東海大学大学院平成28年度博士論文

越波式波力発電装置開発に向けた波の打上げ高と 越波量に関する基礎的研究

居 波 智 也

目次

第1章 序論	1
第2章 研究背景および研究目的	2
2.1 波力発電の歴史	3
2.2 波力エネルギーとエネルギー変換方法	6
2.3 海外の波力発電プロジェクト	7
2.4 日本の波力発電の状況	9
2.4.1 日本の波力エネルギー開発	9
2.4.2 日本における波力発電プロジェクト	10
第3章 既存の打上げ高理論	17
3.1 既存の打上げ高の理論	17
3.1.1 Le Meaute(堀川)	17
3.1.2 Miche (Miche, 1944, 1951)	18
3.1.3 Sainflou (Sainflou, 1928)	18
3.1.4 Saville (Saville, 1958)	18
3.1.5 中村ら(中村, 1972),間瀬ら(間瀬, 2003a),玉田ら(玉田ら, 2009)	18
3.1.6 高田(高田, 1970, a,b)	19
3.1.7 間瀬(Mase, 1989)	23
第4章 波の打上げ高特性	24
4.1 研究背景および研究目的	24
4.2 実験施設および実験装置	25
4.3 相似則	29
4.4 実験方法および実験条件	30
4.5 解析方法	35
4.6 波エネルギー算出方法	37
4.6.1 規則波の波エネルギーと波パワー	37
4.6.2 不規則波の波エネルギーと波パワー(合田,1984), (Tanaka ら,2012)	39
4.7 波パワーによる打上げ高の考察	
4.7.1 規則波	41
4.7.2 不規則波	52
4.8 まとめ	64
第5章 越波量特性	67
5.1 研究背景および研究目的	67
5.2 各種傾斜板長さによる越波量特性	
5.2.1 実験目的	68
5.2.2 実験施設および実験装置	68
5.2.3 実験方法および実験条件	75
5.2.4 解析方法	76

5.2.5	実験結果および考察	77
5.2.	.5.1 各傾斜板長に対する実験結果および考察	77
5.2.	.5.2 各越波揚程に対する実験結果および考察	84
5.2.6	傾斜板の長さによる波パワーと越波量の関係	90
5.2.7	まとめ	92
5.3 単元	水槽を使った越波量特性	93
5.3.1	実験目的	93
5.3.2	実験施設および装置	93
5.3.3	実験方法および実験条件	95
5.3.4	解析方法	96
5.3.5	実験結果および考察	97
5.3.6	既存の研究との比較	101
5.3.7	波パワーによる越波量推定の考察	106
5.3.8	まとめ	107
5.4 多	段水槽を使った越波量特性	109
5.4.1	実験目的	109
5.4.2	開口幅と流入に関する実験	109
5.4.	.2.1 実験施設および実験装置	109
5.4.	.2.2 実験方法および実験条件	112
5.4.	.2.3 結果および考察	113
5.4.3	斜面板角度による越波量特性実験	114
5.4.	.3.1 実験目的	114
5.4.	.3.2 実験施設および実験装置	114
5.4.	.3.3 実験方法および実験条件	118
5.4.	.3.4 結果および考察	120
5.4.4	まとめ	128
第6章	結論	129
参考文献	献	

謝辞

第1章 序論

人類のみならず地球上の全ての生命は、現在、地球温暖化という渦中に存在している。地球温暖化とは人為起源の温室効果ガスの影響で地球の気候システムが温暖化に傾くことである(環境省)。地球温暖化によって、大気や海洋の世界平均温度の上昇、雪氷の広範囲にわたる融解、世界平均海面水位の上昇がもたれされ、これら気候システムの急激な変化によって、水、食料、エネルギーなどの生命に必要な要素が大きくバランスを欠くこととなる。このバランスの欠如によって引き起こされる最悪のシナリオは、現状のまま化石燃料を消費し続けると 2050 年には大気中の CO2 濃度が 500~550ppm になり、陸上動植物の 15~37%が絶滅するという結論を得た(Nature, 2004)。

二酸化炭素(CO_2)やメタン(CH_4)は,最も代表的な人為起源の温室効果ガスであり,2005 年における大気中 CO_2 濃度(379ppm)およびメタン濃度(1774ppb)は,過去約65 万年間の自然変動の範囲をはるかに上回っている.これらの濃度上昇は,主に化石燃料を使用することで起きており,人類が化石燃料に依存したシステムを構築し続ける限り,この深刻な問題を解決する事は不可能である.即ち,地球温暖化を防ぐためには,化石燃料依存のシステムから脱却し,人為起源の温室効果ガス排出量を減らすことが必須なのである.

第2章 研究背景および研究目的

現在,地球温暖化は世界各地で問題視され,このまま化石燃料依存のシステムを継続し温暖化が進むと,種の絶滅,気候変動,食糧問題,水問題,海面上昇など様々な問題が起こると発表されている状況において,化石燃料に依存しないシステムとして,太陽光,風力,バイオマス,地熱等の再生可能エネルギーが注目視されている。またこれらを積極的に利活用する技術を開発することは土木技術者の使命だと考える。

化石燃料依存のシステムから脱却し、温室効果ガスを削減するひとつの手段として、筆者が所属する、 東海大学海洋学部環境社会学科田中研究室では、海洋エネルギーを電気に変換させる方式を検討してお り 2009 年から本格的に研究を進めている。海洋エネルギーの発電方式には大きく分けて 8 種類 (EMEC) があるが、我々が研究を進めている発電方式は図 2-1 に示す越波型の波力発電である。

越波式波力発電装置は、波エネルギーを2つの変換過程を経て電気エネルギーが取得できる.1つ目の変換過程は、襲来する波のエネルギーを傾斜板を使って越波させ水槽に貯水することにより位置エネルギーへ変換する過程である.2つ目の変換過程は、変換された位置エネルギーによって水槽下部に設けられた放水管内の発電機のプロペラを回す運動エネルギーに変換する過程である.この過程を経て電気エネルギーへと変換される仕組みとなっている.

筆者らが開発している発電装置は、多段式の水槽を有している.これは、潮位変動や天候の変化に伴い移り変わる海の波浪条件にあわせて設計した.

本論文では、効率のいいエネルギー変換を考えるうえで重要な要素となる、傾斜板を遡上する波の打上げ高と、打ち上げられた越波量について過去の研究論文と筆者らが行った実験結果を比較検討し、新たな理論を提案することを目的としている.

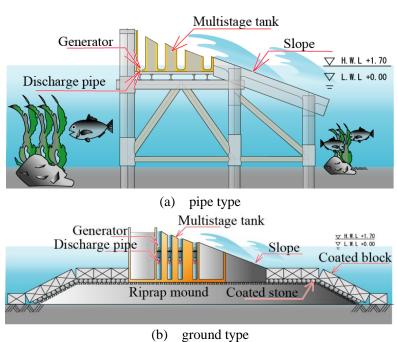


図 2-1 越波式波力発電装置のイメージ (a:杭式, b:重力式)

2.1 波力発電の歴史

波のエネルギーを利用しようとする試みは、ヨーロッパを先行とし古くから存在する. 例えば、イタリア人の H.F.Linden は、1889 年に波喰船という波のエネルギーを利用し推進する船を試作している(高橋、1993). また、図 2-2 は今から約 120 年前に波力発電の特許を取得した一例である(益田、1987). 斜線で示す浮体部が、襲来する波により上下し、その動きに連動した油圧ポンプが動力を発生する仕組みになっている.

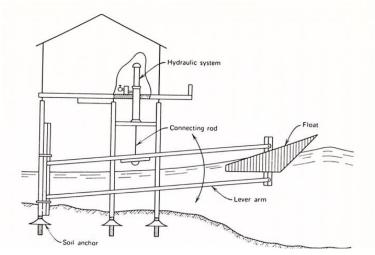


図 2-2 波力発電特許の一例(益田, 1987)

20世紀の初め頃、フランスの Bouchaux-Praceique が波から電気を作る実証試験を行った. ボルドー海岸と繋がった井戸を掘り、襲来する波によって井戸の水面が上下するのにともなって空気を押し引きし、ファンを回転させて発電するシステムとなっている. 実際に 1kW の発電に成功し、自宅に電力を供給したと記録されている. (高橋, 1993)

20 世紀の半頃に入ると、波エネルギーを人間生活に利活用させる事を目的とした研究が進められ、実用化に向けた開発が進んだ、蓄電池と組み合わせた灯標ブイや小型灯台用電源が考案され、このシステムはその後の波力発電の開発に大きな影響を与えた。

モナコ海洋研究所は 1931 年に海水の揚水を行うための波エネルギー変換装置を開発し 10 年間稼働した. この他にも多くのアイディアが出され、そのうちいくつかが実験へと進んだ(高橋ら,2009). また、同年にはヨーロッパ委員会(EC)のジュール 2 計画として波力発電開発研究が開始された. この計画では、1994~1995 年を空気タービン方式の発電テストと位置付けた第 1 段階、1995~1998 年に沖合波力発電所の実海域テストと位置付けた第 2 段階として、段階的に発電方式の研究が進められた(高橋,1993).

日本においても多くの装置が考案されており、図 2-3 は広井博士が研究開発した装置のひとつで、空気を圧縮し霧笛を鳴らすものである。図 2-4 は、1948 年に内務省の前出が雑誌「港湾」に発表した波力発電ケーソンの原型とも言うべき波エネルギー変換装置案であり、前ではケーソンに波エネルギー変換装置を付加することが合理的であると述べている(高橋、1993).

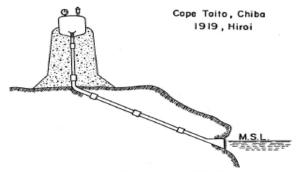


図 2-3 広井の波エネルギー変換装置 (Hiroi, 1919)

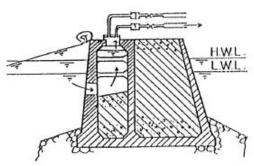


図 2-4 前出の波エネルギー変換装置 (高橋,1993)

写真 2-1 航路標識ブイ (高橋, 1993)

写真 2-1 は 1965 年に実用化された航路標識ブイ型の波力発電装置である(高橋, 1993). 益田善雄は、20世紀半ばに開発された他国の灯標ブイに影響を受けたことから港路標識のブイに小型の波力発電装置を取り付けることを考え、世界初となる波力発電を実用化したマスダ・タービンを開発した。これは、ブイ中心にある円筒の中の水面が動き、空気の圧縮により空気タービンを回転させるものである.4 つの弁をもつ空気タービンは、波の上下にともなう空気の逆流を、一方向の流れに調整する機能を持たせた画期的な構造となっている(高橋, 1993). 発電出力は 10-500W である. なお、この変換方式は、振動水柱方式(OWC: Oscillating Water Column)と呼ばれており、これまで日本で開発されてきた中で最も多いタイプである. なお、空気タービン方式とも呼ばれており、時間を問わず発行するため、常に船舶に航路を表示できる画期的な発明となり、全国各地に1,000 基以上設置されている(高橋, 1993).

表 2-1 は国内外の波力発電の歴史を年表にまとめたものである.

表 2-1 波力発電年表(1973~2004年)(渡部ら, 2005)

年	世界	日 本
1973	中東戦争、第一次石油危機	石油パニック、物価高騰
	(英)salter,浮遊式可動物体型DUCK発明	2 2 1 154 Ibril 1: 4 Wild
	Falnsら(ノルウェー)点集中装置の解析	航路標識用0WC益田ブイ世界で1400個普及
	Turne 5 () / / / / / / / / / ALE / // //	波力発電船「解明」第一期実験(鶴岡市三
1977		瀬沖)
1979	波エネルギー国際会議Chalmers大(スエーデン)	
	,	室蘭工大、室蘭港に波力実験プラント・ ケーソン設置
1980	(英)Count編: Power From Sea Waves刊	本間ほか「海洋エネルギー読本」刊 北海道増毛町、振り子式波力発電20 k W給 湯装置
1981		
1982	Coventry大学(英)Bellamyら、SEA CLAM開発	
1984		日本造船学会「海洋エネルギー利用」刊 室蘭工大波力実験プラントに振り子式新技 術事業団固定型0WC40kW設置 第一回波浪エネルギー利用シンポジューム (海洋技術センター)
1985	クハーデー任(ノルリェー)多重共鳴空 OWC(MOWC)500kW及び波うち上げ式 タプチャ	
1987	デンマークブイ1kW現地試験	
1988		エンジニアリング振協、九十九里町にOWC 定圧化システム装置30kW設置
1990		土木学会「波エネルギー利用技術の現状と
1991	Queen's大学(英)スコットランドISLAY島で	課題」刊 運輸省、酒田港に波力発電防波堤建設
1000	陸上型OWC75kW実験	你是自身连上去。 16 (11日) 2 . 18 x)
1992	σ · 1 (ση	渡辺らロータリベーンポンプ及び振り子ロータリーベーンポンプ体型システム発明海洋エネルギー国際シンポ"のDEC93"室蘭工大/寒地港湾研究センター主催、室蘭開催ー体型ロータリーベーンポンプ20kw現地試
1995	ART社(英),波-風力ハイブリット型システム OSPRAYを設置 2ndEU波エネルギー会議Lisbon ROSS(英):「Power from Sea Waves」刊 McCabeポンプKilbahara(アイルランド)で試	験、室蘭工大/寒地港湾技術センター 車北電力 水 かずのWC120LW短息県 原町港型
1990	mcCabenマン MIIDanara(ノイルノイト)で試	
	国連温暖化防止条約国会議(COP3)、京都	近藤編「海洋エネルギー利用技術」刊 「新エネルギー利用促進法」制定 リニューアブルエネルギー有効利用・普及
1998	3rdEU波エネ会議Patras(ギリシャ)	保進機構(JOPRE)発足
2000	(英)スコットランドISLAY島で陸上OWC500 k W級実用機, LIMPET, 稼働	海洋科学技術センター「マイティーホエール」120kWの試験開始、三重県英盧湾「電気事業者による新エネ利用に関する法」制定
2001	4th波エネ会議Aalborg(デンマーク) Energytech社、Port Kembla(豪)に波収歛型 OWC設置	
2002		
		佐賀大学に海洋エネルギー研究センター開
2003		設 北海道瀬棚町、瀬棚港内に海上風力発電、
	Ocean Power Delivery Ltd.スコットランド Orkney沖で可動物体型Pelamisの海域試験 5thEU波エネ会議、Cork(アイルランド)	THE TAX HERE IN THE PROPERTY OF THE CONTRACT O

2.2 波力エネルギーとエネルギー変換方法

波力発電は、風力、太陽光、水力などの再生可能エネルギーに匹敵するものであると考えられる. 現在の日本では、波力エネルギーを利用している地域はほとんどなく、発電のための技術もほとんど実証されていない. しかし、地球規模で理を考えエネルギーの多様化を図ると、波力エネルギーは再生可能エネルギーの1つとして必要不可欠なものである.

地球の表面の約3分の2を覆っている海は、膨大なエネルギーを有し、大きなエネルギー資源といえる。そのエネルギー量は膨大な量だと推測でき、波力エネルギーもその中のひとつである。波は地球の活動が継続されている限り、波力エネルギーは無尽蔵に作られると考えられる。波力エネルギーは、そのエネルギー資源の大部分は未だ利活用されていないのが現状である。

波力エネルギーを利用するには波の持つエネルギーを何らかの形で変換し、既存の系統連系に組み込む必要がある。変換する技術として、波力エネルギーの変換には図 2-5 (EMEC) のような 8 つの基本的なシステムが提案されている。これらのシステムによって直接発電機を作動させる方法や、間接的にタービンや発電機を作動させる方法が提案されている。

Oscillating water colum (OWC)	Overtopping device	Oscillating wave Surge Converter	Bulge Wave
© 2008 AQUARET	© 2008 AQUARET	© 2008 AQUARET	© 2012 AQUARET
Attenuator	Point absorber	Submerged pressure differential	Rotating Mass
© 2008 AQUARET	© 2008 AQUARET	© 2008 AQUARET	© 2012 AQUARET

図 2-5 各種波力発電方式

(EMEC: http://www.emec.org.uk/marine-energy/wave-devices/)

2.3 海外の波力発電プロジェクト

表 2-2 に主な海外の波力発電プロジェクトを示し、いくつかプロジェクトを取り上げる.

表 2-2 海外波力発電プロジェクト

プロジェクト名及び装置名	国名	社名及び事業名
Pelamis.Pelamis P2	スコットランド	Ocean Power Delivery
VIVACE	アメリカ	Vortex Hydro Energy
WaveDragon	デンマーク	Wavedoragon
AquaBuOY	アメリカ	Aqua Energy Group
PowerBuoy	アメリカ	Ovean Power Technologies
Wavebob	アイルランド	Wavebob
Pico	ポルトガル	Wave Energy Center
Pot Kembla	オーストラリア	OceanLinx
SSG(Seawave Slot-Cone Generator)	ノルウェー	WAVEenergy AS

Pelamis

図 2-6, 写真 2-2 に示すイギリスの Pelamis wave パワー社が開発した Pelamis は, 直径 3.5m の円筒浮体を連結した全長 150m の発電装置となる. シリンダーポンプと可変容量型のモータを浮体の連結部に組み合わせて発電を行う仕組みとなっている. 2008 年 9 月に北ポルトガル沖に 750kW 機が 3 基設置された (NEDO, 2007).

図 2-6 Pelamis

写真 2-2 Pelamis
(http://www.pelamiswave.com)

Wave Dragon

写真 2-3 に示すのはデンマークの Wave Dragon ApS 社が開発した浮体式越波型装置 Wave Dragon である. 2011 年 3 月ころから北海にて 1.5MW の試作機を投入し、4MW および 7MW の発電機への展開可能性を示唆している. 浮体姿勢を支持する渓流ケーブルは、Aalborg 大学が 1/50 モデルの試験を担当した. このプロジェクトはデンマークエネルギー局の EUDP プログラムの支援を受けた. (Wave Dragon)

写真 2-3 Wave Dragon(http://www.wavedragon.net/)

The SSG

図 2-7, 図 2-8 に示す The SSG(Slot-cone Generator)は,2004 年にノルウェーの WAVE energy AS 社により開発された固定式越波型発電装置である(NEDO, 2007).固定式だが多段であるため潮位変動時の越波にも対応し,図に示したように防波堤に組み込まれるタイプとなる.

図 2-7 The SSG

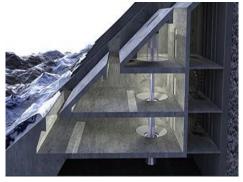


図 2-8 The SSG

(http://www.waveenergy.no/OffshoreInstallation.htm) (http://www.waveenergy.no/OffshoreInstallation.htm)

以上、様々なプロジェクトとタイプを取り上げたが欧州各国は海洋エネルギー技術で世界を先導する立場にあることがわかる。欧州各国がこれほどまでに海洋エネルギー技術を支えられている大きな要因は、再生可能エネルギーを支援することにより世界の気候変動の脅威に取り組もうとする政府や民衆の積極的な政策と、クリーン技術の主導的地位を得て経済成長の機会を得ようとする意欲にある。その他にも、欧州各国を訪れるとわかるが、例えばドイツは我が国の様に地域ごとで電力会社が勝手に決まっていることは無く、大手電力会社以外に再生可能エネルギー100%の電力ベンチャー企業が多くあり、個人が任意で契約する電力会社を選択できるシステムが確立されている。その様な背景も欧州各国が世界を先導している要因のひとつといえる。

2.4 日本の波力発電の状況

2.4.1 日本の波力エネルギー開発

日本は四方を海に囲まれている島国であるゆえに、国全体を取り巻く海のエネルギーは膨大なものである。図 2-9 は日本に来襲する波パワーの分布を示すもので、全体として年間波エネルギー量の総量は2GWh/m である(田中ら, 2013)。その恵まれた資源を利用しようと日本でも波力エネルギー開発は行われていた。しかし、巨額の公費の投入にかかわらず失敗が相次ぎ、現在は1998年~2002年に行われたマイティホエールプロジェクト終了を最後に大規模な波力エネルギー開発は行われていないのが現状である。

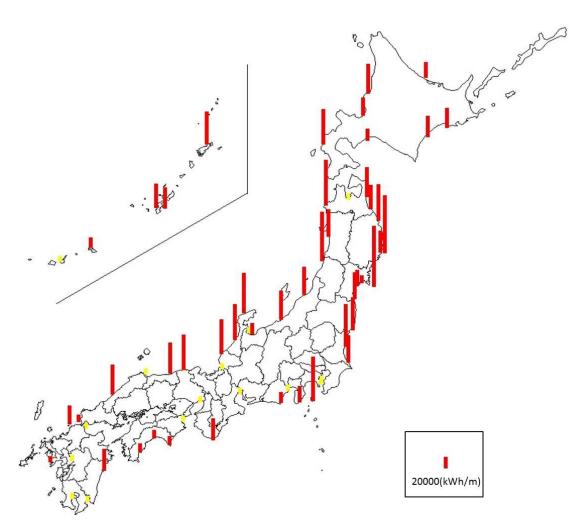


図 2-9 日本近海の波パワー(田中ら, 2013)

2.4.2 日本における波力発電プロジェクト

日本では海洋科学技術センターの「海明」や室蘭工大の「振り子式装置」など多くの波エネルギー変換装置が研究されてきた.表 2-3 に示すとともに,発電方式ごとに概要を示す(田中ら,2009).

