origin and keep
tracking of {vi+2,j+1, vi−1,j+2, vi−2,j−1, vi+1,j−2} locations. If there exists
a slot outside the boundary, an agent will keep a location of neighbor
vertex whose position is on the boundary instead. These locations are
called orphans as defined in Definition 6.6, and each agent outside the
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corner area will have at most one orphan tracked at a time. An orphan
of a vertex v, denoted as orphan(v), is a vertex u ∈ B(G) such that
u ∈ N(v). Orphans are occupied by agents after all slots are occupied,
which allow us to move around some agents in similar manner to that
of centralized grid domination algorithm.

Corollary 6.10. (Orphan Number) Given a m × n grid G, for any
vertices outside 4 corner points (Fig. 6.5) of each corner, an agent will
have at most one orphan when aligned with optimal grid pattern.

When an agent activates, it checks the most recent message to see
whether there exists a message or not. Initially, there is no message
in any agents’ short-memory storage in message receptor, the agent
then concludes that itself is the first agent to activate. After, the first
agent checks for boundary to see whether this initial location is around
the corner or not before settle. If an agent finds itself at the corner,
it moves to ideal location around the corner instead. If there exists a
message but not termination message, the agent then sends a broadcast
signal to find the settled agents on the grid who have slots available,
and waits for some specified time for response. The new active agent
then contributes to optimal grid pattern using information received
from settled agents.

We break down the distributed algorithm into three main steps for
the ease of presentation.

(i) Initialization: How the very first activated agent works.
(ii) Settlement: How active and settled agents communicate, and

how an active agent gets settled.
(iii) Termination: How the algorithm finishes. Particularly, how

the termination condition is verified in the case that the number of
agents is larger than necessary to dominate the grid.

6.4.1 Initialization

As stated in Assumption C, the algorithm starts with all agents being
in sleep mode. Each agent will activate at certain time apart from one
another.
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(a) The first agent set-
tles with four slots.

(b) An agent becomes
activate.

(c) The closest slot is
computed.

(d) The active agent oc-
cupies that slot.

(e) The lists of slots are
updated.

(f) An agent with 4 slots
occupied goes into sleep
mode.

Figure 6.4: Examples of the algorithm.

Each agent acts similarly when it first activates. The first thing
each agent does is checking most recently stored message to see if
there exists a termination message. We will describe about termination
message later in Subsection 6.4.3. Since at the beginning, no message
has been broadcast yet, the agent will not see a single saved message
and then conclude that it is the First Agent to activate in the system.

The first agent has special action to take before entering settled
mode. First, the agent must check whether it is at one of the four corner
points or not, using functions described in Assumption E. This can be
done by utilizing short-range proximity sensor to sense environmental
boundary. If it finds itself in one of the four corner points, as illustrated
in Fig. 6.5(a), it will move to the specified location of that corner. By
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(a) Permutation C: if the first agent
activates at corner points (black
square), it will move to designated lo-
cation (black circle).

(b) Permutation D: a termination con-
dition with two orphans.

Figure 6.5: Special instances for first agent (a) and last agent (b).

doing so, we can assume that for any corners, the agents are forming
optimal grid pattern from any locations outside the four corner points,
or starting a Permutation C corner.

If the first agent activates outside corner points, it will enter settled
mode normally. Before an agent enters settled mode, it will make a
list of unoccupied locations around itself that aligned in optimal grid
pattern (Fig. 6.4(a)). After an agent enters settled mode, the list
of unoccupied slots and orphan is updated when another active agent
occupies any of them.

6.4.2 Settlement

For other agents activating after the first one, they take the following
actions; check the recorded message, broadcast for slots, compute for
closest location to occupy, then move to occupy and settle at computed
location.

Since there is at least one settled agent after the first, the active
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agents will receive response signal from settled agents. Active agents
can contribute to the algorithm by either settle in unoccupied slots,
or settle in pseudo-slots or orphans. An active agent will compute
for closest settled agent among those that responded and send request
for slot list. Chosen settled agent sends out its whole list to active
agent, who then computes for closest location of eligible slots. After
determining the location to settle using L1norm distance, active agent
sends out notification that the location will be taken to all settled
agents, and travels to the location. Settled agents whose lists hold
such location in slot list then remove the location from their owns list.
Once a list is empty and no orphan in the surrounding, a settled agent
will go into sleep mode (Fig. 6.4(f)).