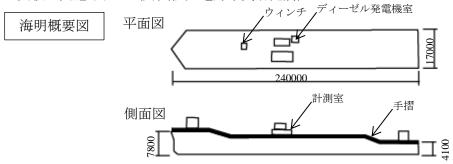

実験名	および実験機関	実施年	発電方式
海明	海洋科学技術センター	1977~1985	振動水柱型
振り子式装置	室蘭工大	1979~1990	振り子式
沿岸固定式	海洋科学技術センター	1983~1984	振動水柱型
海陽	日本造船振興財団	1984~1986	振り子式
定圧化タンク方式	エンシ゛ニアリンク゛振興協会	1988~2000	振動水柱型
波力発電防波堤	運輸省	1990~1991	振動水柱型
水弁集約式	東北電力	1996	振動水柱型
マイティーホエール	海洋科学技術センター	1998~2002	振動水柱型
ジャイロ式	神戸大・㈱アルファ技研	2001~	ジャイロ式
振り子式装置	関西電力	1989~1999	振り子式

表 2-3 わが国の波力発電の開発

振動水柱型

海明

図 2-10 に示す海明は浮体構造物で、浮室を除いて底部は空いて空気室となっており、室内の水面が上下することによって空気タービンを回しエネルギーを取り出す振動水柱型である(益田ら、1979). 1978 年の実験開始以来、独立行政法人海洋研究開発機構(益田ら、1979) を中心とし、山形県鶴岡市由良の沖合で3回の実験を実施している。実験開始当初は25m²の空気室が24室に仕切られており、IEA(国際エネルギー機関)との共同研究として実験が進められ、イギリス、アメリカ、カナダ、アイルランドが参加した。第2次実験では東北電力の系統に送電する試験を、第3次実験では空気室の改造を行った。空気タービンには常に一方向に回転するウェルズタービンを用いるなど、出力向上を目指した実験が実施された(財団法人電力中央研究所).

本体	空気弁箱	発電機	空気タービン
全長80m	2枚弁方式	定格出力125kW/基	翼車直径1.4m
巾12m	発電機及び空気タービン収容	定格電圧200V	アルミ合金製
深さ4.1,5.3,7.8m	高さ4.8m	設置数3基(53年)	設置数3基(53年)
重量500トン	長さ4.708m	設計10基(54年)	設計10基(54年)
空気室22室	巾2.258m	(IEA2期含む)	(IEA2期含む)
1室辺り高さ7.8~4.1m		空気タービン直結	
長さ6m,巾4.4m			

図 2-10 海明の概要 (益田ら, 1979 を基に作成)

沿岸固定式

図 2-11, 写真 2-4 は沿岸固定式波力発電装置と呼ばれており, 1983 年に海洋科学技術センターが富士電機や三井造船とともに山形県三瀬の海岸で実証実験を行った. 波力発電ケーソンと同じ振動水柱方式の装置であり, 定格 40kW のタービン発電機によって, 実験期間中平均 11.3kW を記録している (高橋, 1993).

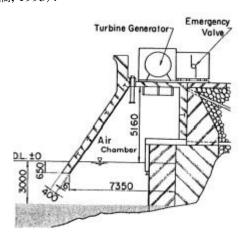


図 2-11 発電システム図 (高橋, 1993)

写真 2-4 沿岸固定式装置 (三瀬) (高橋, 1993)

定圧化タンク方式

写真 2-5,写真 2-6,図 2-12,図 2-13 はエンジニアリング振興協会が,竹中工務店等とともに 1987年に千葉県山武郡九十九里町で定圧化タンク方式波力発電システムの実験を行った概要である.多数のパイルからなる空気室を持ち,ここからの空気室を定圧タンクに一度ためてタービンを回転させている(竹中工務店).概要を以下に示す.

波エネルギー吸収装置:直径 10m, 高さ 11.8m, 10 ユニット

定圧化タンク:直径9.6m(このタンクで平滑化する) 定格出力:30kW(ラジアル型タービン・同期発電機)

写真 2-5 定圧化タンク方式波力発電システム (http://www.takenaka.co.jp/solution_manage/needs/recy clable/service05/index.html)

写真 2-6 定圧化タンク (http://www.takenaka.co.jp/solution_manage/needs/recyclable/service05/index.html)

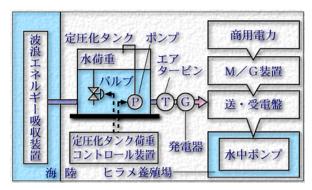


図 2-12 発電システム

(http://www.takenaka.co.jp/solution_manage/nee ds/recyclable/service05/index.html)

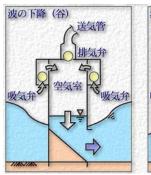


図 2-13 エネルギー吸収装置の機構

(http://www.takenaka.co.jp/solution_manage/ne eds/recyclable/service05/index.html)

波力発電防波堤

図 2-14, 図 2-15 は運輸省によって設置された波力発電防波堤である. 設置海域は秋田県酒田港で, 1987 年から設計と施工が進められ, 1989 年 12 月より運転が開始した. 1991 年まで実証試験を行い, 1999 年 7 月まで発電機器等の劣化試験が行われた. 発電は OWC システムである. タービンは, 空気流の向きにかかわらず一定の方向に回転するウェルズタービンを用い, 大きな波が発生した時は空気を外に逃がす保護装置を備えている (高橋, 1993).

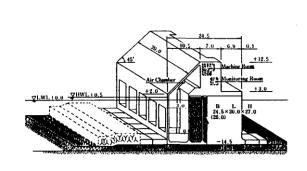


図 2-14 酒田港波力防波堤概要図 (高橋, 1993)

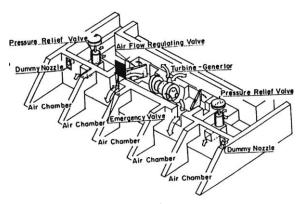


図 2-15 発電システム図 (高橋, 1993)

水弁集約式

写真 2-7 に示す水弁集約式波力発電システムは、東北電力が 1996 年 9 月より原町火力発電所の南防波 堤において実証実験を行っており、波高 1.2m 以上の波浪状態において、平均出力が常時プラスになり総合効率は約 8%になった(東北電力株式会社).

設置場所:原町火力発電所の南防波堤突端部

定格出力:130kW (振動水柱型)

タービン: タンデム式衝動型空気タービン

発電機 : 横軸形誘導発電機

発電電力:6kV電力系統に接続送電

写真 2-7 水弁集約式波力発電システム
(https://www.tohoku-epco.co.jp/enviro/tea3/chapter3/sec1/12.htm)

マイティホエール

写真 2-8, 図 2-16 に示したマイティホエールは,海の沖合に停泊させ,打ち寄せる波の力を効率よく吸収して発電する沖合浮体式波力装置であり,断面が鯨に似せている。また波を吸収する消波作用も備え持つ。発電には振動水柱型空気タービン方式を用い,沖合からの波によってマイティホエールの前面にある空気室内の水面が上下し、空気タービンを回転させ発電を行う(鷲尾ら,2000).

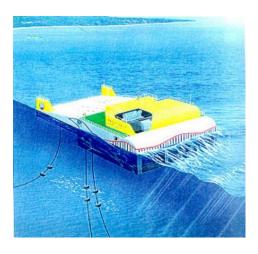


写真 2-8 マイティホエール

図 2-16 マイティホエール (鷲尾ら, 2000)

(CDIT: http://www.cdit.or.jp/o_magazine/vol2/p2.html)

振り子式波力発電

振り子式波力発電装置

室蘭工業大学および北海道開発局土木試験所の協力のもと,昭和58年3月に室蘭港外に一次変換出力5kWの発電装置を設置した. (渡部ら,1986). 出力は1~12KWである.

写真 2-9 振り子式波力発電装置 (波力発電:パワー社)

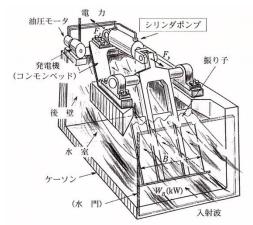


図 2-17 振り子式波力発電装置

(CDIT: http://www.cdit.or.jp/o_magazine/vol2/p2.html)

海陽

写真 2-10 は浮体式波浪発電装置「海陽」である. これは波浪によるソルター型浮体の運動をリンク機構で SEP 型の海洋固定構造物上のアクチュエーターに伝達を行い,油圧に変換し,油圧モータを経て交流発電機を駆動するものである (NEDO 再生可能エネルギー技術白書). 1984 年沖縄県八重山郡

西表島サバ崎沖水深 10mに設置. 約2年間実験を実施した. 出力は1~12kW であった.

写真 2-10 海陽 (NEDO 再生可能エネルギー技術白書)

久慈波力発電所 (NET)

文部科学省の東北復興次世代エネルギー研究開発プロジェクト(課題1)「三陸沿岸へ導入可能な波力等の海洋再生可能エネルギーの研究開発」にて進められた振り子式発電となり、東日本大震災で被災した岩手県久慈市に波の力を活用する目的である。2016年8月に玉の脇漁港に設置し運転をスタートする予定であり、北日本造船㈱などが協力し東大生産技術研究所が開発を進めてきた。装置は幅7m、長さ12m、高さ4mの装置の下に取り付けられた幅4m、高さ2mの板が波を受けることで発電機を動かす。想定される出力は43kWとなり、一般家庭で約10世帯分の電力を賄う計算となる。

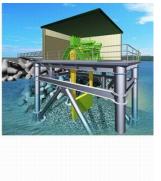


図 2-18 波力発電装置の設置イメージ (スマートジャパン:

斜板オイル モータ 番圧器 43kW永久磁石 発電機 (PMG) 油圧が取り装置、 風車用パワコン等 を活用 鋼製ジャケット構造物 地産等: 2013-252157 提出日: 平25.12.5 発明者: 林昌奎、丸山康樹他8人 特許出願1.25年 (大学法人東京大学 日立達船、川崎重工、東洋電機製造

図 2-19 波力発電装置の内部構成 (スマートジャパン:

http://www.itmedia.co.jp/smartjapan/articles/1603/29/n ews039.html)

http://www.itmedia.co.jp/smartjapan/articles/1603 /29/news039.html)

ジャイロ式波力発電

写真 2-11, 図 2-20 に示す波力発電システムは、神戸大学の神吉教授を中心に開発されたシステムとなり、ジャイロモーメントを利用し浮体の波による揺れから直接発電機を回転させる方式となる. 鳥取県 賀露港沖で 20kW 級のブイ型試験機の実験が、和歌山県西牟婁郡周参見漁港内で 50kW 級のドーナツ型試験機の実証実験が実施された (永田、2009).

写真 2-11 ジャイロ式波力発電システム (永田, 2009)

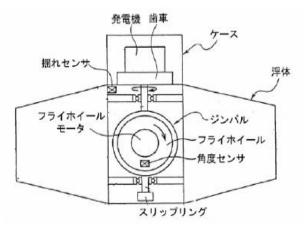
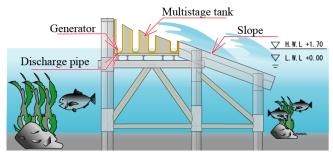


図 2-20 発電システム図 (永田, 2009)

機械式波力発電

機械式波力発電システム

図 2-21 に示す波力発電システムは、三井造船が Ocean power Technologies 社の波力発電装置である Power Buoy を日本海域に適した仕様に改造した機械式波力発電装置となる。この発電方式は、波に合わせてフロートが上下し、発電機を駆動して発電するものである。定格出力に達するためには有義波高 2m、有義波周期 8s 以上を必要とする(三井造船技報).


図 2-21 機械式波力発電装置 (三井造船技報)

越波型波力発電

越波式波力発電装置

2012 年度 NEDO「風力等自然エネルギー技術研究開発/海洋エネルギー発電システム実証研究」に採択され、市川土木㈱(再委託:東海大学)、いであ㈱、協立電機㈱の4者で共同研究開発を行った。これに先駆けて、2009 年に東海大学(田中博通)が NEDO「新エネルギー技術研究開発/洋上風力発電等 技術研究開発/海洋エネルギー先導研究」において採択され、様々な波浪条件や潮位変動に対応する基本的な多段式の構造と水理学的特性を決定した。それを引き継ぎ、2012 年度から多段式の越波式波力発電装置開発に向けた実証試験への取組を行った。この装置は、20m 幅の装置をひとつのユニットと考え、日本全国の港湾にある防波堤の沖側に複数設置する構想となっており、襲来する波エネ

ルギーのおよそ 15%~20%を電気に変換する総合変換効率の高い装置となっている. 図 2-22, 2-23 に示すのは、多段式の越波式波力発電装置(杭式・重力式)のイラストとなる. 2 タイプ考案している理由として、既存防波堤や新設防波堤に設置する際に、周辺環境に配慮したタイプを選択できる柔軟性を持ち合わせているためである. 特に離島などの電力供給用燃料コストが大きな場所にはメリットがある(居波, 2014).

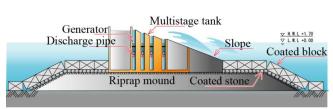


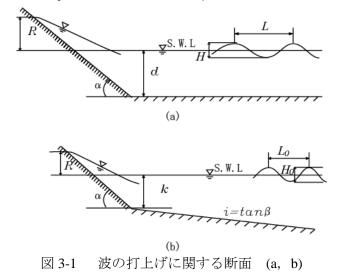
図 2-23 越波式波力発電装置の概要 (b)重力式

第3章 既存の打上げ高理論

3.1 既存の打上げ高の理論

波の打上げ高に関する研究はすでに行われており、Le Mehaute (堀川)、Miche (Miche, 1944, 1951)、Sainflou (Sainflou, 1928)、 Saville (Saville, 1958)、Hunt (Hunt, 1959)、中村ら (中村, 1972)、高田 (高, 1970)、間瀬ら (間瀬ら, 1989, 2003a)、玉田ら (玉田ら, 2009)の研究が広く知られている。本論文は、これらの研究と著者らの研究を比較し新たな知見を得ることを目的としている。以降に、既存の理論を記述する。

3.1.1 Le Meaute (堀川)


一様水深 d の部分に勾配 $tan\alpha$ の斜面が存在するときに、水深 d で波高 H、波長 L の波に斜面が打ち上がる高さ R (静水面からの高さと定義) は、一般に下記の式で表される(図 3-1, a).

$$\frac{R}{H} = F\left(\alpha, \frac{2\pi d}{L}\right) + G\left(\frac{H}{L}, \frac{2\pi d}{L}\right) - K\left(\alpha, \frac{2\pi d}{L}, \frac{H}{L}\right)$$
(3.1)

ここで、関数 $F(\alpha, 2\pi d/L)$ は線形理論による相対打上げ高さ、関数 $G(H/L, 2\pi d/L)$ は非線形効果による相対打上げ高さの補正項、また、関数 $K(\alpha, 2\pi d/L, H/L)$ は砕波および底面の摩擦によるエネルギー損失のために生ずる相対打上げ高さの減少項である。図 3-1, b に示すように、斜面上に堤防を設置した場合には、さらに堤防の条件(法面勾配 tana、堤脚水深 h、法面粗度を示す k)が加わり、その関係はいっそう複雑になるため、通常は下記の式で表す。

$$\frac{R}{H_0} = f\left(\frac{H_0}{L_0}, \frac{h}{L_0} \ddagger \text{ total} \frac{h}{H_0}, i, \tan \alpha, k\right)$$
(3.2)

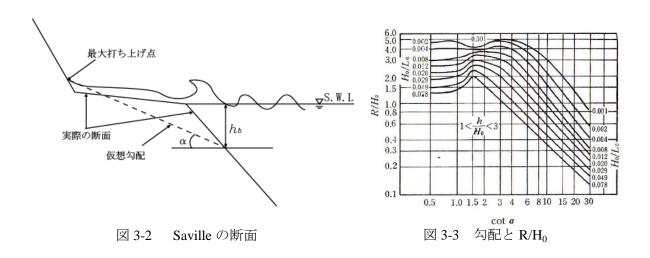
ここに、 H_0 は深海波波高、 L_0 は深海波波長、i =tan β は海底勾配である.

3.1.2 Miche (Miche, 1944, 1951)

図 3-1 (b) に示す α が π /2の直立壁の場合,重複波が発生し打上げ高さは重複波の波峰高 η_s に等しい. また, α が π /2よりも小さな傾斜壁の場合でも、波形勾配がある限界値よりも小さければ波は斜面上で砕けずに完全反射する. Miche はこのときの打上げ高さを次式で得た. ただし、波形勾配は非常に小さいという条件下で解いている.

$$\frac{R}{H} = \sqrt{\frac{\pi}{2\alpha}} \quad (\alpha : \vec{\mathcal{P}} \vec{\mathcal{V}} \vec{\mathcal{V}}) \tag{3.3}$$

3.1.3 Sainflou (Sainflou, 1928)


Sainflou は、重複波の水面波形に対して以下の式を提案した. この式は surging waves 領域の遡上高を考える際によく用いられ、中でも後述する高田はこの式と Miche の式を比較の際に用いている.

$$\eta_{1} = H_{1} cos \frac{2\pi}{L_{1}} x_{0} \cdot cos \frac{2\pi}{T} t + \frac{\pi H_{1}^{2}}{L_{1}} coth \frac{2\pi h_{1}}{L_{1}} \cdot cos^{2} \frac{2\pi}{T} t$$

$$x = x_{0} - H_{1} coth \frac{2\pi}{L_{1}} \cdot sin \frac{2\pi}{L_{1}} x_{0} \cdot cos \frac{2\pi}{T} t$$
(3.4)

3.1.4 Saville (Saville, 1958)

護岸堤防が複合的な断面形状を持つ場合,もしくは陸上にある場合について,Saville は図 3-2 に示す仮想勾配法という推定方法を提案した.仮想勾配法とは,砕波点と最大打上げ高を求め,2 点を結んだ直線を仮想勾配と定義し,図 3-3 に諸値を照らし合わせ一致するまで繰り返し打上げ高を特定する方法である.

3.1.5 中村ら(中村,1972), 間瀬ら(間瀬,2003a), 玉田ら(玉田ら,2009)

中村らは Saville の仮想勾配法では補いきれない砕波帯の岸側で、堤脚水深は沖波波高に比べて非常に小さいか 0 である場合を想定し砕波点と打上げ点の中間に位置する地形形状を考慮した改良仮想勾配法を提案した、改良仮想勾配法は、図 3-4 に示す波の打上げ高と砕波水深点の 2 点間の実断面積 A

から式 (3.5) によって仮想勾配 β を決定するものである. なお、間瀬ら、玉田らは中村らの改良仮想 勾配法を踏襲している.

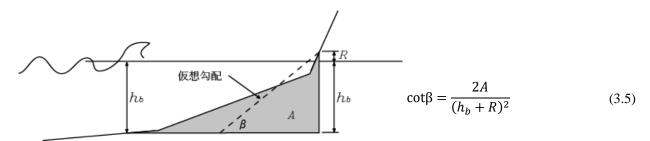
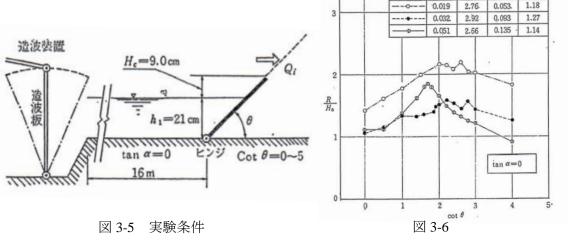



図 3-4 改良仮想勾配法の説明断面

3.1.6 高田 (高田, 1970, a, b)

高田の研究では、相対遡上高 R/H_0 におよぼす $cot\theta$ の影響を実験的に調べた。実験条件は図3-5であり、

遡上高とのり勾配の関係

Ho/Lo h1/Ho

堤脚水深が砕波して遡上する breaking waves の場合と、砕波しないで振動状態で遡上する surging waves の場合とにわかれるが、Miche によれば、両者の境界を示す限界条件式は、次式で示される.

$$\frac{H_0}{L_0} = \sqrt{\frac{2\theta}{\pi}} \frac{\sin^2 \theta}{\pi} \tag{3.6}$$

ここで、壁面の任意の傾斜角 θ に対して、式(3.6)から求まる H_0/L_0 の値は surging waves を生ずる最大波形勾配 $_s$ (H_0/L) $_{max}$ を表し、任意の H_0/L_0 に対して式(3.6)から求まる θ の値は、surging waves を生ずる最大傾斜角度 θ_c を表わす.

surging waves 領域の遡上高については、Miche (1944, 1951) が線形理論より次式を導いている.

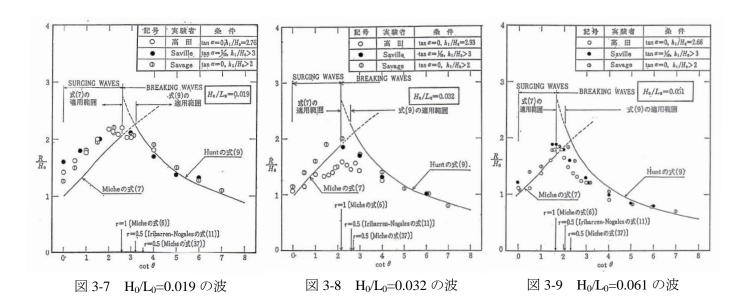
$$\frac{R}{H_1} = \sqrt{\frac{\pi}{2\theta}} \tag{3.7}$$

一方, breaking waves 領域の遡上高については, Hunt (Hunt, 1959) が実験式として次式を導いている.

$$\frac{R}{H_1} = \frac{2.3 \tan \theta}{(H_1/T^2)^{1/2}} \tag{3.8}$$

ただし、 $H_1=H_0$ の場合に式(3.8)を変形すれば、次式のようになる.

$$\frac{R}{H_0} = \frac{1.01}{\sqrt{H_0/L_0 \cdot \cot \theta}}$$
 (3.9)


また、Hunt (Hunt, 1959) は式 (3.8) および (3.9) が反射率 r < 0.5 の場合に適用されるとしており、 Iribarren-Nogales の r = 0.5 の条件式をその適用限界とみなしている。 すなわち、適用範囲は次式で示される.

$$\tan \theta < \frac{8}{T} \sqrt{\frac{H_1}{2g}} \tag{3.10}$$

なお、 $H_1=H_0$ の場合は、次式のように変形される.

$$\frac{H_0}{L_0} > \frac{\tan^2 \theta}{5.1} \tag{3.11}$$

そこで、高田、Saville および Savage の実験結果と、式 (3.7) および式 (3.9) を比較した結果を図 3-7 ~3-9 に示す.

これらより、surging waves の領域の式(3.7)は、 θ が大きくなると R/H_0 が減少する傾向を定性的によく説明しているが、一般に遡上高は実験値の方がやや大きくなる傾向にあることがわかる.これは LeMehaute-Koh-Hwang も指摘しているように(堀川)、波形勾配に基づく非線形効果によって式(3.7)を 補正しなければならないことを示唆している.

すなわち、 H_1/L_1 と h_i/L_1 が与えられた場合、surging waves(Nonbreaking waves)領域では、 θ が小さくなると R/H_1 は増大する傾向にあるが、 H_1/L_1 による非線形効果の影響として、 H_1/L_1 が大きいほど R/H_1 は増大するとしている.

彼らは、波の遡上高を表す一般式として、次式を提案している(堀川).

$$\frac{R}{H_1} = f\left(\theta, \frac{2\pi h_1}{L_1}\right) + g\left(\frac{H_1}{L_1}, \frac{2\pi h_1}{L_1}\right) - k\left(\theta, \frac{2\pi h_1}{L_1}, \frac{H_1}{L_1}\right) \tag{3.12}$$

ここで、式中の $f\left(\theta, \frac{2\pi h_1}{L_1}\right)$ は $H_l/L_l \rightarrow 0$ としたときに線形理論より導かれる遡上高を示し、 $+g\left(\frac{H_1}{L_1}, \frac{2\pi h_1}{L_1}\right)$ は

波形勾配に基づく非線形効果による遡上高の増加を示し、 $-k\left(\theta,\frac{2\pi h_1}{L_1},\frac{H_1}{L_1}\right)$ はのり面の摩擦および砕波の攪乱に基づく、エネルギー損失による遡上高の減少効果を表している。

高田は遡上高の算定式として、波のエネルギー損失、屈折および回折の影響を無視した場合、surging waves 領域では Sainflou の重複波の水面波形を用いた式 (3.13) を、式 (3.14) で表している.

$$\frac{R}{H_1} = \sqrt{\frac{\pi}{2\theta}} + \frac{\pi H_1}{L_1} \cot h \frac{2\pi h_1}{L_1}$$
 (3.13)

$$\frac{R}{H_0} = \frac{R}{H_1} \cdot \frac{H_1}{H_0} = \sqrt{\frac{\pi}{2\theta}} \cdot \sqrt{\frac{\sinh \frac{4\pi h_1}{L_1} \cdot \coth \frac{2\pi h_1}{L_1}}{\sinh \frac{4\pi h_1}{L_1} + \frac{4\pi h_1}{L_1}}} + \pi \frac{H_0}{L_0} \frac{\sinh \frac{4\pi h_1}{L_1}}{\sinh \frac{4\pi h_1}{L_1} + \frac{4\pi h_1}{L_1}} \cdot \left(\coth \frac{2\pi h_1}{L_1}\right)^3$$
(3.14)

Miche の重複波の水面波形を用いた式 (3.15) は式 (3.16) のようになる.

$$\frac{R}{H_1} = \sqrt{\frac{\pi}{2\theta}} + \frac{\pi H_1}{L_1} \coth \frac{2\pi h_1}{L_1} \times \left[1 - \frac{1}{4\left(\sinh\frac{2\pi h_1}{L_1}\right)^2} \left\{ \left(\tanh\frac{2\pi h_1}{L_1}\right)^2 - 3 \right\} \right]$$
(3.15)

$$\frac{R}{H_0} = \frac{R}{H_1} \cdot \frac{H_1}{H_0} = \sqrt{\frac{\pi}{2\theta}} \cdot \sqrt{\frac{\sinh \frac{4\pi h_1}{L_1} \cdot \coth \frac{2\pi h_1}{L_1}}{\sinh \frac{4\pi h_1}{L_1} + \frac{4\pi h_1}{L_1}}} + \pi \frac{H_0}{L_0} \frac{\sinh \frac{4\pi h_1}{L_1}}{\sinh \frac{4\pi h_1}{L_1} + \frac{4\pi h_1}{L_1}} \cdot \left(\coth \frac{2\pi h_1}{L_1}\right)^3 \times \left\{ 1 + \frac{3}{4\left(\sinh \frac{2\pi h_1}{L_1}\right)^2} - \frac{1}{4\left(\cosh \frac{2\pi h_1}{L_1}\right)^2} \right\}$$
(3.16)

breaking waves 領域($\cot\theta$ <8の範囲)では, R/H_0 が($\tan\theta$) $^{2/3}$ にほぼ比例することが明らかになったため,surging waves 領域との境界で式(3.14)および式(3.16)と一致するよう考慮して関数形を求めた結果,式(3.17),式(3.18)のような関係式で表している.

$$\frac{R}{H_0} = \frac{\varphi}{(\cot \theta_c)^{2/3}} \tag{3.17}$$

$$\varphi = \left\{ \sqrt{\frac{\pi}{2\theta}} \cdot \sqrt{\frac{\sinh\frac{4\pi h_1}{L_1} \cdot \coth\frac{2\pi h_1}{L_1}}{\sinh\frac{4\pi h_1}{L_1} + \frac{4\pi h_1}{L_1}}} + \pi \frac{H_0}{L_0} f\left(\frac{h_1}{L_1}\right) \right\} (\cot\theta_c)^{2/3}$$
(3.18)

ここで θ_c は breaking waves を生ずる最急傾斜角度,あるいは surging waves を生ずる最緩傾斜角度であり次式で示される.

$$\sqrt{\frac{2\theta_c}{\pi}} \cdot \frac{\sin^2 \theta_c}{\pi} = \frac{H_0}{L_0} \tag{3.19}$$

また、 $f(h_1/L_1)$ は重複波の水面波形 $\eta(x,t)$ が Sainflou 式 (3.20) あるいは Miche 式 (3.21) で表されるとすれば、

$$\eta_{1} = H_{1} \cos \frac{2\pi}{L_{1}} x_{0} \cdot \cos \frac{2\pi}{T} t + \frac{\pi H_{1}^{2}}{L_{1}} \cdot \coth \frac{2\pi h_{1}}{L_{1}} \cdot \cos^{2} \frac{2\pi}{T} t$$

$$\chi = \chi_{0} - H_{1} \coth \frac{2\pi h_{1}}{L_{1}} \cdot \sin \frac{2\pi}{L_{1}} \chi_{0} \cdot \cos \frac{2\pi}{T} t$$
(3.20)

$$\eta_{1} = H_{1} \cos \frac{2\pi}{L_{1}} x \cdot \cos \frac{2\pi}{T} t + \frac{\pi H_{1}^{2}}{L_{1}} \cdot \coth \frac{2\pi h_{1}}{L_{1}} \cdot \left[\cos^{2} \frac{2\pi}{T} t - \frac{\cos \frac{4\pi x}{L_{1}}}{4 \left(\sinh \frac{2\pi h_{1}}{L_{1}} \right)^{2}} \cdot \left\{ \left(\tanh \frac{2\pi h_{1}}{L_{1}} \right)^{2} - 3\cos \frac{4\pi}{T} t \right\} \right]$$
(3.21)

Sainflou 式のときは、式 (3.14) より、

$$f\left(\frac{h_1}{L_1}\right) = \frac{\sinh\frac{4\pi h_1}{L_1}}{\sinh\frac{4\pi h_1}{L_1} + \frac{4\pi h_1}{L_1}} \cdot \left(\coth\frac{2\pi h_1}{L_1}\right)^3 \tag{3.22}$$

Miche 式のときは、式 (3.14) より,

$$f\left(\frac{h_{1}}{L_{1}}\right) = \frac{\sinh\frac{4\pi h_{1}}{L_{1}}}{\sinh\frac{4\pi h_{1}}{L_{1}} + \frac{4\pi h_{1}}{L_{1}}} \cdot \left(\coth\frac{2\pi h_{1}}{L_{1}}\right)^{3} \cdot \left\{1 + \frac{3}{4\left(\sinh\frac{2\pi h_{1}}{L_{1}}\right)^{2}} - \frac{1}{4\left(\cosh\frac{2\pi h_{1}}{L_{1}}\right)^{2}}\right\} \tag{3.23}$$

なお、式(3.17)の適用範囲は次式で示される.

$$\frac{H_0}{L_0} > \sqrt{\frac{2\theta}{\pi}} \cdot \frac{\sin^2 \theta}{\pi}$$

$$\cot \theta < 8$$
(3.24)

3.1.7 間瀬 (Mase, 1989)

一様勾配の滑斜面への打上げ高について、間瀬の実験的研究がある。水深 $0.43\sim0.45$ m、勾配 1/5、 1/10、 1/20、 1/30 の 4 種類の斜面に対し、不規則波(the Pierson-Moskowitz type spectrum)の波浪条件下において波が遡上する状況を連続的に記録して打上げ高を統計的に解析した。Iribarren 数 Ir(the surf similarity parameter、 ξ)と相対打上げ高(R/H_0)の関係を以下の式で表している。

$$R/H_0 = \alpha Ir^b \ (1/30 < tan\theta < 1/5)$$
 R: 打上げ高 H_0 : 沖波有義波高

なお, 平均打上げ高 R_{ave} の場合, $\alpha = 0.88$, b = 0.69 である.

第4章 波の打上げ高特性

4.1 研究背景および研究目的

越波式波力発電装置の開発を進めるうえで、波エネルギーから電気エネルギーへ変換する過程において、変換効率を最大にすることが望ましい。前述したが変換過程は大きく区分すると2つあり、1つ目は襲来する波を傾斜板によってより高い位置にある貯水タンクへ越波させる、波エネルギーを位置エネルギーに変換する過程である。この過程で最も重要なことは襲来する波がより高い位置へ遡上することである。その役目を果たすのが傾斜板と呼んでいる貯水槽前面に設置する装置である。

本実験では、傾斜板の角度を変化させ様々な波浪条件に対して波の遡上(打ち上げ)高を求め最適な 傾斜板の角度を求めることとした.

4.2 実験施設および実験装置

本実験は東海大学海洋学部臨海実験場にある風洞水槽を直線型として使用した. 写真 4-1 に使用した水路と,以下に実験水槽の主な仕様を記す.

水槽 - 長さ:64.0m, 幅:1.0m, 深さ:1.5m (サーキット型として)

長さ:52.0m, 幅:1.0m, 深さ1.5m (直線型として)

鋼製一部片面ガラス張り 水路切換ゲート2基

造波機 - 型式:ピストン式 AC サーボモーター,ボールネジ駆動

発生波:規則波および不規則波

周期:T =0.6~5.0sec

: T_{1/3}=0.8~3.0sec 波高:規則波最大 30cm

: $H_{1/3}=20cm$

写真 4-1 風洞水槽

主な実験装置と仕様

容量式波高計 50 プローブ(KENEK)2 台,100 プローブ(KENEK)3 台,300 プローブ(KENEK)1 台,容量式波高計アンプ(KENEK)3 台,2 次元電磁流速計(KENEK)1 台,データ収録用ノートパソコン2台,デジタルカメラ等,板4m,測定用メジャーなど実験で使用した測定器と装置を写真4-2~写真4-10 に示す.

写真 4-2 容量式波高計

写真 4-3 波高計アンプ

写真 4-4 電磁流速計検出部

写真 4-6 造波機

写真 4-8 角度計測器

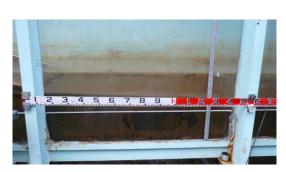


写真 4-9 メジャー

写真 4-5 電磁流速計アンプ

写真 4-7 造波制御用 PC

写真 4-10 板 4m と波高計 3m

以下に使用した測定器の仕様を示す.

<容量式波高計>

本体部

型名: CH-403型

チャンネル数:3ch.

測定モード:1,2,4倍(3点手動切替)

較正 電圧:1, 1/2, 0, (3点手動切替)

出力 電圧: ±2.5V/FS (負荷 10KΩ以上)

出力 電流: ±20mA/FS (負荷 20KΩ以下)

使用温度範囲:0~40℃

電源: AC100V±10% 50&60Hz

消費電力:約45VA

検出部

最大測定波高: 30cm (CHT4-30)

直線性誤差:±0.5%/FS

応答性:5Hz(波高±5cm)

安定性:±1%/24H,±1%/10℃以内

相互干涉:±1%以下 (容量線間隔 10cm 以上)

使用温度範囲:0~40℃

校正係数:6.0

製造元:株式会社 ケネック

<2 次元電磁流速計>

電磁流速計: VM-201H型(本体部)

VMT2-200-08P 型(検出部)

検出方式: 2成分(4方向)電磁式

適正範囲:0~±25cm/sec FS

 $0\sim\pm100$ cm/sec FS

 $0\sim\pm200$ cm/sec FS

測定方向: X 軸, Y 軸, 2 成分 (4 方向)

測定精度: ±2%/FS

応答時間: 0.05 秒, 0.5 秒, 5.0 秒

出力表示:1.0級アナログメーター

出力電圧: ±5V/FS

較正電圧: +5V/FS

使用温度範囲:0~+40℃

電源: AC100V±10V 50&60Hz 約 50VA 約 21VA

校正係数:20.0

製造元:株式会社ケネック

実験器具

- ・風洞水槽
- 造波機
- ・造波制御用 PC
- ·波高計 (50, 100, 300cm)
- ・波高計アンプ
- 電磁流速計
- ・電磁流速計アンプ
- · 角度計測器
- ・メジャー
- •板 4m
- ・データ収録用ノート PC
- ・デジタルカメラ
- PCD320A

4.3 相似則

本実験の模型縮尺は造波機性能,実験水槽の条件を考慮した上で模型縮尺を1/25とした.

本実験は波を遡上させることが主な目的であることから,重力と慣性力の作用を基にフルードの相似則を適用する.フルードの相似則とは,長さ l,速度 v,重力加速度 g とし,添え字で原型を p,模型を m とすれば次式で表すことができる.

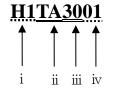
$$\frac{\mathbf{v}_m}{\sqrt{g_m l_m}} = \frac{\mathbf{v}_p}{\sqrt{g_p l_p}} \tag{4.1}$$

ここで、重力加速度は g_m=g_pであるから、次式のように変形できる.

$$\frac{v_m}{v_p} = \frac{\sqrt{l_m}}{\sqrt{l_p}} \tag{4.2}$$

よって、模型の原型に対する長さの縮尺比を $l_m/l_p=l_r$ と表せば速度の縮尺比は次式で表すことができ、時間(t)の縮尺比は式(4.4)となる.

$$\frac{v_m}{v_p} = \sqrt{l_r} \tag{4.3}$$


$$\frac{t_m}{t_p} = \frac{l_m/v_m}{l_p/v_p} = l_r \frac{1}{\sqrt{l_r}} = \sqrt{l_r}$$
 (4.4)

4.4 実験方法および実験条件

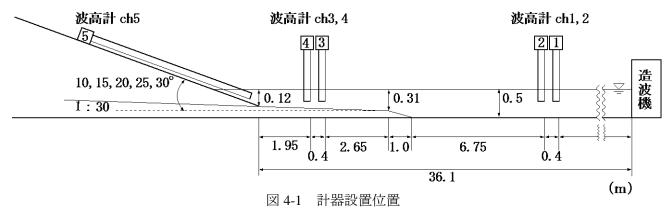
以下に実験方法と実験条件を記す.

- ① 波の打上げ高さ特性実験には斜面板を模した 4m の板と打上げ高計測用の波高計 3m 等を用いる.
- ② 沖に波高計 ch1, 2 を設置し、板の角度が変わる法先から 1.5L の位置に波高計 ch3, 4 を設置し、板に波高計 5ch (3m) を取り付けた.
- ③ 収録データ数、サンプリングタイム、収録時間、収録ケースは下記の通りとする.
 - (a)収録データ数:8192
 - (b)サンプリングタイム:20Hz
 - (c)収録時間: 409.6 秒
 - (d)収録ケース: 240 ケース
- ④ 実験水深を50cmで固定する.
- ⑤ 実験波浪は自然界の状態を考慮し Bretschneider-光易型を目標スペクトルとする不規則波を用いた. また、規則波の実験も行った.
- ⑥ 波の反射を考慮して造波を開始して 2分30秒後に波が定常になってから計測を開始した.
- ⑥ ファイルネームは下記の通りとする.

i : 不規則波 H, 有義波高 H_{1/3}(1:1.2, 2:2.4, 3:3.6, 4:4.8, 5:6.0, 6:8.0, 7:10.0cm), 規則波 R, 有義波高 H_{1/3}(1:1.2, 2:2.4, 3:3.6, 4:4.8, 5:6.0, 6:8.0, 7:10.0cm)

ii:周期 T_{1/3}(A:0.6, B:0.8, C:1.0, D:1.2, E:1.4, F:1.6, G:2.0, H:2.4s)

iii: 傾斜板の角度は cot0=(10:5.67, 15:3.73, 20:2.75, 25:2.14, 30:1.73)


の順に 10°, 15°, 20°, 25°, 30°

iv:波高計ケース番号 (01~), 流速計ケース番号 (10~)

以上の実験条件を組み合わせて 240 ケース行い,波高 $H_{1/3}$ (cm),周期 $T_{1/3}$ (s),越波高 R_{ave} , $R_{1/3}$ (cm)を取得し、傾斜板の角度においての比較検討を行った.