Once the active agent reaches the chosen location, it will first check
whether it is at corner points or not, in similar fashion to that of the
first agent. If an active agent finds itself in one of the corner point,
it will take special action, called corner settlement, as shown in Fig.
6.6. This is the step similar to corner handling in centralized algorithm,
but performed in a distributed fashion. For example, if an active agent
chooses a corner point v1,1, shown as Permutation A in Fig. 6.6, it will
move to new location v1,2 and create a list with only one location, called
pseudo-slot, shown as v3,1 in Fig. 6.6. A pseudo-slot is considered
as a slot by settled agents when responding to request signal, thus
both slots and pseudo-slots will be occupied before orphans. Note
that Permutation D does not have any agent at corner point, so it is
omitted.

If the chosen location for an active agent is not corner point, the
active agent will create a list of slots and orphan normally, similar to
that of first agent.

When an active agent receives a location marked as pseudo-slot and
chooses it to settle, it will notify settled agents of its choice then move
to the location. However, it will not create a list of slots and orphan,
and instead go directly into sleep mode.

Eventually all slots and pseudo-slots are occupied, and active agents
will not receive any response signal when requesting for slots. Active
agents then sends out request signal for orphans, and settled agents
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Permutation A Permutation B

Permutation C Permutation E

Handled A Handled B

Handled C Handled E

Figure 6.6: Distributed algorithm’s case-based method on how to han-
dle each corner point

with orphans in their lists will respond by sending orphan locations.
An active agent then computes for closest location then notifies all
settled agents of its choice. Like pseudo-slot, active agents settling at
orphans will go directly into sleep mode.

6.4.3 Termination

Termination of the distributed algorithm normally happens in the fol-
lowing cases.

Case 1: The number of agents is not enough to dominate the grid.
After settled agents receive no broadcast signal for a fixed amount
of time (longer than an interval of activation sequence), all the settled
agents will enter sleep mode, making themselves a subset of dominating
set of the grid.

Case 2: The number of agents in the grid is more than enough to
dominate the grid. The distributed algorithm will produce a complete
dominating set for the grid. In this case, algorithm has three different
conditions for last active agent to check.
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(a) Only one settled agent responds to an active agent with only
one orphan.

(b) Two settled agents respond to an active agent, but both have
the same orphan.

(c) Two settled agents respond to an active agent, but both orphans
are in the corner (Fig. 6.6b).

If one of the conditions is satisfied, the last active agent will send
out the termination message after notifying settled agents that it will
occupy the location, and then go directly into sleep mode. The termi-
nation message will be the last broadcast message, and stored in an-
swering machine’s memory of every agent, including agents that have
yet to activate.

Any agent activates after the broadcast will see termination mes-
sage as the most updated message, and leave the grid without con-
tributing to the distributed algorithm.

6.4.4 The Algorithm

We now provide a complete algorithm and prove that it is correct and
creates dominating set for grid correctly according to initialization step
in centralized algorithm.

Algorithm: DistributedGridDomination

Initialization
1. First agent activates.
2. First agent concludes that it is the first agent because there is no

stored message.
3. First agent checks for corner points as described in Subsection 6.4.1,

then moves to designated location as necessary.
4. First agent settles at its current location.

Settlement
1. Other agents activate one by one in uniformly distributed interval.

Activated agent checks stored message, making sure that it is not
a termination message.
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2. Active agents communicate with settled agents to find the closest
slot to settle.

(a) Active agent sends out request signal for slots. Settled agent
responds if it has unoccupied slots.

(b) Active agent computes the closest settled agent, then sends
request for a list of all slot locations. Settled agent sends list
of unoccupied slots.

(c) Active agent computes the closest slot then notifies other set-
tled agents. Settled agents remove to-be-occupied location.

(d) Active agent moves to closest slot, then checks for corner
points and proceeds as described in Subsection 6.4.2.

(e) If active agent is at pseudo-slot location, then it goes directly
into sleep mode.

(f) Active agent settles at current location and becomes settled
agent, then updates its list of slots.

3. During step 2.(a), If active agent receives no response, then it
sends out request signal for orphans and occupy orphan as stated
in Subsection 6.4.2.

Termination
1. During Settlement step 3., If active agent detects any of the fol-

lowing conditions; (i) only one settled agent responds, or (ii) two
settled agents respond with the same orphan or two different or-
phans which are at corner points, then it sends out termination
message.

2. During Settlement step 2.(a), If settled agents receives no request
signal for a fixed period of time, then the algorithm terminates.

3. During Settlement step 1., If active agent sees termination mes-
sage, then it leaves the grid.

Lemma 6.11. During the algorithm, the agents occupying non-pseudo,
non-orphan slots contribute to the optimal grid pattern correctly.

Proof. An active agent always settles in slots computed by other
settled agents. Since the slots computed by an settled agent are aligned
with the settled agent in optimal grid pattern according to Definition
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6.4, as long as the new active agent settles at non-pseudo, non-orphan
slots of previously settled agents, it will contribute to the optimal grid
pattern correctly.

Theorem 6.12. The number of agent used to dominate the grid in our

algorithm is bounded to b (m+2)(n+2)
5 c − 3 for any m× n grid such that

m,n ≥ 8

Proof. Our distributed grid domination algorithm computes a
dominating set correctly with the exception that the smaller of two per-
mutations cannot be chosen in the distributed manner. So, the size of

the computed dominating agent set is upper-bounded to b (m+2)(n+2)
5 c−

3.
Note that agents may perform their tasks such as traversing the grid

in at most m+n steps, and number of agents required to dominate the

grid is bounded to b (m+2)(n+2)
5 c − 3, the running time of algorithm can

be upper-bounded polynomial time of O(mn(m+n)) steps to construct
a dominating set algorithm on an m× n grid.

6.5 Summary

We presented an algorithm to the problem of finding dominating sets
on an m × n grid where m,n ≥ 8 in the distributed manner. First,
we briefly revisited Chang’s centralized algorithm that obtains a dom-

inating set of size b (m+2)(n+2)
5 c − 4. We then presented our distributed

algorithm that computes a dominating set of size b (m+2)(n+2)
5 c − 3 us-

ing similar methods under the restrictions of the distributed system
models.

References

[2] S. Alanko et al. “Computing the Domination Number of Grid
Graphs”. In: The Electronics Journal of Combinatorics 18.1 (July

95



2011). url: http://www.combinatorics.org/ojs/index.php/
eljc/article/view/v18i1p141.

[10] A. Bondy and U. Murty. Graph Theory. Graduate Texts in Math-
ematics 244. London: Springer-Verlag, 2008.

[12] G. J. Chang. “Domination numbers of grid graphs”. PhD thesis.
University of South Florida, 1992.

[14] E. Fata, S. L. Smith, and S. Sundaram. “Distributed dominating
sets on grids”. In: 2013 American Control Conference. Ed. by T.
Gopal, G. Jaeger, and S. Steila. New York: IEEE Press, 2013,
pp. 211–216.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability.
A Guide to the Theory of NP-Completeness. Books in the Math-
ematical Sciences 244. W. H. Freemn and Co., 1979.
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Chapter 7

Conclusions

The Cops and Robbers game in graph theory has been studied in
many variations. However, in the most basic of them, there are still
many subjects and properties that have not been known or explored
yet. We are particularly interested in the applications of the Cops and
Robbers game, and most of them are set to play on planar graphs. It is
known that a planar graph has a cop number of at most three, but the
capture time had not been established. Moreover, the characterization
of 2-cop-win or 3-cop-win planar graph has not been found yet. In this
thesis, we studied the Cops and Robbers game on planar graph on two
topics and contributed to one of the applications.

On the topic of capture time, it had only been studied on classes
of cop-win graphs (using one cop) and grids (using two cops) so far,
and was proved to be linear in both. For planar graphs, although it
had not been studied extensively, Aigner and Fromme have given a
winning strategy using three cops [1]. However, its capture time is
observed to be quadratic (O(n2)). In Chapter 2, we obtained a new
winning strategy for planar graphs using three cops. Its capture time
was proved to be linear (2n) in Chapter 3. This established that the
capture time of the Cops and Robbers game on planar graphs using
three cops is linear.

On the topic of cop number, for a given graph, the method to de-
termine whether it is cop-win graph was given [23, 30]. However, a
definite method to determine whether a planar graph is 2-cop-win or
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3-cop-win has not been found yet, and we are interested in finding one
through characterization of 2-cop-win or 3-cop-win planar graphs. To
this end, the smallest 3-cop-win planar graph should be established
first, so that any planar graphs of smaller order would be classified as
2-cop-win. We conjectured that the dodecahedral graph is the smallest
3-cop-win planar graph. Although we could not prove it yet, we have
shown in Chapter 4 that for any planar graph of order at most 19,
at least one 2-cop-winning vertex exists. We also gave some winning
strategies using two cops for special planar graphs of order 16 and 19.
We have also found new classes of 3-cop-win graphs (discussed in Chap-
ter 5), which may give useful insight in finding the characterization of
2-cop-win or 3-cop-win planar graphs.