(1) 模型配置および計測器配置

図 4-1 は実験で使用した断面図となる. 波高計 ch1, 2 は沖波を計測し, ch3, 4 は汀線から 1.5L 位置における波浪を観測した. また, ch5 は 3m 波高計を改造した計測器となり表面張力を考慮して傾斜板から 5mm 離して設置し遡上する位置を観測した. 傾斜板の角度は $10^\circ \sim 30^\circ$ とした.

(2) 実験で使用した模型断面の写真

写真 4-11 は実験で使用した模型断面の写真となる. 左側から波が襲来し傾斜板を遡上する様子を記録できるシステムとなっている. 写真は傾斜板角度 15°の状態である.

写真 4-11 模型設置写真

(3) 傾斜板角度ごとの写真

写真 4-12~4-16 に傾斜板角度ごとの写真を掲載する. 傾斜板上に沿って銀色の棒があるが, この棒のおよそ 10cm 下に波高計のセンサー部が並行に設置されており棒によって支えられている.

写真 4-12 模型設置写真 (角度 10°)

写真 4-13 模型設置写真 (角度 15°)

写真 4-14 模型設置写真 (角度 20°)

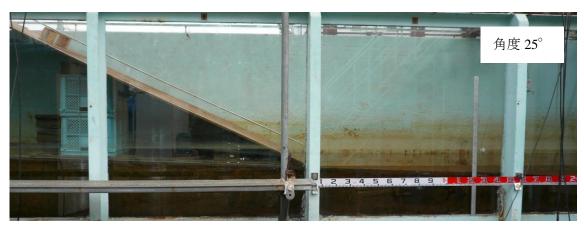


写真 4-15 模型設置写真 (角度 25°)

写真 4-16 模型設置写真 (角度 30°)

(4) 実験縮尺

以下に実験の縮尺と、縮尺を適応した場合の諸量を示す.

表 4-1 実験縮尺

物理量	対象物理量	現地量	模型量 (1/25縮尺)
		0.3m	1.2cm
		0.6m	2.4cm
		0.9m	3.6cm
	波高 H _{1/3}	1.2m	4.8cm
長さし		1.5m	6.0cm
		2.0m	8.0cm
		2.5m	10.0cm
	法先水深 H	3.0m	12cm
	沖水深 H	12.5m	50cm
	周期 T _{1/3}	3s	0.6s
		4s	0.8s
		5s	1.0s
時間 T		$6\mathrm{s}$	1.2s
		$7\mathrm{s}$	1.4s
		8s	1.6s
		10s	2.0s
		12s	2.4s
	波の作用時間 T	2048s	409.6s

(5) 入射波スペクトル (田中ら, 2009)

図 4-2 に示したのは 2008 年度に実験水槽で使用した不規則波の波形(h=60cm にて測定)を △t=0.05 秒で A-D 変換し FFT 法で計算した生のスペクトル(データ数 4096)入射波スペクトルである。実線が本実験のスペクトル,点線が式 4.5 に示す Bretschneider-光易型のスペクトルである。各波高の代表値を表したものであるが,Bretschneider-光易型と実験のスペクトルのピーク周波数がほぼ一致していることから造波制御が適当であったといえる。しかし,波高の小さい時にはスペクトルが小さくなる。これは造波機の制御の限界と考えられるが,いずれも周波数のピークが一致していることから問題はないと判断した。

$$E(f) = 0.257 H_{1/3}^{2} T_{1/3} (T_{1/3} f)^{-5} \exp \left\{-1.03 (T_{1/3} f)^{-4}\right\}$$
 (m²/s) (4.5)

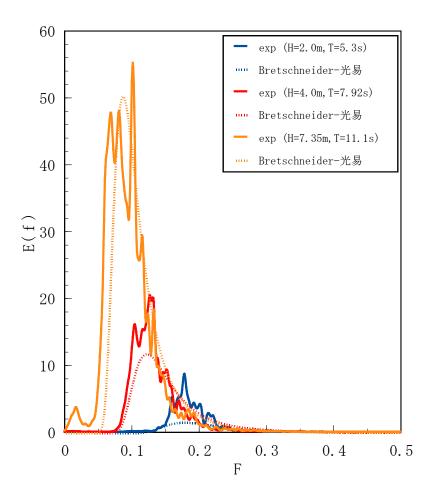


図 4-2 取得データにおけるスペクトル比較

4.5 解析方法

(1) 入・反射波の分離推定法

実験波は、反射波を含まない進行波としての有義波高である。そのため、水路内の多重反射による反射波高を除く必要がある。この方法として、入・反射波分離推定法がある。原理は、多重反射による合成波を 2 本の波高計で測定しこれをフーリエ分解して合成波を構成している各周波数の振幅を入射波と反射波について求め、入射波 (E_I) 、反射波 (E_R) のエネルギーを次式によって求める。

$$E_{I} = \int_{f_{\min}}^{f_{\max}} S_{I}(f) df$$

$$E_{R} = \int_{f_{\min}}^{f_{\max}} S_{R}(f) df$$
(4.6)

ここで,

 $f_{
m max}$, $f_{
m min}$:有効周波数の上限値および下限値

 S_I :入射波のスペクトル密度

 S_R : 反射波のスペクトル密度

エネルギーは波高の2乗に比例するため、不規則な波群全体の反射率 (K_x) は、

$$K_r = \sqrt{\frac{E_R}{E_I}} \tag{4.7}$$

となる.

従って、入射波高 (H_I) は、2本の波高計の合成波の平均値 (H_S) を用いて

$$H_{I} = \frac{1}{\sqrt{1 + K_{z}^{2}}} H_{S} \tag{4.8}$$

となり、反射波高 (H_R) は、

$$H_R = \frac{K_R}{\sqrt{1 + K_L^2}} H_S \tag{4.9}$$

となる. なお、この波高計の間隔(Δl)は、半波長の整数倍($\Delta l/L=0.5,1.0,1.5...$)付近で振幅の発散が見られるため、次式を満足するように波高計間隔を定めた.

下限
$$(f_{\min})$$
 : $\Delta l / L_{\max} = 0.05$
上限 (f_{\max}) : $\Delta l / L_{\min} = 0.45$ (4.10)

波高計の間隔で Δl は、後述する反射、伝達波を含め 40cm に設定した.

(2) 波の打上げ高さの算定

本実験において波高計 ch5 で計測した波形データに対し、図 4-3 のように静水面からプラスの部分で推移した波高を H とし、それら全てのデータを加法した平均値を H_{ave} 、大きい波から順に並べた 1/3 の平均値を $H_{1/3}$ とした。また、斜面に沿った打上げ長さをl とし、l の時系列の平均を l_{ave} 、大きい順に並べた 1/3 の平均値を $l_{1/3}$ とした(図 4-4)。この l_{ave} 、 $l_{1/3}$ から R_{ave} 、 $R_{1/3}$ を算出したものが式 4.11, 4.12 である.

$$R_{ave} = l_{ave} \times \sin \theta \tag{4.11}$$

$$R_{1/3} = l_{1/3} \times \sin \theta \tag{4.12}$$

この波の打上げ高さの算定は高田(高田, 1970a, b)による解析方法と同様である.

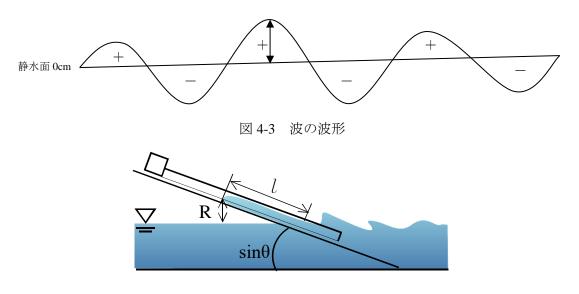


図 4-4 R の定義図

(3) breaking wave と surging wave の検討

本実験において、傾斜板に衝突する波は、壁面で砕波して遡上する breaking wave の場合と、砕波しないで振動状態で遡上する surging wave の場合とに分けている.

4.6 波エネルギー算出方法

水を媒体にした波は、水面の上下運動の伝播によって起こる現象であり運動エネルギーと位置エネルギーをもっている。エネルギー保存の法則に従えばこれらのエネルギーは他エネルギーへの変換が可能である。そこで、以下のように波エネルギーの計算を行う。ここでは微小振幅波理論を適用する。

4.6.1 規則波の波エネルギーと波パワー

ある波の平均水深を h, 振幅を η とし、幅 dx の水柱に着目する. この水柱の水面までの高さは $h+\eta$ である. この水柱の持つ位置エネルギーは式 (4.13) で示される.

$$dE_{\gamma} = \frac{1}{2} \rho g (h + \eta)^2 dx \tag{4.13}$$

これに一波長分の積分処理をかけ平均をとれば、波の位置エネルギー式(4.14)が求まる.

$$E_{\gamma} = \frac{1}{L} \int_{-\infty}^{x+L} dEv \tag{4.14}$$

なお, 波長 L は次式 (4.15) で求まる.

$$L = \frac{gT^2}{2\pi} \tanh \frac{2\pi h}{L} \tag{4.15}$$

以上より、求めた水柱のエネルギーを合わせると式 (4.16) となり、積分の結果、式 (4.17) が得られる。ここでkを波数、 $\eta=\frac{1}{2}H\cos(kx-\sigma t)$ とすると

$$E_{\gamma} = \frac{\rho g}{2L} \int_{x}^{x+L} h^{2} + hH \cos(kx - \sigma t) + \frac{1}{4} H^{2} \cos^{2}(kx - \sigma t) dx$$
 (4.16)

$$E_{\gamma} = \frac{1}{2}\rho g h^2 + \frac{1}{16}\rho g h^2 \tag{4.17}$$

ただし式 (4.17) には波のエネルギーだけではなく波がないときの位置エネルギー $\frac{1}{2} \rho gh^2$ が含まれているので、差をとると式 (4.18) が得られる.

$$E_{\gamma} = \frac{1}{16} \rho g H^2 \tag{4.18}$$

式 (4.18) は波エネルギーを位置エネルギーとして示した式である. そこで運動エネルギーについて考える. 先に挙げた水柱が高さ dz をもっているとする. ここから得られる運動エネルギーは式 (4.19) で示される.

$$dE_k = \frac{1}{2}\rho(u^2 + w^2)dxdz (4.19)$$

ここで式 (4.20), 式 (4.21) から式 (4.22) であるならば, 双曲線関数と三角関数の公式 から式 (4.23) が得られる.

$$u = \frac{\partial \phi}{\partial x} = \frac{gkH}{2\sigma} \frac{\cosh[k(h+z)]}{\cosh(kh)} \cos(kx - \sigma t)$$
(4.20)

$$w = \frac{\partial \phi}{\partial z} = \frac{gkH}{2\sigma} \frac{\sinh[k(h+z)]}{\cosh(kh)} \sin(kx - \sigma t)$$
 (4.21)

$$\sigma^2 = gk \tanh[kh] \tag{4.22}$$

$$dE_k = \frac{1}{8} \frac{\rho g k H^2}{\sinh(2kh)} \{\cosh[2k(h+z)] + \cos[2(kx - \sigma t)]\} dx f z$$
 (4.23)

なお,水中の圧力 p は式(4.24)で与えられる.

$$p = \rho \frac{\partial \phi}{\partial t} - \rho gz = \frac{1}{2} \rho gH \frac{\cosh[k(h+z)]}{\cosh(kh)} \cos(kx - \sigma t) - \rho gz \tag{4.24}$$

微小振幅波より $z=\eta\approx 0$ とすることができる. x の値は $x\sim x+L$ の範囲で積分し、z の値を- $h\sim\eta$ の範囲で積分すれば $E_k=\frac{1}{L}\int\limits_{-h}^0 dE_k$ より、式(4.25)が得られる.

$$E_k = \frac{1}{16} \rho g H^2 \tag{4.25}$$

故に、単位面積あたりの波エネルギーは位置エネルギーと運動エネルギーの総和であることから、式(4.26)になる.

$$E = E_{\gamma} + E_{k} = \frac{1}{8} \rho g H^{2} \tag{4.26}$$

また、単位峰幅あたりの波パワー(W)(kW/m) は、群速度 $C_{\rm g}$ を用いて、

$$\overline{W} = \frac{1}{T} \int_0^T \int_{-h}^{\eta} pu dz dt = \frac{1}{16} \rho g H^2 C \left[1 + \frac{2kh}{\sinh 2kh} \right] = C_g E$$

$$\tag{4.27}$$

ここで,

$$c_g = nc, \ n = \frac{1}{2} \left(1 + \frac{2kh}{\sinh 2kh} \right), \ c = \sqrt{\frac{gL}{2\pi}} \tanh \frac{2\pi h}{L}$$
 (4.28)

である.よって規則波の単位峰幅あたりの波パワー (W) (kW/m) は

$$W = \frac{1}{32\pi} \rho g^2 DH^2 T \qquad (kW/m) \tag{4.29}$$

となる. ここで,

$$D = \left(1 + \frac{2kh}{\sinh 2kh}\right) \tanh \frac{2\pi h}{L} \tag{4.30}$$

である.

4.6.2 不規則波の波エネルギーと波パワー(合田, 1984), (Tanaka ら, 2012)

4.6.1 で求められる波エネルギーと波パワーは規則波の値であることから、海面地形や沿岸部の形など、各海域の状況における普遍性は得られない. そこで、波のエネルギー(E)は、式(4.31)のように、不規則波の周波数スペクトルを積分することによって求める.

$$E = \rho g \int_0^\infty S(f) df \tag{4.31}$$

風波のスペクトルは一般に(4.32)の式となり、

$$S(f) = Af^{-5} \exp(-Bf^{-4})$$
(4.32)

Bretschneider-光易スペクトルを式(4.31)に代入して計算すると,

$$E = \frac{1}{4} \rho g \frac{A}{B} \tag{4.33}$$

ここで、 $A = 0.257H_{1/3}^2T_{1/3}^{-4}$, $B = 1.03T_{1/3}^{-4}$ よって、

$$E = \frac{1}{4} \rho g \frac{0.257 H_{1/3}^2 T_{1/3}^{-4}}{1.03 T_{1/3}^{-4}} = \frac{1}{16} \rho g H_{1/3}^2$$
(4.34)

次に,不規則波の波パワーを求める.一般に専門書に掲載されている深海波と,浅海波について展開することとする.

4.6.4.2-1 深海波 (h/L≥0.5) について

深海波の群速度(Cg)は,

$$C_g = \frac{1}{2} \left(1 + \frac{2kh}{\sinh 2kh} \right) \left(\frac{gT}{2\pi} \tanh \frac{2\pi h}{L} \right) = \frac{gT}{4\pi} = \frac{g}{4\pi} f^{-1}$$
 (4.35)

波パワー (W) (kW/m) は,

$$W = \rho g \int_0^\infty S(f) C_g df \tag{4.36}$$

であるから、式 (4.36) に式 (4.32) と式 (4.35) および A, B の関係を代入して計算し整理すると波パワーは次式となる.

$$W = \frac{\rho g^2}{4\pi} \frac{0.257 H_{1/3}^2 T_{1/3}^{-4}}{(1.03 T_{1/3}^{-4})^{5/4}} \Gamma(5/4)$$
 (4.37)

 Γ (5/4) は Γ 関数であり、 Γ (5/4) =0.9064 であるから、波パワーは式 (4.38) となる.

$$W = 0.429 \rho H_{1/3}^2 T_{1/3} \tag{4.38}$$

ここで、海水と淡水の密度 (ρ) をそれぞれ $\rho=1030$ kg/m³, $\rho=1000$ kg/m³ とすると式 (4.36) より単位幅あたりの深海波の波パワー (kW/m) は次式となる.

$$W = 0.442H_{1/3}^2T_{1/3} \quad (海水) \tag{4.39}$$

$$W = 0.429H_{1/3}^2T_{1/3} \quad (\% \text{ \%}) \tag{4.40}$$

4.6.4.2-2 浅海波 (0.04≤h/L≤0.5) について

群速度(Cg)は式(4.41)に示した浅海波の値を用いる.

$$C_g = \frac{1}{2} \left(1 + \frac{2kh}{\sinh 2kh} \right) \left(\frac{gT}{2\pi} \tanh \frac{2\pi h}{L} \right) = \frac{g}{4\pi} Df^{-1}$$
 (4.41)

式 (4.35) に D を考慮すれば浅海波の群速度 C_g となる. よって、単位幅あたりの浅海波の波パワーは次式となる.

$$W = 0.429 \rho D H_{1/3}^2 T_{1/3} \tag{4.42}$$

4.7 波パワーによる打上げ高の考察

4.7.1 規則波

実験条件として、傾斜板角度 (°)、波高 H (cm)、周期 T (s) を変化させて実験を行っている. 波高 H (cm)、周期 T (s) を取得し比較検討を行った. それらの実験結果を表 4-2~4-4 に示す. 表記載の ave, max, min は,それぞれ ave:平均、max:最大,min:最小である. R (zero) は R をゼロアップクロスにて解析をかける時の R の平均値と静水面との推移である. 波長 L は式 (4.30) から算出した. 図 4-5 は波高 3.0cm,周期 1.4s,傾斜板角度 15° (R4TE1501) 時の時系列図である. 図4-6 は波高 9.61cm,周期 2.0s,傾斜板角度 20° (R7TG2001) 時の時系列図である. 表 4-5 に示した結果は,高田(高田、1970)が,重複波水深領域の遡上高の算定式をのり勾配の大小により,surging waves 領域(S)と breaking waves 領域(B)に分けて Miche(Miche、1944、1951)と Sainflou(Sainflou、1928)の重複波の水面波形を考慮して有用な式を提案したものである. 本実験で得られたデータとこれらの既存の理論から,傾斜板角度 θ =15°、20°、25°(cot θ = 3.73,2.75,2.14),波形勾配 H/L=0.019,0.032,0.051でまとめた結果である.

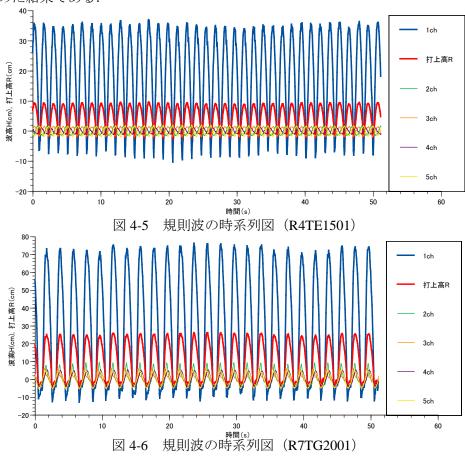


表 4-2~4-4 に実験結果一覧を、表 4-5 に既往の研究との比較を行った際に用いた高田の理論 (Saville, Savege, Sainflou, Miche) を使った場合の実験値一覧を示す.