The Cops and Robbers game is related to the dominating set prob-
lem in graph as well. In this thesis, we studied an application of
Cops and Robbers game in the field of motion planning for swarm
robots. Swarm robots can be used to solve a sensor-coverage prob-
lem by transforming the given area into a grid, and make the robots
move into positions such that the grid is dominated. Fata et al. [14]
have given a distributed algorithm which can dominate any m×n grid

using at least b (m+2)(n+2)
5 c + 1 robots. In Chapter 6, we improved on

minimum number of robots required to dominate a grid, and gave our
distributed algorithm which can dominated any m × n grid using at

least b (m+2)(n+2)
5 c − 3 robots. This is the closest result to the domina-

tion number of a m× n grid (the smallest size of the dominating set),

which is b (m+2)(n+2)
5 c − 4.

In the following, we give some topics for further work.
(i) We are working to prove the conjecture that dodecahedral graph

is the smallest 3-cop-win planar graph. One of the directions we may
choose is to turn the strategies for special graphs into one that can be
used for a particular class of planar graphs. We made an observation
that N̄(c1) and N̄(c2) always form a connected subgraph, and the
distance between two cops is at most three. This differentiates our
strategy from tandem-win, in which the distance between two cops is
at most one. If we choose this direction, we need to give a proper
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(a) Truncated cubical graph of or-
der 24

(b) Truncated cuboctahedral
graph of order 48

Figure 7.1: Some other examples of vertex-symmetric planar graphs
which are also 3-cop-win.

definition to the class of planar graphs that this strategy is valid for.
However, this may not be sufficient, because there may exist some
planar graphs of order at most 19 which do not fall into tandem-win
or our new class. Another direction is to use brute-force method, by
enumerating all the possible planar graphs of order at most 19 and
give winning strategy using two cops for all of them. This direction
particularly takes time and resource, even after eliminating known 2-
cop-win planar graphs.

(ii) Suppose that G is a vertex-symmetric planar graph, δ(G) ≥ 3
and |V (G)| ≥ 20. We believe that such a graph G without any two
adjacent k-cycle faces, k = 3, 4 or 6, is 3-cop-win. Dodecahedral
graph is known, and we provided the proofs that icosidodecahedral and
its truncated version are 3-cop-win. We also show two other vertex-
symmetric graphs in Figs. 7.1, which have 2-cop-winning vertices but
are 3-cop-win (without proof in this thesis). These graphs do not have
any two adjacent k-cycles, k = 3, 4 or 6. On the other hands, vertex-
symmetric graphs which are known (or were proved) to be 2-cop-win
so far have two adjacent k-cycle faces, k = 3, 4 or 6, see Fig. 7.2 for
examples. We are working to prove or disprove this hypothesis.
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(a) Truncated octohedral graph of
order 24

(b) Rhombicuboctohedral graph
of order 24

(c) Snub cubical graph of order 24
(d) Snub dodecahedral graph of
order 60

Figure 7.2: Examples of vertex-symmetric planar graphs which are
2-cop-win.
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Note that if δ(G) = 2, then G is simply a cycle of size |V (G)| and
thus it is 2-cop-win.

(iii) Finally. we are going to classify more planar graphs into 2-cop-
win or 3-cop-win and study their properties and structures. Among the
new 3-cop-win graphs we found in our study, Grinberg’s 42 has unique
structure. Its choke-like structure could be used to construct some new
class of 3-cop-win graphs as well. The method of constructing 3-cop-
win maximal planar graph, e.g., from dodecahedral graph, has a special
property that makes it 3-cop-win. That is, the shortest paths between
any pair of vertices of the original graph are through the vertices and
edges of the original graph only. This made it possible to construct
different 3-cop-win graphs (which are not maximal), as long as it has
such a property. It is also possible to use this property to reduce the
given planar graph (without changing its cop number) and determine
the cop number from the reduced graph instead. By classifying more
planar graphs and studying their properties, we may eventually find
the characterization of 2-cop-win or 3-cop-win, and thus obtain the
method to determine the cop number of any planar graph.
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