表 4-2 傾斜板 cot=3.73 (15°) 規則波パラメーター

Hand Brigging Hand Briggin																							
1 1	(原型)	R0	(m)	0.10	0.05	0.30	0.25	0.31	0.54	09:0	0.57	1.15	1.20	1.08	1.35	1.59	1.61	1.66	2.15	3.37	1.97	2.78	3.96
H T L H T L H T L H T L H T L H T L H T L H T L H T L H T L H T L H T L H T L H T L H T L H T T T L H T L H T T H T	打上げ高	Rm	(m)	0.35	0.38	0.73	1.05	1.40	1.05	1.58	1.98	1.58	2.28	2.88	1.83	2.73	3.45	2.03	3.25	5.40	2.38	3.93	6.13
H T L H K K K K K K T L H T L K K K K K K K K K	波power (原型)	W	(kW/m)	0.16	0.03	1.01	0.14	3.21	3.12	1.60	8.75	7.22	3.90	13.83	13.10	5.34	18.26	18.49	12.63	37.07	26.96	27.08	54.76
Harmonic				1.01	1.00	1.06	1.00	1.19	1.10	1.18	1.12	1.10	1.20	1.11	1.10	1.20	1.12	1.10	1.20	1.10	1.10	1.20	1.10
Hare		Г	(m)	23.66	8.61	32.49	16.98	76.95	37.81	52.54	97.20	37.81	63.00	99.03	37.81	60.39	97.20	37.81	64.20	101.27	37.81	64.20	101.27
	相対打上高	п	N13/II	1.458	1.807	1.498	3.462	2.056	1.389	2.978	2.107	1.420	3.100	2.402	1.210	3.025	2.531	1.107	2.611	2.902	1.110	2.165	2.628
		原型 R _{1/3}	(m)	0.14	0.15	0.31	0.45	0.59	0.45	0.67	0.83	69:0	0.93	1.17	0.79	1.11	1.43	0.86	1.35	2.24	1.03	1.63	2.47
1. 1. 1. 1. 1. 1. 1. 1.		$R_{\rm L/3}$	(cm)	1.4	1.5	3.1	4.5	5.9	4.5	6.7	8.3	6.9	9.3	11.7	7.9	11.1	14.3	8.6	13.5	22.4	10.3	16.3	24.7
H	析		(cm)	1.2	0.1	2.4	1.7	2.9	2.2	2.4	1.3	3.9	8.8	11.3	5.5	10.4	9	6.7	8.5	12.7	6.7	10.3	24.1
H T L T L H T L T L T L T L T T	fRの解	Rmax	(cm)	1.5	1.6	3.2	4.7	6.1	4.7	7	8.3	7.2	9.6	11.8	9.8	11.3	14.4	9.5	13.7	9.22	10.8	16.8	24.9
H T L H T L HO EACHER Medicals Action Recent Decimination Recent Decimination <t< td=""><td>麗上層</td><td>(権令)</td><td>N(20 EX)</td><td>0</td><td>0.1</td><td>0</td><td>0.2</td><td>0.3</td><td>0.3</td><td>0.5</td><td>1.8</td><td>0.4</td><td>0</td><td>0</td><td>0.4</td><td>0</td><td>2.5</td><td>0.2</td><td>0.7</td><td>3.3</td><td>9.0</td><td>1</td><td>0</td></t<>	麗上層	(権令)	N(20 EX)	0	0.1	0	0.2	0.3	0.3	0.5	1.8	0.4	0	0	0.4	0	2.5	0.2	0.7	3.3	9.0	1	0
H T L HAL 反射率 Ir H T L A先先底高ch1.2 (cm) (s) (cm) (s) (cm) (s) (cm) (s) (cm) (cm) (s) (cm)				1.4	1.5	2.9	4.2	5.6	4.2	6.3	6.7	6.3	9.1	11.5	7.3	10.9	13.8	8.1	13	21.6	9.5	15.7	24.5
H T L HAL 反射率 Ir H T L A先先底高ch1.2 (cm) (s) (cm) (s) (cm) (s) (cm) (s) (cm) (cm) (s) (cm)		(zero)	(cm)	1.54	0.85	4.58	3.91	4.83	8.32	9.33	8.8	77.71	18.48	16.63	20.92	24.59	24.9	25.68	33.3	52.05	30.4	42.91	61.23
H T L HAL 反射率 Ir H T L HAL (cm) (s) (cm) (s) (cm) (s) (cm) (s) (cm) 0.96 0.99 148.5 0.0065 0.59 3.33 0.85 1.02 98.6 0.0086 0.83 0.82 104.4 0.0080 0.712 3.01 0.85 0.97 92.0 0.0086 2.07 0.99 148.5 0.0139 0.365 2.27 2.03 1 118.0 0.0109 1.3 1.05 164.6 0.0073 0.596 3.02 1.71 1.19 118.0 0.0145 2.27 2.03 1.35 2.27 2.03 1 118.0 0.0145 2.28 1.00 181.2 0.021 1.18 2.28 1.44 117.7 0.0145 3.24 1.00 151.2 0.021 2.14 1.48 1 117.7 0.0145			H €	.725	.735	.438	189.	.718	.246	.546	.627	0.83	.430	.516	970		.423		2333	.222	:083		
H T L HAL 反射率 Ir H T L (cm) (s) (cm) (cm) (s) (cm) (s) (cm) 0.96 (o.99 148.5 0.0065 0.59 3.33 0.85 1.02 98.6 0.83 (o.99 148.5 0.0065 0.712 3.01 0.85 0.97 9.20 2.07 (o.99 148.5 0.0139 0.365 2.27 2.03 1.1 1.19 118.0 2.07 (o.99 148.5 0.0139 0.365 2.27 2.03 1.1 119.6 2.07 (o.99 148.5 0.0073 0.601 3.15 2.28 1.04 147.7 3.24 1.06 151.2 0.0073 0.601 3.15 2.88 1 119.6 4.86 1.00 151.2 0.0214 0.217 1.83 2.88 1 117.7 4.86 1.00 151.2 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-						-													
H T L H/L 反射率 Lr H T Cm) (s) (cm) (s) (cm) (cm) (s) (cm) (cm) (s) (cm) (em) (s) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm	高ch3,4																						
H T L H/L 反射率 (cm) (s) (cm) H/L 反射率 (cm) (s) (cm) H/L 反射率 (cm) (cm) H/L 反射率 Ir H (cm) (cm) H/S 0.0065 0.59 3.33 0.85 (cm) 0.83 0.82 104.4 0.0080 0.712 3.01 0.85 2.07 0.99 148.5 0.0139 0.365 2.27 2.03 2.07 0.99 148.5 0.0079 0.365 2.27 2.03 1.3 1.05 164.6 0.0079 0.365 2.27 2.03 2.27 1.39 2.44 0.0088 0.467 2.85 2.58 3.24 1.00 151.2 0.0214 0.217 1.49 4.48 3.24 1.00 151.2 0.0214 0.217 1.49 4.48 3.24 1.00 151.2 0.0082 </td <td>法先被</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	法先被							_						1					_				
H T L HAL E外標高ch1,2 FA E HAL E E HAL E E E E E E E E E		T																					
H T L E E E E E E E E E		Н	(cm																				
H T L (cm) (s) (cm) (0.96 (0.99 148.5 0.0065 (0.83 (0.82 (104.4 0.0080 (0.83 (0.82 (104.4 0.0080 (0.83 (0.82 (104.4 0.0080 (0.83 (0.83 (0.007) (0.007) (0.84 (0.007) (0.007) (0.007) (0.85 (0.007) (0.007) (0.007) (0.86 (0.007) (0.007) (0.007) (0.86 (0.007) (0.007) (0.007) (0.87 (0.007) (0.007) (0.008) (0.88 (0.007) (0.007) (0.007) (0.89 (0.007) (0.007) (0.007) (0.89 (0.007) (0.007) (0.007) (0.89 (0.007) (0.007) (0.007) (0.80 (0.007) (0.007) (0.007) (0.80 (0.007) (0.007) (0.007) (0.007) </td <td></td> <td></td> <td>4</td> <td>3.33</td> <td></td> <td>2.27</td> <td></td> <td>3.15</td> <td>1.83</td> <td>2.85</td> <td>2.72</td> <td>1.49</td> <td>2.48</td> <td>2.44</td> <td>1.29</td> <td></td> <td>2.27</td> <td>1.18</td> <td>1.89</td> <td></td> <td>1.08</td> <td></td> <td>1.76</td>			4	3.33		2.27		3.15	1.83	2.85	2.72	1.49	2.48	2.44	1.29		2.27	1.18	1.89		1.08		1.76
H T L (cm) (s) (cm) (0.96 0.99 148.5 0.83 0.82 104.4 2.07 0.99 148.5 2.07 0.99 148.5 2.87 1.06 395.8 3.24 1.00 151.2 2.87 1.96 395.8 3.24 1.00 151.2 4.86 1.00 151.2 4.87 1.99 403.0 6.53 1.00 151.2 5.65 2.00 405.4 7.77 1.00 151.2 5.65 2.00 405.4 5.65 2.00 405.4 7.77 1.00 151.2 5.65 2.01 407.8 9.28 1.00 151.2 7.53 1.40 256.9 9.28 1.00 151.2 7.53 1.40 256.9 9.4 2.01 407.8		1		0.59	0.712	0.365	0.596	0.601	0.217	0.467	0.521	0.112	0.342	0.417	0.103	0.266	0.344	0.91	0.182	0.178	99:0	0.092	0.152
(cm) (s) ((cm) (s) (0.96 0.99 1-1 (0.83 0.82 10 (0.83 0.82 10 (1.3 1.05 10 (1.3 1.05 10 (1.3 1.05 10 (1.4 0 22 1.39 22 (1.4 0 22 1.39 22 (1.4 0 22 1.39 22 (1.5 1.00 11 (1.6 5.3 1.00 12 (1.7 1.00 12 (1.7 1.00 12 (1.7 1.00 12 (1.7 1.00 12 (1.8 1.00 12 (1.9 44 2.01 44 22 (1.9 44 2.01 44 22 (1.9 5.4 2.01 44 22 (1.9 5.1 2.01 44 22 (1	ই高ch1,2	ν,	П/П	0.0065	0.0080	0.0139	0.0079	0.0073	0.0214	0.0088	0.0097	0.0322	0.0117	0.0121	0.0432	0.0143	0.0139	0.0514	0.0201	0.0189	0.0614	0.0293	0.0231
H (cm) (0.96 0.96 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	并被形	Г	(cm)	148.5	104.4	148.5	164.6	395.8	151.2	254.4	405.4	151.2	256.9	403.0	151.2	256.9	405.4	151.2	256.9	407.8	151.2	256.9	407.8
		Т	(s)	0.99	0.82	0.99	1.05	1.96	1.00	1.39	2.00	1.00	1.40	1.99	1.00	1.40	2.00	1.00	1.40	2.01	1.00	1.40	2.01
		Н	(cm)	96.0	0.83	2.07	1.3	2.87	3.24	2.25	3.94	4.86	3	4.87	6.53	3.67	5.65	7.77	5.17	7.72	9.28	7.53	9.4
		case	1	R1TC1501	R1TE1501	R2TC1501	R2TE1501	R2TG1501	R3TC1501	R3TE1501	R3TG1501	R4TC1501	R4TE1501	R4TG1501	R5TC1501	R5TE1501	R5TG1501	R6TC1501	R6TE1501	R6TG1501		R7TE1501	R7TG1501

表 4-3 傾斜板 cot=2.75 (20°) 規則波パラメーター

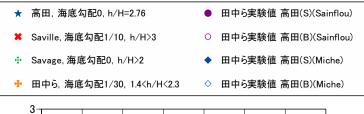
					1	1		1	1		1	1										
(原型)	R0	(m)	0.03	0.01	0.02	0.08	0.07	0.10	0.20	0.14	99.0	0.46	0.32	0.85	0.52	0.51	1.32	0.78	1.62	2.19	1.43	2.55
打上げ高 (原型)	Rm	(m)	0.10	0.38	0.23	0.58	0.78	0.50	1.03	1.20	1.50	1.70	1.88	1.95	1.78	2.40	2.38	2.30	4.60	3.05	3.50	6.25
波power (原型)	W	(kW/m)	0.02	0.03	0.15	0.24	2.98	1.28	0.75	6.55	6.19	2.16	14.32	13.65	3.43	21.60	19.04	12.28	43.01	26.67	25.49	57.18
波powe		(k)	•										1	1		2	1	1	4	2	2	5
	D (原型)		1.00	1.00	1.00	1.03	1.17	1.07	1.06	1.15	1.10	1.13	1.12	1.10	1.12	1.10	1.10	1.20	1.10	1.10	1.20	1.10
波長 (原型)	Г	(m)	4.25	86.8	16.47	26.71	81.82	33.81	32.49	89.18	37.81	42.47	97.20	37.81	41.80	101.27	37.81	64.20	101.27	37.81	64.20	101.27
相対打上高	Н/ И	11/8/11	0.882	2.319	0.833	1.871	1.213	1.145	2.212	1.367	1.454	2.483	1.578	1.284	1.995	1.744	1.357	1.857	2.297	1.416	1.989	2.685
	原型 R _{1/3}	(m)	0.06	0.16	0.1	0.26	0.33	0.26	0.46	0.51	99.0	0.71	8.0	0.85	0.73	1.02	1.06	96.0	1.92	1.33	1.47	2.58
	$\mathbf{R}_{1/3}$	(cm)	0.6	1.6	-	2.6	3.3	2.6	4.6	5.1	9.9	7.1	∞	8.5	7.3	10.2	10.6	9.6	19.2	13.3	14.7	25.8
	Rmin	(cm)	0.2	1.2	9.0	0.3	9.0	1.5	0.4	2.8	4.2	6.4	0.7	6.2	3.4	1.7	7.3	1.4	16.9	∞	5.4	19.1
遡上高Rの解析	Rmax	(cm)	0.7	1.7	1.1	2.7	3.5	3.5	8.4	5.2	7.5	7.4	8.2	9.2	7.6	10.5	11.4	9.7	8.61	14.5	15.5	26.1
瀬上高	(婦女)日	(C) HX)	0	0	0	0.1	0.2	0.2	8.0	0.2	0.3	0.1	1.9	0.5	0.4	2.6	6.0	1.7	0.5	1.2	2.2	1.6
	Rave	(cm)	0.4	1.5	6:0	2.3	3.1	2	4.1	8.4	9	8.9	7.5	7.8	7.1	9.6	9.5	9.2	18.4	12.2	14	25
	R(zero)	(cm)	0.36	0.15	0.27	0.88	0.77	1.12	2.36	1.6	69.7	5.42	3.72	9.93	6.05	5.98	15.47	9.12	19	25.63	16.75	29.86
	所 主 1	+	0.612	0.905	0.805	0.800	0.77	0.687	0.778	0.747	0.322	0.673	0.712	0.171	0.611	0.661	0.128	0.509	0.494	0.102	0.349	0.383
ch3,4	νн		0.0143	0.0195	0.0191	0.0152	0.0129	0.0272	0.0205	0.0159	0.0333	0.0244	0.0199	0.0508	0.0317	0.0229	9090.0	0.0347	0.0334	0.0740	0.0496	0.0438
法先波高ch	Г	(cm)	46.8	37.4	63.4	0.79	221.0	78.7	119.6	260.4	121.2	127.5	270.6	121.2	113.2	270.6	121.2	159.9	270.6	121.2	182.5	264.8
注(Т	(s)	0.65	0.74	99.0	1.18	1.97	98.0	1.1	2.12	-	1.11	2	1	1.06	2	1	1.4	2.01	1	1.4	2.00
	Н	(cm)	0.67	0.73	1.21	1.47	2.85	2.14	2.45	4.15	4.04	3.11	5.39	6.15	3.59	61.9	7.34	5.55	9.05	8.97	9.05	11.61
	Ir		2.87	4.48	3.19	4.30	4.42	2.97	3.54	3.79	2.10	3.20	3.25	1.74	2.81	3.03	1.60	2.57	2.53	1.46	2.15	2.36
	所 本 1	+	0.942	0.73	0.882	0.711	0.653	0.661	0.67	0.65	0.297	0.570	0.617	0.139	0.516	0.564	0.116	0.391	0.419	0.079	0.27	0.314
沖波波高ch1,2	1/Н		0.0161	9900.0	0.0130	0.0072	0.0068	0.0150	0.0106	0.0092	0.0300	0.0130	0.0125	0.0438	0.0168	0.0144	0.0517	0.0201	0.0206	0.0621	0.0288	0.0237
沖波波	Г	(cm)	42.2	104.4	92.3	194.0	400.6	151.2	196.7	405.4	151.2	220.5	405.4	151.2	217.9	405.4	151.2	256.9	405.4	151.2	256.9	405.4
	Т	(s)	0.52	0.82	6 220	1.16	1.98	1	1.17	2 4	1	1.26 2	2	1	1.25 2	2 4	1 1	1.4 2	2 4	1 1	1.4 2	2
	Н	(cm)	0 89.0) 69:0	1.2	1.39	2.72	2.27	2.08	3.73	4.54	2.86	5.07	6.62	3.66	5.85	7.81	5.17	8.36	9:39	7.39	19.6
	case		R1TC2001 0	R1 TE2001	R2TC2001	R2TE2001	R2TG2001	R3TC2001	R3TE2001	R3TG2001	R4TC2001	R4TE2001	R4TG2001	R5TC2001	R5TE2001	R5TG2001	R6TC2001	R6TE2001	R6TG2001	R7TC2001 9	R7TE2001	R7TG2001

表 4-4 傾斜板 cot=2.14 (25°) 規則波パラメーター

																						Π
(原型)	R0	(m)	0.02	0.03	90:00	60:00	80:0	0.13	0.15	0.12	0.32	0:30	0.16	1.02	0.42	0.23	1.15	0.71	0.63	1.17	1.36	
打上げ高	Rm	(m)	90.0	0.07	0.14	0.21	0.18	0:30	0.35	0.29	97.0	0.72	0.39	2.41	1.00	0.56	2.73	1.67	1.49	2.78	3.22	
波power (原型)	W	(kW/m)	0.21	0.71	1.19	1.87	2.56	3.16	5.26	6.26	5.80	88.6	13.77	10.74	14.67	21.60	19.39	26.42	38.97	28.17	46.49	i i
	D (原型)		1.03	1.18	1.08	1.19	1.17	1.10	1.20	1.15	1.09	1.20	1.11	1.10	1.20	1.10	1.10	1.20	1.10	1.10	1.20	4
被長 (原型)	Г	(m)	27.96	54.45	35.13	57.06	82.43	37.81	64.20	87.68	37.14	64.20	99.03	37.81	64.20	101.27	37.81	64.20	101.27	37.81	64.20	
相対打上高	Ę.	N _{1,8} /n	0.455	0.795	0.721	1.078	0.916	0.862	1.072	1.008	1.175	1.258	1.102	1.711	1.327	1.185	1.524	1.436	1.689	1.383	1.595	
	原型 R _{1/3}	(m)	0.05	0.12	0.16	0.25	0.23	0.28	0.37	0.36	0.53	0.58	0.54	1.04	0.75	0.71	1.21	1.07	1.37	1.34	1.59	
	R _{1/3}	(cm)	0.5	1.2	1.6	2.5	2.3	2.8	3.7	3.6	5.3	5.8	5.4	10.4	7.5	7.1	12.1	10.7	13.7	13.4	15.9	
止	Rmin	(cm)	0	0.1	0.3	2	2.1	0.1	0.2	0.3	0.5	0.5	1.2	7.9	6.4	8.0	8.2	2.3	1.9	9.6	5.4	
遡上高Rの解析	Rmax	(cm)	0.7	1.3	1.6	2.6	2.3	2.9	3.8	3.7	5.4	5.9	5.5	12.1	7.9	7.4	13.1	10.8	14.5	14.6	16.5	
単 子 顯	0.73世)	N(3) EX)	0	0.1	0.2	0	0	0.1	0.3	8.0	0.4	0.7	9.0	8.0	0.1	1.4	1.3	1.8	4.9	1.2	3	
	Rave	(cm)	9.0	1	1.3	2.3	2.2	2.7	3.4	3.1	5.1	5.3	5.2	9.4	7.1	6.7	10.7	6.6	12.8	12.2	14.7	
	R(zero)	(cm)	0.23	0.26	0.57	0.82	0.71	1.19	1.39	1.14	3.02	2.87	1.55	9.65	3.98	2.22	10.93	89.9	5.96	11.11	12.89	
	1	₽ ₩	0.823	0.820	0.856	0.846	0.716	0.857	7777	0.751	0.708	0.726	0.732	0.472	99.0	0.717	0.298	0.575	609.0	0.209	0.41	
	177		0.0103 0	0.0108	0.0212 0	0.0136 0.	0.0123 0	0.0310 0.	0.0184 0	0.0159 0.	0.0423 0	0.0239 0.	0.0214 0	0.0558 0.	0.0289	0.0266 0.	0.0677	0.0324 0	0.0416 0	0.0829 0	0.0439	
英高ch3,4		(cm)	0	∞	7	4	9	.2	s.	∞ ₀	4	κi	∞.	.2	ν.	9	2	κi	9.	.2	v.	Ī
法先波	Г		118.	4 106.	113.	9 158.	9 238.	121	164	264	116.	182.	264	121	9 182.	270.	121.	182	1 254.	121	182.	
	T	(s) (t	1 1	5 1.34	1	5 1.39	4 1.99	5 1	3 1.4	2 2	2 1	7 1.4	6 2	6 1	8 1.39	2 2	1	1 1.4	6 2.01	74	1.4	
	Н	(cm)	2 1.21	5 1.15	5 2.4	8 2.15	1 2.94	8 3.75	3.03	7 4.2	0 4.92	8 4.37	5 5.66	3 6.76	4 5.28	4 7.2	3 8.2	4 5.91	0 10.6	4 10.04	7 8.01	
	Ir	1	3 5.42	1 6.05	3.85	7 4.88	2 5.91	3.18	2 4.00	4 4.97	2 2.70	3.48	5 4.25	1 2.33	3.14	3.84	5 2.03	3 2.74	3.30	9 1.84	3 2.37	
6	1	X	0.713	0.771	0.69	0.767	0.652	0.675	0.742	0.674	0.582	0.704	0.675	0.384	0.642	0.649	0.225	0.563	0.589	0.159	0.423	
沖波波高ch1,2	5	1	0.0074	0.0059	0.0147	0.0091	0.0062	0.0215	0.0136	0.0088	0.0298	0.0179	0.0120	0.0402	0.0220	0.0148	0.0525	0.0290	0.0200	0.0641	0.0388	
英	Т	(cm)	148.5	254.4	151.2	254.4	403.0	151.2	254.4	405.4	151.2	256.9	407.8	151.2	256.9	405.4	151.2	256.9	405.4	151.2	256.9	
	T	(s)	0.99	1.39	1	1.39	1.99	1	1.39	2	-	1.4	2.01	-	1.4	2	1	1.4	2	1	1.4	
	Н	(cm)	1.1	1.51	2.22	2.32	2.51	3.25	3.45	3.57	4.51	4.61	4.9	80.9	5.65	5.99	7.94	7.45	8.11	69.6	9.97	
	case		R1TC2501	R1TE2501	R2TC2501	R2TE2501	R2TG2501	R3TC2501	R3TE2501	R3TG2501	R4TC2501	R4TE2501	R4TG2501	R5TC2501	R5TE2501	R5TG2501	R6TC2501	R6TE2501	R6TG2501	R7TC2501	R7TE2501	

表 4-5 高田の理論(Saville, Savege, Sainflou, Miche)を使った実験値一覧

波形勾配	高田,海底勾	高田, 海底勾配0, h/H=2.76	Saville, 海底勾配1/10, h/H>3	配1/10, h/H>3	Savage, 海底勾配0,	勾配0, h/H>2	田中ら, 海底勾配1/30, 1.4 <h h<2.3<="" th=""><th></th><th>田中ら実験値 3</th><th>田中ら実験値 高田(S)(Sainflou)</th><th>田中ら実験値を</th><th>田中ら実験値 高田(B)(Sainflou)</th><th>田中ら実験値 高田(S)(Miche)</th><th>新田(S)(Miche)</th><th>田中ら実験値 高田(B)(Miche)</th><th>高田(B)(Miche)</th></h>		田中ら実験値 3	田中ら実験値 高田(S)(Sainflou)	田中ら実験値を	田中ら実験値 高田(B)(Sainflou)	田中ら実験値 高田(S)(Miche)	新田(S)(Miche)	田中ら実験値 高田(B)(Miche)	高田(B)(Miche)
H/L	cot0	$R/H_{1/3}$	cot0	R/H _{1/3}	cot0	$R/H_{1/3}$	cot0	$R/H_{1/3}$	cot0	$R/H_{1/3}$	cot0	$R/H_{1/3}$	cot0	$R/H_{1/3}$	cot0	$R/H_{1/3}$
	00.0	1.40	0.00	1.60	0.00	1.30	2.14	1.58	3.73		3.73	1.37	3.73		3.73	1.82
	0.50	1.60	0.90	1.80	0.50	1.40	2.75	2.20	2.75	1.95	2.75		2.75	2.26	2.75	
	1.00	1.75	1.60	2.00	1.00	1.80	3.73	2.51	2.14		2.14		2.14		2.14	
	1.50	2.00	3.00	2.05	1.50	1.95										
	2.00	2.15	4.00	1.60	2.20	2.20										
0.019	2.20	2.10	5.00	1.40	3.10	2.02										
	2.50	2.05	00.9	1.30	5.00	1.50										
	2.70	2.20			00.9	1.30										
	2.80	2.00			7.00	1.15										
	3.00	2.00														
	4.00	1.70														
	00.0	1.05	2.00	1.80	0.00	1.10	3.73	1.30	3.73		3.73	1.07	3.73		3.73	1.16
	0.50	1.10	3.00	1.70	0.50	1.40	2.75	1.32	2.75	1.89	2.75	1.17	2.75	1.98	2.75	1.31
	1.00	1.35	4.00	1.40	1.00	1.60	2.14	1.13	2.14	1.94	2.14		2.14	2.10	2.14	
	1.40	1.30	0.00	1.00	1.50	1.90										
	1.50	1.32			2.20	1.95										
	1.70	1.35			3.00	1.70										
	1.28	1.29			4.00	1.45										
0.032	1.90	1.41			5.00	1.10										
	2.00	1.50			6.00	1.00										
	2.30	1.42			7.00	0.80										
	2.50	1.30														
	2.80	1.45														
	3.00	1.28														
	4.00	1.20														
	00'9	0.90														
	0.00	1.20	0.00	1.30	0.00	1.10	3.73	1.04	3.73		3.73	0.90	3.73		3.73	1.03
	0.50	1.20	1.65	1.95	0.50	1.45	2.75	1.22	2.75	1.71	2.75	1.10	2.75	1.73	2.75	1.26
	1.00	1.40	1.75	1.95	1.00	1.50	2.14	1.58	2.14	2.00	2.14	1.44	2.14	2.24	2.14	1.67
	1.40	1.60	1.85	1.90	1.50	1.90										
	1.70	1.90	2.00	1.90	2.10	1.93										
	1.80	1.93	2.15	1.60	2.45	1.60										
	1.90	1.90	3.00	1.30	3.10	1.35										
0.051	2.00	1.63	3.05	1.27	4.00	1.30										
	2.10	1.50	4.00	1.00	5.00	0.89										
	2.40	1.40	5.00	0.90	7.00	0.70										
	2.60	1.35	6.00	0.85												
	2.80	1.30														
	3.00	1.27														
	4.00	0.95														
	6.00	0.90														


田中らの過去の研究から、規則波では傾斜板角度 θ =15°が最も打上げ高が高いことが示された (田中ら、2010). 本研究では、既存の研究を基盤に、より推定しやすい打上げ高の算定方法を提案したい.

高田 (高田, 1970) は,重複波水深領域の遡上高の算定式をのり勾配の大小により,surging waves 領域と breaking waves 領域に分けて Miche (Miche, 1944, 1951) と Sainflou (Sainflou, 1928) の重複波の水面波形を考慮して有用な式を提案した.本実験で得られたデータとこれらの既存の理論から,傾斜板角度 θ =15°,20°,25°,波形勾配 H/L=0.019,0.032,0.051でまとめたグラフが下記の図 4-7~4-9 である.

H/L=0.019 の結果は、実験値や実験値を基に既存の理論を考慮した結果は既存の理論とよく合っていることを示している.特に、(S) surging waves 領域と (B) breaking waves 領域に分けた Sainflou の重複波の水面波形を考慮した式を適用した場合が顕著で、完全に傾向と一致している.

H/L=0.032 の結果は、高田(海底勾配 0) の結果と、田中ら(海底勾配 1/30)、田中ら実験値(高田(B) Sainflou)、田中ら実験値(高田(B) Miche)の結果は傾向が完全に一致し、Saville、Savage、田中ら実験値(高田(S) Sainflou)、田中ら実験値(高田(S) Miche)の傾向が完全に一致していることから、実験値や実験値を基に既存の理論を考慮した結果は既存の理論とよく合っている。

H/L=0.051 の結果は、すべてのデータの傾向が完全に一致していることから、実験値や 実験値を基に既存の理論を考慮した結果は既存の理論とよく合っているといえる.

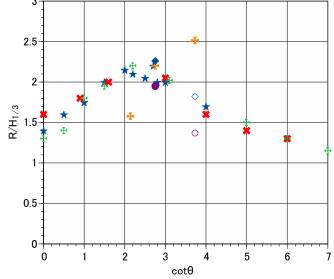


図 4-7 傾斜板角度と打上げ高の関係 (H/L=0.019)

- ★ 高田, 海底勾配0, h/H=2.76
- 田中ら実験値 高田(S)(Sainflou)
- ★ Saville, 海底勾配 1/10, h/H>3
- 田中ら実験値 高田(B)(Sainflou)
- 🛨 Savage, 海底勾配0, h/H>2
- 田中ら実験値 高田(S)(Miche)
- ★ 田中ら、海底勾配1/30、1.4<h/H<2.3</p>
- ◇ 田中ら実験値 高田(B)(Miche)

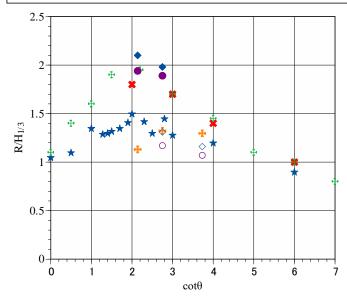


図 4-8 傾斜板角度と打上げ高の関係 (H/L=0.032)

- ★ 高田, 海底勾配0, h/H=2.76
- 田中ら実験値 高田(S)(Sainflou)
- ★ Saville, 海底勾配1/10, h/H>3
- 田中ら実験値 高田(B)(Sainflou)
- ♣ Savage, 海底勾配0, h/H>2
- ◆ 田中ら実験値 高田(S)(Miche)
- ★ 田中ら、海底勾配1/30、1.4<h/H<2.3</p>
- ◇ 田中ら実験値 高田(B)(Miche)

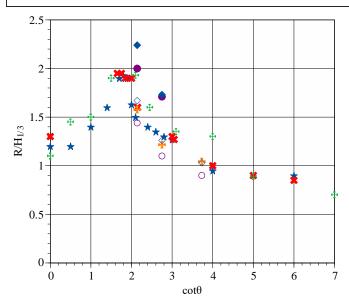


図 4-9 傾斜板角度と打上げ高の関係 (H/L=0.051)

波の打上げ高は,運動論で考えるならば波エネルギー(W),反射率,散逸率,波形勾配に関係する(田中ら、2014)(H, Tanaka ら、2015).従来,打上げ高をまとめる際には波形勾配ごとで考える場合が多いが,打上げ高は斜面を遡上する現象であるため斜面の勾配を考慮する必要があり,傾斜板角度を含めて考えられる Iribarren 数(ξ)と呼ばれる無次元量でまとめることとした. Iribarren 数は次式(4.43)で表される.

$$\xi = \frac{\tan\theta}{\sqrt{H/L}} \tag{4.43}$$

ここで $tan\theta$ は傾斜板角度で H/L は波形勾配である.

なお、打上げ高(R)を波高(H)で無次元化した値を波エネルギーと Iribarren 数を用いてグラフ化すると関係が明瞭でないため、図 4-10 のように打上げ高(R)を縦軸とし、また、(S) surging waves 領域と (B) breaking waves 領域に分けて表した. 塗りつぶしが breaking waves 領域となり、白抜きが surging waves 領域となる. その結果、surging waves 領域、breaking waves 領域に関わらず Iribarren 数が増加すると打上げ高は減少した. また、傾斜板角度 θ =25°の場合、極端に打上げ高が低くなっていることから、傾斜板角度 θ =20°を超えると打上げ高が低くなることがわかる. なお、傾斜板角度に関わらず Iribarren 数が小さくなる条件は breaking waves 領域であることがわかる. また、Iribarren 数と波浪領域の関係は、Ir=2 付近で明瞭に分かれているため、波浪領域を分けることで打上げ高を予測できる.

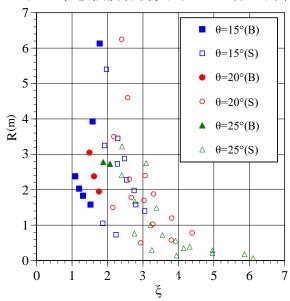


図 4-10 Iribarren 数と打上げ高の関係

次に、波パワー(kW/m)と打上げ高の関係をまとめたグラフが図 4-11 となる. 図 4-11 は、傾斜板角度 θ =15°、20°、25°における breaking waves 領域と surging waves 領域に分けてまとめた結果となる. 塗りつぶしかつ実線が breaking waves 領域となり、白抜きかつ破線が surging waves 領域となる.

この結果から、波パワーと打上げ高の関係は比例関係にあることがわかる. surging waves

領域では 15° が最も傾きが大きいことから打上げ高が高くなりやすいことがわかる. 一方, breaking waves 領域では 20° の breaking waves 領域, surging waves 領域と, 25° の breaking waves 領域はほぼ同じ傾向を示す結果となった. この結果から, breaking waves 領域では $\theta=15^\circ$ が最も打上げ高が高いことがわかった. また, 20° の場合, 波パワーが 10kW/m 以上では breaking waves 領域と surging waves 領域に大きな差はないため, どの波浪条件においても打上げ高が安定していることがわかる.

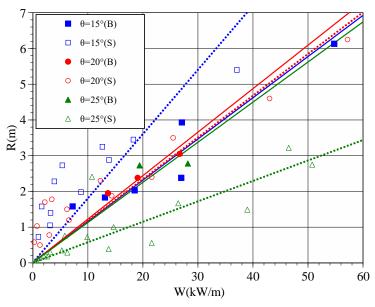


図 4-11 波パワーと打上げ高の関係 (規則波)

次に、角度ごとに波パワーW(kw/m)、Iribarren 数(ξ)、打上げ高 R_m (m)をまとめたグラフを図 $4\cdot12\sim4\cdot14$ に示す.この図は x、 y 軸にそれぞれ Iribarren 数と波パワーとし、z 軸に打上げ高さを表したものである.傾斜板角度 15° では、波パワーは 54.8kw/m で最大となり、その際の打上げ高が 6.1m となり最大となる.傾斜板角度 20° では、波パワーは 57.2kw/m で最大となり、その際の打上げ高は 6.3m となり最大となる.傾斜板角度 25° ではほかの角度と違い、波パワーが最大のとき(50.8kw/m)、打上げ高は最大(2.8m)ではない.最大打上げ高は 3.6m であり,その際の波パワーは W=46.5kw/m である.この原因は,図 $4\cdot15$ に示したように、傾斜板角度 25° では反射率が非常に大きいことが考えられる.具体的には、波パワーが最大の時、傾斜板角度 15° では約 2 割(0.152)の反射となり、傾斜板角度 20° では約 3 割(0.314)反射している.一方,傾斜板角度 25° では約 5 割(0.529)が反射していることから、波が傾斜板を遡上する前に、急な勾配によって波パワーの半分はすでに反射していることがわかる.しかし,傾斜板角度による反射率と波パワーとの関係が明瞭でないことから、従来表している波形勾配と反射率の関係を傾斜板角度ごとに示したものが図 $4\cdot16$ である.この図から傾斜板角度が大きくなるにしたがって反射率も大きくなることがわかる.なお、波形勾配と反射の関係は $K_r=\alpha x^{\beta}$ と表すことができ,傾斜板角度ごとの α 、 β の値を

表 4-6 に示す. 角度による違いはあるものの、概して、打上げ高は Iribarren 数よりも波パワーに関係することがわかる. また、傾斜板角度が増加するにしたがって反射の影響が顕著となり打上げ高は Iribarren 数に関係することがわかる.

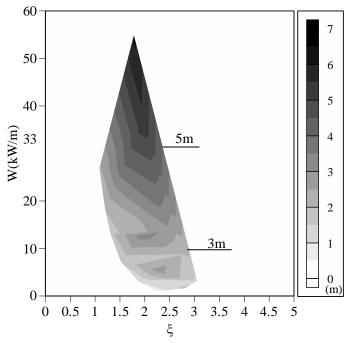


図 4-12 Iribarren 数と波パワー, 打上げ高の関係 (15°)

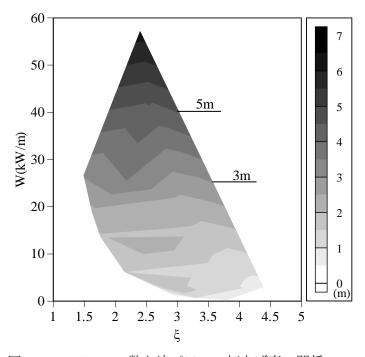


図 4-13 Iribarren 数と波パワー, 打上げ高の関係 (20°)

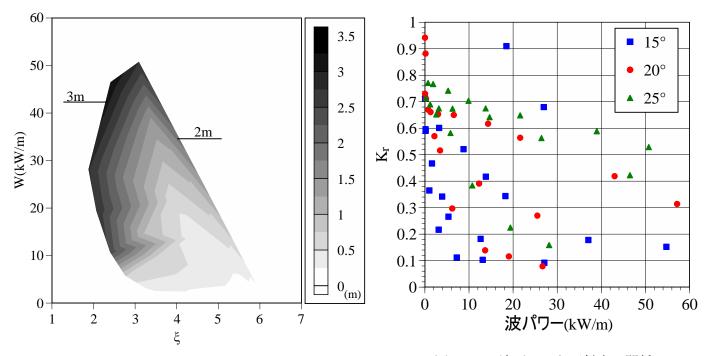


図 4-14 Iribarren 数と波パワー, 打上げ高の関係 (25°)

図 4-15 波パワーと反射率の関係

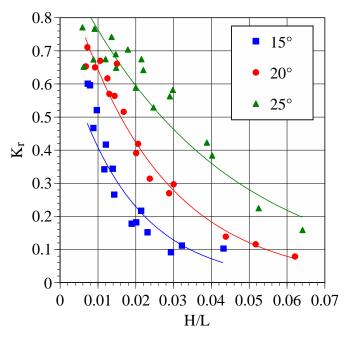


図 4-16 波形勾配と反射率の関係

表 4-6 波形勾配と反射率の関係 (α, β の値)

角度	α	β
15°	0.734	-57.8
20°	0.983	-41.8
25°	0.984	-25.0

4.7.2 不規則波

実験条件として,傾斜板角度(°),波高 $H_{1/3}$ (cm),周期 $T_{1/3}$ (s)を変化させて実験を行っている.

実験結果より、波高 $H_{1/3}$ (cm)、周期 $T_{1/3}$ (s) を取得し比較検討を行った。それらの実験結果を表 $4\text{-}6\sim4\text{-}10$ 示す。表記載の ave、max、min は、それぞれ ave:平均、max:最大、min:最小である。R(zero)は R をゼロアップクロスにて解析をかける時の R の平均値と静水面との推移である。波形勾配 H/L、 R_{ave}/H 、 $R_{1/3}/H$ 、相対水深波高 h/H の H であるが全て有義波高 $H_{1/3}$ である。波長 L は式 (4.38) から算出した。図 4-17 は波高 1.51cm、周期 1.01s、傾斜板角度 20° (H1TC2001)時の時系列図である。図 4-18 は波高 7.39cm,周期 2.56s,傾斜板角度 20° (H5TH2001)時の時系列図である。

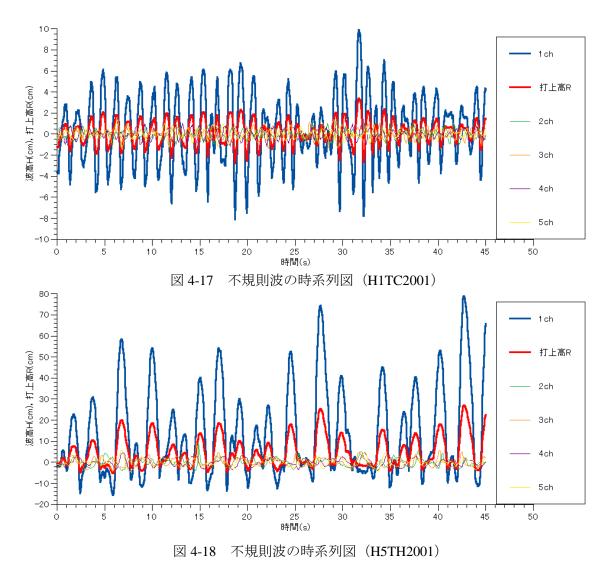


表 4-7~4-11 に実験結果一覧を示す.

表 4.-7 傾斜板 cot=5.67 (10°) 不規則波パラメーター

1 H (§ § § § § § § § § § § § § § § § § § §
(MM) (MM) (CMM) (
000212 748 0.142 2.89 0.8 0 1.3 0 1.3 1.0 0.005 00022 448 0.483 2.47 0.9 1.3 0.4 1.3 3.9 1.00 0.03 00082 480 0.48 1.4 0.3 2.7 0.3 1.15 1.0 0.03 00082 480 0.48 1.4 0.3 2.7 0.1 0.03 0.0 00082 380 0.28 1.78 1.0 0.1 0.0 0.24 00082 380 0.28 1.3 1.4 0.4 0.3 2.7 0.1 0.0 0.0 00082 380 0.28 1.3 1.4 0.4 0.3 2.7 0.1 0.0
00028 556 0.139 0.08 0.4 0.1 1.3 0. 0.6 5.3.9 1.10 0.00 00084 4.80 0.40 1.0 1.1 1.0 1.1 0.00 00084 3.80 0.40 1.0 1.2 1.0 1.3 1.3 1.0 1.0 0.03 00084 3.80 0.40 1.0 1.2 1.0 1.3 1.0 1.0 0.03 00080 3.80 0.59 1.6 1.0 4.0 3.2 6.00 1.0 0.03 00080 3.80 0.59 1.6 0.0 4.1 </td
0.0082 48 0.48 2.4 0.9 0.1 1.1 3.7 1.3 1.3 7.9 1.10 0.23 0.0082 48 0.48 1.4 1.4 1.2 1.3 1.3 1.0 1.1 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0
0.00291 430 1.44 1.49 <
0.00072 3.5 0.548 1.75 1.7 1.0 0.0 0.0 0.0 1.7 1.1 0.0 0.0 1.7 1.1 0.0 0.0 0.0 1.3 1.0 1.0 0.0 0.0 0.0 0.0 3.7 0.0 1.0 0.0 0.0 0.0 0.0 3.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0
0.0061 286 0.584 2.51 2.1 4.1 6.4 3.2 10.45 1.10 0.68 0.0035 58 0.39 1.56 2.8 2 1.2 5.1 1.3 18.08 0.09 1.05 0.0035 58 0.39 1.66 1.8 2.3 2.1 2.7 1.0 0.68 0.0030 5.8 1.86 1.8 2.5 1.8 2.3 1.0 0.68 0.0165 5.8 0.267 1.9 2.9 1.3 2.4 2.4 2.5 1.1 1.0 0.68 0.0168 5.8 0.26 1.8 4.2 2.7 8.1 1.2 5.1 1.0 0.68 0.0108 5.8 0.26 1.2 5.1 1.2 5.1 1.0 0.68 1.0 0.68 0.0108 5.8 0.2 1.2 5.1 1.2 5.1 1.2 5.1 1.2 5.1 1.2
0.0029 2.8 2 1.2 5.1 6.1 9.0 1.0 0.0 1.0 0.0 1.0 0.0
00089 688 0.394 1.66 0.8 0.2 3 6.1 1.0 1.0 0.065 00086 6.29 0.30 1.2 1.8 2.8 1.1 0.0 0.0 00000 3.26 0.30 2.5 1.1 4.8 2.33 1.0 0.0 00016 3.28 0.30 2.5 1.1 4.8 6.88 1.10 0.0 00018 3.8 0.30 3.7 2.1 1.2 4.3 6.88 1.10 0.0 00018 2.8 0.30 3.7 1.1 4.2 6.28 1.1 1.0 0.0 00018 2.8 0.35 3.4 1.2 4.2 1.7 1.0 1.0 0.0 00020 0.30 0.31 1.1 2.0 1.1 2.0 1.0 0.0 0.0 00030 0.30 0.30 0.3 1.1 2.0 1.1 0.0 0.0 <t< td=""></t<>
00026 559 0.340 2.56 111 0.3 3 6 1.8 2.35 1.00 0.653 00006 4.2 0.038 4.48 1.8 0.8 5 0.8 1.09 0.088 00016 4.2 0.028 5 0.8 5 0.8 1.09 0.088 00018 2.8 0.30 7.63 2.9 1.4 1.6 1.0 0.088 0.0018 2.8 0.34 1.8 4.2 2.7 8.1 1.2 1.0 1.0 1.38 0.0018 2.9 0.44 8.1 1.2 6.1 1.0 1.0 1.38 1.0 1.0 1.0 1.3 1.0
0.0020 442 148 148 18 6 5 6 2 3.48 100 0.098 0.0056 338 0.267 7.19 2.9 1.3 6.4 0.7 2.8 1.18 1.18 1.17 1.29 0.0138 2.89 0.267 7.19 2.9 1.3 6.4 9.7 5.1 4.8 1.2 1.1 4.8 6.8 1.2 1.1 4.8 6.8 1.2 1.1 4.8 6.8 1.2 1.1 4.8 6.8 1.1 1.0 0.09 0.0048 2.0 0.24 8.4 1.2 2.1 4.7 1.1 4.8 6.9 1.07 1.07 1.07 1.02 1.07
0.0054 388 0.267 7.19 2.9 1.3 6.4 0.7 4.2 5.4 1.1 4.8 6.1 1.2 1.1 1.2 0.0018 3.7 0.304 7.63 3.2 1.8 7.2 1.1 4.8 6.2 1.1 1.0 1.1 1.9 0.0089 2.7 0.44 8 4.2 2.4 8.1 1.2 6.3 1.0 1.1 1.9 0.0089 2.7 0.44 8 4.1 3.6 1.0 1.0 2.3 0.0089 2.7 0.44 8 4.1 3.6 1.0 1.0 2.3 0.0089 2.6 0.20 3.1 1.3 0.4 4.2 0.5 1.0 1.0 1.3 1.0 1.3 1.0 1.3 1.0 2.3 1.1 2.2 8.1 1.2 2.3 1.1 2.0 1.0 2.3 1.1 2.2 2.1 1.0 1.3
00040 377 0.39 7.66 3.2 1.8 7.2 1.1 4.8 64.88 1.20 1.15 000182 2.96 0.362 8.87 3.9 2.4 8.4 1.5 5.8 81.00 1.17 1.92 00090 2.7 0.444 8.8 4.1 2.6 1.0730 0.95 3.1 0.0290 576 0.219 3.1 1.3 0.4 4.2 6.3 2.115 1.07 2.38 0.0290 576 0.219 3.1 1.3 0.4 4.2 6.3 2.115 1.07 2.28 0.0290 576 0.226 1.28 3.2 1.2 1.2 3.6 1.1 5.7 1.2 3.0 1.1 5.7 1.2 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
0.0129 2.86 0.36 8.73 2.4 8.4 1.5 5.8 81.00 1.17 1.92 0.01080 2.47 0.444 8 4.2 2.7 8.1 1.3 6.1 107.30 1.07 1.23 0.0309 2.50 0.241 6.78 4.1 2.6 4.1 2.6 1.10 1.35 1.1 1.1 2.1 1.0 0.05 3.1 1.1 2.7 1.8 1.0 0.05 3.1 1.2 2.0 1.1 1.0 1.1 1.0 2.2 1.15 1.0 1.15 2.0 1.0 1.15 2.0 1.0 1.15 2.0 1.0 2.2 1.1 2.0 1.1 2.0 1.0 2.3 1.1 2.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <
0.0046 247 0.444 8 4.2 2.7 8.1 1.3 6.1 107.30 1.0 2.38 0.0094 250 0.541 6.78 4.1 3.6 8.1 1.2 2.15 1.0 1.35 0.0094 250 0.541 6.78 4.1 3.6 8.1 1.2 5.1 1.0 1.0 1.35 1.0 1.35 1.0 1.35 1.0 1.35 1.0
0.0090 220 0.541 6.78 4.1 3.6 8.1 1.2 6.3 1350 0.95 3.17 0.0390 576 0.219 3.1 1.3 0.4 4.2 0.5 2.115 1.00 1.35 0.0300 58 0.25 1.28 3.2 1.1 5.2 2.1.5 1.00 1.35 0.0223 333 0.25 1.28 3.2 1.04 2.6 1.08 2.00 0.0188 308 0.258 1.48 5.7 4.7 1.06 2.5 9.2 1.03 3.80 0.0180 2.2 0.24 1.06 2.5 8.2 1.03 1.03 3.80 0.018 3.05 0.24 1.06 2.5 1.04 1.2 3.2 1.04 1.2 3.2 1.04 1.2 3.2 1.04 1.2 3.2 1.04 1.2 3.2 1.04 1.2 3.2 3.1 3.0 4.0 <td< td=""></td<>
0.0290 576 0.219 3.1 1.3 0.4 4.2 6.5 2.11.5 1.15 2.00 1.18 2.00 1.10 1.15 2.00 1.18 2.00 1.10 2.00 1.10 1.15 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11 2.00 1.11
0.0030 459 0.169 8.73 3 1.1 5.7 1.5 4.2 5.0 1.08 2.00 0.00340 386 0.256 1.28 4.3 2 8 1.8 5.9 51.58 1.17 2.64 0.00240 388 0.228 1.28 4.3 2 1.8 5.9 5.26 1.26 3.80 1.07 3.80 1.00 3.80 1.18 3.92 1.04 0.01 3.80 1.08 1.28 3.7 1.04 0.01 3.80 1.18 3.92 1.04 0.02 1.04 0.02 1.04 0.02 1.04 0.02 1.04 0.02 1.04 1.2 2.0 1.04 1.2 2.0 0.04 0.04 0.04 1.0 2.0 1.0 3.0 1.04 0.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0
0.00240 368 0.226 1.236 4.3 2.8 1.8 5.9 51.28 1.17 2.64 0.0025 3.33 0.227 14.88 5.3 1.04 2.6 7.4 6.30 1.00 3.80 0.0188 3.86 0.28 1.28 5.7 4.7 10.6 2.5 8.2 7.90 1.18 3.92 0.0161 2.26 0.348 15.26 4.4 5.6 1.28 2.7 1.18 3.92 1.18 3.92 0.0177 2.32 0.451 11.3 6.7 9.6 1.2 2.4 1.06 3.2 1.24 1.02 3.2 1.02 1.02 1.03 1.03 1.04 1.05 1.03 1.04 1.05 1.03 1.04 1.05 1.03 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04
0.0024 333 0.237 44.88 5.3 104 26 74 66.30 1.20 380 0.00188 388 0.288 1.28 5.7 4.7 106 2.5 8.2 79.30 1.18 3.92 0.0018 2.8 0.28 1.28 5.7 4.7 10.6 2.5 8.2 79.30 1.18 3.92 0.0045 5.2 0.24 1.5 2.0 1.2 2.2 1.03 1.06 8.2 0.0086 5.1 1.5 2.0 1.2 2.2 2.4 1.06 2.5 8.2 1.06 8.8 1.08 3.09 6.8 9.00 1.09 3.5 1.2 1.2 2.4 1.06 9.2 1.08 3.09 9.00
0.0018 3.08 0.283 14.28 5.7 4.7 10.6 2.8 2.7 9.0 1.18 3.92 0.00161 26. 0.348 15.26 6.4 5.6 1.2 2.7 9.2 104.30 1.08 5.21 0.0046 521 0.348 15.26 6.4 5.6 1.2 2.7 9.2 104.30 1.08 5.21 0.0046 521 0.348 1.35 6.7 4.9 1.2 3.2 5.43 1.08 5.20 0.0085 449 0.156 0.02 3.4 1.16 2.9 8.6 6.6.6 1.18 3.5 0.0228 371 0.188 15.13 5 2.6 1.2 3.2.45 1.18 3.5 0.0216 235 0.148 1.17 3.6 1.0 3.2 1.18 3.5 0.0226 2.3 0.143 1.1 2.3 1.1 3.6 1.18 3.5
0.005 22 0.348 15.26 64 56 128 27 9.2 10430 1.08 5.21 0.0045 231 0.348 1.35 67 49 1.5 23 0.34 1.08 5.21 0.0046 521 0.004 7.15 2.2 0.7 49 1.2 3.2 5.43 1.08 6.88 0.0032 3.71 0.188 15.13 5 2.6 9.4 2.6 6.05 5.2.45 1.18 4.90 0.0229 3.71 0.188 15.13 5 2.6 9.4 2.6 6.05 5.2.45 1.18 4.90 0.0201 2.31 0.188 15.13 5 2.6 9.4 2.6 6.05 5.2.45 1.18 4.90 0.0216 2.33 0.13 3.0 4.1 1.0 3.2.45 1.18 4.90 0.027 3.24 1.2 3.6 1.1 2.3 1.1
0.0045 233 0.451 13.9 67 96 15 2.3 10.3 13.693 0.94 668 0.00466 521 0.204 7.15 2.2 0.7 4.9 1.2 2.4.3 1.02 2.62 0.00385 449 0.15 0.2 0.7 4.9 1.2 3.2 1.0 3.56 1.0 2.62 0.0022 371 0.188 15.13 5 2.6 9.4 2.6 6.0 5.24 1.18 4.90 0.0029 372 0.28 8.0 1.16 2.9 6.6 6.5 1.10 5.90 0.00410 370 0.28 30.7 7.3 6.9 1.2 0.6 6.6 6.0 1.0 8.8 1.0 1.0 8.8 1.0 1.0 8.8 1.0 1.0 8.8 1.0 1.0 8.8 1.0 1.0 9.0 1.0 9.0 1.0 9.0 1.1 1.0
0.00466 521 0.204 7.15 2.2 0.7 4.9 1.2 3.5 1.0 3.5 1.0 3.5 0.00385 449 0.156 0.023 3.5 1.5 7.5 1.8 4.9 1.08 3.56 0.00222 3.71 0.188 15.13 5 2.6 9.4 2.6 6.0 5.2.45 1.18 4.90 0.00279 3.22 0.228 18.29 6.2 9.6 6.6.56 1.20 5.90 0.0028 3.07 0.248 30.7 7.3 6.9 13.2 6.6.5 1.10 5.90 0.00418 3.0 0.248 30.7 7.3 6.9 1.0 3.2 1.18 7.11 0.00418 3.7 0.143 1.47 4.5 1.7 7.6 2.3 6.7 3.0 1.09 5.86 0.00418 3.7 0.143 1.47 4.5 1.7 7.6 2.3 6.7 1.0<
0.0282 3.49 0.156 0.23 3.5 1.5 7.5 1.8 4.9 5.88 1.08 3.56 0.0222 3.71 0.188 15.13 5 2.6 9.4 2.6 6.9 52.45 1.18 4.90 0.0228 3.71 0.188 15.13 5 4 1.16 2.9 8.6 6.66 1.20 5.90 0.0238 3.31 20.24 8 9 1.76 3.6 1.18 7.11 0.0246 2.32 0.318 20.24 8 9 1.76 3.4 1.13 1.08 8.83 0.0410 3.7 0.187 20.24 1.7 2.3 6 3.76 1.09 5.86 6.66 1.10 5.86 1.10 2.9 8.6 6.6 1.10 2.9 1.06 8.9 1.11 1.09 8.83 1.11 1.10 1.11 1.10 2.9 6.6 2.9 1.12 3.2
0.0022 371 0.188 15.13 5 26 9.4 26 6.9 52.45 1.18 4.90 0.0029 322 0.228 18.29 6.3 1.16 2.9 8.6 6.0 1.20 5.90 1.00
00029 322 0.228 6.23 4 116 29 8.6 6.6.6 1.20 5.90 00028 330 0.248 0.02 7.3 1.3 3.6 10.5 79.53 1.18 7.11 0.0016 2.3 0.315 0.024 8 9.5 17.6 3.6 1.05 9.83 1.18 7.11 0.00474 2.11 0.048 4 0.07 3.4 13.1 19.98 8.83 1.10 1.10 8.83 0.00485 4.23 0.143 14.72 4.5 1.7 7.6 3.6 3.70 1.09 8.83 1.10 7.66 9.9 6.73 1.10 8.83 1.10 9.8 1.10 9.9 6.73 1.10 9.8 1.10 9.8 1.10 9.8 1.10 9.8 1.10 9.8 9.8 1.10 9.8 9.8 1.10 9.8 9.8 1.10 9.8 9.8 1.10 9.8
0.0258 307 0.248 20.7 7.3 6.9 13.2 3.6 10.5 79.53 1.18 7.11 0.0216 2.3 0.315 20.54 8 9.5 17.6 3.6 11.5 10.633 1.08 8.83 0.00174 2.1 0.464 19.26 8 14 20.7 3.4 13.1 139.98 0.92 11.09 8.83 0.0485 4.3 1.7 7.6 2.9 10 3.2 8 51.93 1.17 7.66 0.04010 3.7 0.143 1.472 4.5 1.7 7.6 2.9 1.0 3.2 8 51.93 1.17 7.66 0.0284 2.9 1.7 1.4 4.1 1.2 78.15 1.18 1.08 8.8 0.0294 2.9 1.0 3.2 3.0 1.0 3.2 3.0 1.0 3.2 1.1 1.1 1.1 1.1 1.1 1.1 <td< td=""></td<>
0.0216 2.33 0.315 20.54 8 9.5 1.76 3.6 11.5 106.33 1.08 8.83 0.0174 2.1 0.444 9.26 8.8 14 20.7 3.4 13.1 139.8 0.92 11.09 0.0485 4.23 0.143 4.72 4.5 1.7 7.6 2.3 6 3.76 1.09 5.86 0.0410 3.57 0.187 20.26 2.9 10 3.2 8 51.33 1.17 7.66 0.0234 3.6 0.229 2.4.1 1.2 7.815 1.10 7.66 0.0232 3.0 0.226 2.4.2 1.7 1.45 1.0 7.81 1.10 7.66 0.0241 2.8 0.2 3.1 1.2 1.2 1.2 1.0 3.8 1.1 1.0 8.8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
0.0144 221 0.446 19.26 8.8 14 20.7 34 13.1 139.8 0.92 11.09 0.0485 4.32 0.143 4.72 4.5 1.7 7.6 2.3 6 37.60 1.09 5.86 11.09 5.86 0.0410 3.57 0.187 20.26 6 2.9 10 3.2 8 51.93 1.17 7.66 7.86
0.0485 423 0.143 4.72 4.5 4.7 7.6 2.3 6 37.60 1.09 5.86 0.04410 3.7 0.187 20.26 6 2.9 10 3.2 8 51.93 1.17 7.66 0.0348 3.5 0.225 24.12 7.5 4.3 1.88 4.2 9.9 66.73 1.20 9.56 0.0232 3.41 7.5 4.45 4.1 1.2 78.5 1.18 1.085 9.56 0.0240 2.86 2.60 9.5 9.1 1.66 4.3 1.7 10.720 1.07 1.411 0.0241 3.7 1.66 4.3 1.7 10.720 1.07 1.411 1.07 1.11 10.78 0.0241 3.7 1.6 4.3 1.7 10.720 1.07 1.11 10.78 1.11 10.78 1.11 10.78 1.11 10.78 1.11 10.78 1.12 1.12
0.00410 357 0.187 20.26 6 29 10 32 8 51.93 1.17 7.66 0.00348 3.56 0.226 3.41 7.5 4.3 1.38 4.2 9.9 66.73 1.20 9.56 0.00340 2.66 0.245 3.41 1.2 4.4 1.15 7.61 1.10 9.56 0.00240 2.86 0.22 9.45 1.4 6.4 1.02 1.07 1.01 1.01 1.01 0.00411 3.7 4.6 2.0 4.3 1.2 4.0 1.10 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
0.0348 326 0.225 24.12 7.5 4.3 1.88 4.2 9.9 66.73 1.20 9.36 0.0326 2.86 0.245 8.1 7 14.5 4.1 11.2 78.15 1.18 10.85 0.0280 2.56 0.28 5.01 16.6 4.3 12.7 10.720 1.07 14.11 0.0214 2.88 0.424 25.7 10.5 14.6 20.1 4.5 14.9 14.16 0.92 16.19 0.0214 2.89 0.424 25.7 10.5 14.6 20.1 4.6 4.1 1.7 10.20 1.11 10.78 1.11 10.20 1.13 1.1 4.1 1.1 10.20 1.11 10.1 1.12 1.12 1.12 1.13 1.1 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1
0.0330 364 0.249 24.51 8.1 7 14.5 4.1 11.2 78.15 1.18 10.85 0.0280 2.56 0.298 5.60 9.5 9.1 16.6 4.3 12.7 10.70 1.07 14.11 10.85 0.0214 2.8 0.424 2.57 10.5 14.6 2.1 4.5 14.9 14.65 1.07 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.79 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 14.11 10.78 11.18 18.61 10.78 14.11 10.78 11.18 11.86 11.18 18.61 11.18 18.61 11.18 18.61 11.18 18.61 11.18 14.11 11.12 12.2 14.11
0.0280 256 0.298 26.02 9.5 9.1 166 4.3 12.7 107.20 1.07 14.11 0.0214 2.38 0.424 2.5.57 10.5 14.6 20.1 4.5 14.9 14.165 0.92 16.19 0.0651 3.7 0.130 1.74 4.9 2.3 9.9 3 6.8 40.60 1.11 10.78 0.0541 3.33 0.184 2.36 6.8 3.4 11.3 4.1 9 51.48 1.17 13.33 0.0454 3.30 0.225 3.01 8.5 2.1 1.2 4.8 1.17 13.33 0.0424 3.30 0.225 30.02 8.5 2.4 1.13 4.1 9 51.48 1.17 13.33 0.0424 3.36 0.22 30.02 5.8 1.4 5.3 1.2 7.9 1.18 1.86 3.9 0.0459 2.5 0.22 3.2
0.0214 238 0.424 25.57 10.5 14.6 20.1 4.5 14.9 14.6 0.92 14.65 0.92 16.19 0.0611 379 0.0511 33 0.18 17.4 4.9 2.3 9.9 3 6.8 40.60 1.11 10.78 0.0541 33 0.184 23.6 6.8 3.4 11.3 4.1 9 51.48 1.17 13.33 0.0424 330 0.223 30.07 8.5 2.1 1.2 4.8 1.15 1.65 1.65 0.0424 348 0.222 30.12 9.5 5.8 1.64 5.3 1.2 7.93 1.18 18.61 0.0424 348 0.227 30.12 9.5 5.8 164 5.3 1.2 7.93 1.18 18.61 0.035 2.2 1.12 1.2 2.2 5.4 14.9 10.70 1.08 23.91 0.047 2.2
0.061 397 0.130 17.4 4.9 2.3 9.9 3 6.8 40.60 1.11 10.78 0.0541 335 0.184 2.36 6.8 3.4 11.3 4.1 9 51.48 1.17 13.33 0.0424 320 0.223 29.07 8.5 5.2 14.3 5.1 1.2 46.85 1.15 11.6 16.63 0.0424 336 0.223 29.012 9.5 5.8 16.4 5.3 1.2 79.93 1.18 18.61 0.0424 378 0.22 30.12 11.2 2.2 5.4 4.9 10.40 1.18 18.61 0.0381 2.47 0.262 33.26 11.2 2.2 5.4 4.9 10.40 1.08 23.91 0.0470 3.17 3.2 1.3 2.6 5.8 16.1 10.23 0.97 26.00 0.0571 3.8 0.160 2.1.3 3.2
0.0541 335 0.184 23.6 6.8 3.4 11.3 4.1 9 51.48 1.17 13.33 0.0542 320 0.223 29.07 8.5 2.4 1.1 46.85 1.15 1.663 1.663 0.0424 38 0.223 29.01 9.5 5.8 16.4 5.3 1.2 79.93 1.18 1.663 1.663 0.0424 38 0.12 0.12 9.5 5.8 16.4 5.0 1.18 1.861 1.861 0.0381 2.7 0.262 33.26 1.12 1.12 2.2 5.4 14.9 10.40 1.08 23.91 0.0721 3.8 1.12 1.12 2.2 5.4 14.9 10.40 1.08 23.91 0.0721 3.8 0.1 2.1 3.8 1.1 3.2 1.1 3.2 1.1 1.1 1.2 1.2 1.1 3.2 1.1 3.2 1.1 3.2 </td
0.0342 330 0.223 2.0/7 8.5 1.43 5.1 11.2 46.85 1.15 16.63 1.663 0.0424 308 0.252 30.12 9.5 1.6 5.3 12.2 79.93 1.18 1663 0.0381 257 0.262 33.26 11.2 1.2 5.4 149 104.70 1.08 23.91 0.0395 2.46 0.359 2.8 1.2 13.4 2.6 5.8 16.1 10.20 23.91 0.07071 3.80 0.140 2.1.3 5.9 2.3 11.5 3.8 1.0 2.600 9.7 0.0640 3.37 0.217 3.8 1.3 4.4 13.8 4.7 10.25 5.3 1.19 2.631 0.0560 3.31 0.24 13.7 5.8 1.3 4.0 1.2 2.8 1.1 3.043 9.8 0.057 2.5 0.37 1.2 2.5 1.8
0.0424 308 0.252 30.12 9.5 5.8 164 5.3 12.2 79.93 1.18 11861 0.0381 257 0.262 33.26 11.2 11.2 2.5 4.49 104.70 1.08 2391 0.0395 2.46 0.359 22.88 12.2 13.4 25.6 5.8 16.1 30.27 2.391 0.0721 3.80 0.160 21.73 5.9 2.3 11.5 3.8 7.7 42.75 1.13 16.21 0.0660 3.37 0.218 38.61 8 4.4 13.8 4.7 10.5 55.3 1.19 2.188 0.0562 3.31 0.24 31.71 9 5.6 15.7 5.3 11.8 70.08 1.20 26.31 0.057 2.52 3.25 3.2 1.3 6.8 1.1 3.0 1.7 30.43 0.087 2.54 1.3 1.6 1.3 1.6
0.0381 257 0.262 33.26 11.2 11.2 22 5.4 14.9 104.70 1.08 23.91 0.0305 2.46 0.359 2.28.8 12.2 13.4 25.6 5.8 16.1 130.23 0.97 26.00 0.0721 380 0.160 21.73 5.9 2.3 11.5 3.8 7.7 42.75 1.13 16.21 0.0660 337 0.218 38.6 18 4.4 13.8 4.7 10.5 55.5 1.19 21.88 0.0562 331 0.244 31.71 9 5.6 15.7 5.5 11.8 70.08 1.20 26.31 0.057 2.55 0.34 3.5 13.7 5.8 12.7 82.80 1.17 30.43 0.048 1.25 0.34 3.6 1.37 1.8 1.0 30.43 1.3 30.85
0.0305 246 0.359 32.80 12.2 13.4 25.6 5.8 16.1 130.23 0.97 26.00 0.0721 380 0.160 21.73 5.9 2.3 11.5 3.8 7.7 42.75 11.3 16.21 0.0640 377 0.218 28.61 8 4.4 13.8 4.7 10.5 55.5 11.9 21.88 0.0652 310 0.244 31.71 9 5.6 15.7 5.5 11.8 70.08 1.20 26.31 0.0457 289 0.225 33.5 9.7 6.8 18.1 5.8 12.7 82.80 1.17 30.43 0.0457 255 0.289 35.54 11.1 1 21 62 15 105.48 1.08 39.85 0.0481 234 36.85 12.7 17.8 28 64 17.2 129.30 0.97 42.40
0.0721 380 0.160 21.73 5.9 2.3 11.5 3.8 7.7 42.75 11.3 16.21 0.0640 377 0.218 28.61 8 4.4 13.8 4.7 10.5 55.5 11.9 21.88 0.0652 310 0.244 31.71 9 5.6 15.7 5.5 11.8 70.08 1.20 26.31 0.0457 289 0.225 33.26 9.7 6.8 18.1 5.8 12.7 82.80 1.17 30.43 0.0457 255 0.289 35.54 11.1 11 21 6.2 15 105.48 1.08 39.85 0.081 234 36.8 12.7 17.8 28 64 17.2 129.30 0.97 42.40
0.0640 337 0.218 28.61 8 44 138 47 10.5 55.35 1.19 21.88 0.0562 310 0.244 31.71 9 56 15.7 5.5 11.8 70.08 1.20 26.31 0.0572 289 0.225 33.26 9.7 68 181 58 12.7 82.80 1.17 30.43 0.0457 255 0.289 35.54 11.1 11 21 62 15 105.48 1.08 39.85 0.081 234 36.85 12.7 17.8 28 64 17.2 129.30 0.97 42.40
0.0852 2.89 0.54 1.17 9 5.6 1.70 1.71 2.63 0.0852 2.89 0.225 33.06 9.7 6.8 18.1 5.8 1.77 80.08 1.30 26.31 0.0457 2.55 0.228 35.54 11.1 11 21 6.2 127 80.80 1.17 30.43 0.0487 2.55 0.289 35.54 11.1 11 21 6.2 15 105.48 1.08 39.85 0.0481 2.34 36.85 12.7 17.8 28 6.4 17.2 129.30 0.97 42.40
0.00502 3.10 0.244 31.71 9 3.6 13.7 3.5 11.8 0.008 1.20 26.31 0.00527 2.89 0.228 33.56 9.7 6.8 18.1 5.8 12.7 82.80 1.17 30.43 0.0457 2.55 0.289 35.54 11.1 11 21 6.2 15 105.48 1.08 39.85 0.0881 2.34 36.86 12.7 17.8 28 6.4 17.2 129.30 0.97 42.40
0.0522 289 0.225 33.26 9.7 6.8 181 5.8 12.7 82.80 1.17 30.43 0.0457 255 0.289 55.54 11.1 11 21 6.2 15 105.48 1.08 39.85 0.0881 234 0.341 36.88 12.7 17.8 28 6.4 17.2 129.30 0.97 42.40
0.0457 255 0.289 35.54 11.1 11 21 6.2 15 105.48 1.08 39.85 0.0381 234 0.341 36.88 12.7 17.8 28 6.4 17.2 129.30 0.97 42.40
0.0381 234 0.341 36.85 12.7 17.8 28 6.4 17.2 129.30 0.97 42.40

表 4-8 傾斜板 cot=3.73 (15°) 不規則波パラメーター

			13	6176年 封 封 方	1407			\mid	-			7,	光 化 許 中 4.5.4	7.7				舞	海 1 中 B 分 億 片	47 42		ţ			(華國)	(質問) 相對一點
Case	1	:	Have Tave	Lave Tave	1	及	乘	+	1	Ξ.	Have		I I I		乘		R(zero) Rave	Rave	N H I	Rmax Rmin		R.: (X	(原金)	D (原型)	(Σ Σ Lower (Σ Σ Ξ)	打上り南(原至) R.:
	+		(cm)		_	∄ ∄	(歯) 万 野 樹			+	(s) (cm)			H/L		反射率		(cm)	R(分散)	(cm)		(cm)	ı (ii)		(kW/m)	(m)
H1TA1501	1.44	0.60	0.91 0	0.57 55	55.2 0.	0.0261	711 0.893	93 1.66		1.12 0.61	61 0.71	1 0.56	5 54.1	0.0207	737	0.897	0.33	0.4	0	-	0.1	1.6	13.80	1.00	0.06	0.40
H1TB1501	1.53 (0.81	0.93	0.7 10	101.6 0.		540 0.606	06 2.18		1.34 0.3	0.83 0.84	14 0.72	2 90.2	0.0149	260	0.684	0.24	0.5	0.1	1.2	0.1	6.0	25.40	1.02	0.08	0.23
H1TC1501	1.45	1.02	0.89	0.84	157.2 0.0092	\rightarrow	443 0.583	83 2.7	79	1.35	1.03 0.82	2 0.82	2 124.7	0.0108	485	0.686	1.21	6.0	0.1	1.7	0.3	1.3	39.30	1.11	0.32	0.33
HITD1501	_		_		204.5 0.0079	_	-+	_	-		-	-	-		_	0.662	-0.62	- ;	0.5	-	_	1.8	51.13	1.17	0.49	0.45
HITEIS01	99.1	1.36	1.01	1.02	255.3 0.0065	_	357 0.608	3.32	-	1.72	1.45 1.05	3 1.19	9.181.6	0.0095	335	0.692	3.4	2.3	8.0	5.2	6.0	3.3	63.83	1.20	0.60	0.83
HITGI501	_			1.14 37	373.4 0.0045	_	+	_	+	_	_	-	_		-	0.723	1.37	1.7		+	+	3	93.35	1.13	0.78	0.75
H1TH1501	_	2.47	0.93	1.42 49	495.1 0.0035	+	254 0.61	61 4.52	\vdash	2.2 2.	2.9 1.23	3 1.76	5 325.1	0.0068	220	0.683	-1.37	-	1.2	4.9	-0.3	2.2	123.78	1.00	1.00	0.55
H2TA1501	2.47 (99.0	1.57	0.62 6	67.3 0.	0.0367	656 0.587	87 1.40		1.93 0.67	67 1.23	3 0.62	2 64.6	0.0299	922	0.772	0.42	0.7	0.2	2.1	0.1	1.3	16.83	1.00	0.54	0.33
H2TB1501	2.59 (0.81	1.41	0.73 10	103.0 0.0251		524 0.446	46 1.69	Н	2.24 0.82	82 1.65	5 0.76	5 91.1	0.0246	559	0.412	-0.81	9.0	0.4	2.6	-0.3	1.3	25.75	1.02	0.75	0.33
H2TC1501	2.74	1.01	1.74	0.89	153.5 0.0179		444 0.408	08 2.01		2.56 1.0	1.04 1.61	1 0.9	122.6	0.0209	451	0.458	99.0	1.6	1.3	5.4	0.2	2.9	38.38	1.10	1.12	0.73
H2TD1501	2.81	1.25	1.77	1.03 21	217.2 0.0129		384 0.44	44 2.36		2.81 1.29	29 1.79	9 1.08	8 159.5	0.0176	370	0.500	1.69	2.8	2.4	9.7	0.5	4.6	54.30	1.18	1.57	1.15
H2TE1501	2.94	1.41	1.9	1.16 26	261.0 0.0113	-	340 0.466	66 2.52		3.01 1.	1.45 1.95	1.19	9 184.9	0.0163	336	0.548	2.44	3.2	3.2	10.4	0.6	5.4	65.25	1.20	1.96	1.35
H2TF1501	2.97	1.62	1.8	1.21 30	303.7 0.0098		334 0.501	0.71		3.22 1.75	75 2.06	1.32	209.9	0.0153	301	0.623	2.29	3.4	4.3	11.8	0.3	5.9	75.93	1.19	2.28	1.48
H2TG1501	3.05	1.96	1.87		401.8 0.0076		270 0.548	3.08		3.33 1.97	97 2.09	9 1.47	7 268.5	0.0124	270	0.631	1.7	3.4	5.2	11.5	0 (6.1	100.45	1.10	2.69	1.53
H2TH1501	3.12	2.33	1.81	1.55 49	495.2 0.0	290	254 0.566	93.38		3.57 2.	2.5 2.22	1.76	5 325.2	0.0110	223	8/9'0	2.08	3.7	6.1	13.4	0.5	9.9	123.80	1.00	3.03	1.65
H3TB1501	3.67	0.74	2.27	0.71 83	87.2 0.	0.0421	572 0.374	74 1.31	<u> </u>	3.07 0.75	75 1.89	69.0	0.08 6	0.0384	578	0.31	1.12	1.2	0.5	3.7	0.2	2.1	21.80	10.1	1.35	0.53
H3TC1501	3.85	76.0	2.48	0.88	141.6	0.0272	460 0.301	01 1.63		3.56 1.01	01 2.24	97 0.89	9 115.4	0.0308	456	0.325	3.74	3.1	2.5	7.5	-	'n	35.40	1.08	2.08	1.25
H3TD1501	3.93	1.21	2.57	1.09 20	206.2 0.0191		376 0.33	33 1.94		3.87 1.27	27 2.52	2 1.12	2 153.1	0.0253	354	0.392	6.48	4.9	4.5	12.2	1.6	7.4	51.55	1.17	2.94	1.85
H3TE1501	4.29	1.44	2.82	1.22 27	271.5 0.0158		333 0.363	63 2.13		4.44 1.52	52 2.93	3 1.27	7 191.0	0.0232	313	0.43	6.57	6.4	7.3	16.3	2.4	9.6	88.79	1.20	4.26	2.40
H3TF1501	4.13	1.65	2.57	1.27 30	309.5 0.0133		314 0.404	04 2.32		4.53 1.76	76 2.92	1.38	8 213.3	0.0212	292	0.477	8.79	9.9	10	15.2	2.3	10.5	77.38	1.18	4.47	2.63
H3TG1501	4.37	2.02	2.76	1.55 42	420.2 0.0104		262 0.455	55 2.63	_	4.79 2.02	3.04	1.55	5 279.5	0.0171	268	0.553	8.45	7.2	14.1	16.4	1.2	11.7	105.05	1.08	5.59	2.93
H3TH1501	4.62	2.52 2	2.87	1.82 53	534.1 0.0087		213 0.485	85 2.88	-	5.27 2.55	55 3.17	7 1.8	349.0		223	9.0	7.33	7.1	18.4	19.2	1.6	12.4	133.53	0.95	6.87	3.10
H4TB1501	4.89	0.81		0.77 10	102.2 0.	0.0478	524 0.301	01 1.22	-	4.29 0.82	82 2.71	1 0.78	9.06	0.0474	524	0.24	4.44	2.4	1.1	9.9		3.7	25.55	1.02	2.65	0.93
H4TC1501	5.07	0.09	3.32	0.92	145.7 0.		448 0.241	41 1.44	-		1.02 2.98	8 0.92	2 117.9	0.0400	449	0.257	8.74	4.9	3.6	11.3	2.3	7.1	36.43	1.09	3.71	1.78
H4TD1501	5.22	1.19	3.41 1	1.08 20	205.5 0.0254	_	377 0.268	89 1.68		5.16 1.3	1.28 3.39	9 1.14	152.7	0.0338	349	0.315	12.32	7	6.2	13.6	3.2	6.6	51.38	1.17	5.10	2.48
H4TE1501	5.41	1.43	3.56	1.22 27	271.9 0.0199	_	332 0.315	15 1.90	-	5.61 1.51	51 3.65	5 1.26	5 191.3	0.0293	324	0.37	14.82	8.5	9.5	16.1	3.9	12.2	67.98	1.20	6.73	3.05
_	5.47	1.66	3.49		316.4 0.0173	-	308 0.34	34 2.04	\rightarrow	6.24 1.75	75 3.95	5 1.4	217.4		292	0.404	15.71	9.2	15.7	17	4.1	14.1	79.10	1.18	7.86	3.53
					432.1 0.0131	_	_	79 2.34	-	6.42 2.0	2.02 3.94	-	_		-	0.456	14.49	_		-	3.3	15.3	108.03	1.07	9.63	3.83
-		2.62			563.2 0.0106	-	-	-	\rightarrow	\neg	-	-	_		-	0.555	13.01	_	27.6		3.3	16.6	140.80	0.92	11.57	4.15
		0.99			147.3 0.0430	-		-	\rightarrow	-	-	-	-		-	0.221	11.26	5.8	4.5	-	-	8.3	36.83	1.09	5.81	2.08
					208.3 0.0309	_	-	-	\rightarrow	\rightarrow	-	-	_		-	0.269	15.75	_	7.9	-	_	11.7	52.08	1.18	7.88	2.93
-	$^{+}$		-		270.6 0.0241	\rightarrow	-		-	-	_	_	-		-	0.33	19.23	_	11.6	_	-	14.5	67.65	1.20	9.81	3.63
_		88 9	_		326.2 0.0207	_	_	_	+	-	_	_	_	0.0344	_	0.352	21.05	_	20,5	_	-	17.5	81.55	1.17	12.08	4.38
	_	71.7			455.5 0.0100	-	_		-	_	-	-	_		+	0.451	19.93		_	_	_	18.3	108.38	1.07	14.51	85.4
HSTHISOL	47.7	7.08	4.3/	88.1	364.4 0.0128	_	217 0.399	_	-	8.59 2.68	2.68 5.13	_	36/.6		27.8	0.549	18.1	13.1	30.6	_	-	5.61	141.10	26:0	17.32	4.88
_	+				213.4 0.000	+	360 0.107	0.1.19	+	-	-	10.1	_	0.000	+	0.10/	21.56	0.7		10.6	1.4.1	13.7	41.15 52.25	21.12	14.33	2.00
	_				268.0 0.0326	_	_	_	+	_	_	_	_	0.0341	_	0.255	26.13	10.4	13.7	_	_	7. 12	25.25	1.10	17.77	4.25
_			_	_	332.9 0.0257	+	_	+-	+	+	_	+	+-		_	0.331	24.32			+	_	17.4	83.23	1.17	19.69	4.35
-	+				438.3 0.0210	+	_	+	+	+	+	+	-		-	0.4	24.08	_	1	_	+	19.7	109.58	1.06	25.64	4.93
_				_	531.8 0.0175	+-	_	+	+	_	+-	+	+-		+	0.464	21.84	-	23.5	-	_	20.4	132.95	0.95	27.74	5.10
H7TC1501	10.16	1.06		1.07	169.1 0.0601	_	378 0.163	63 1.09	-	9.61	1.12 6.08	1.06	5 131.7	0.0730	384	0.197	20.3	9.4	6.4	18.1	5.3	12.3	42.28	1.12	16.50	3.08
H7TD1501	10.69	1.25	6.93	1.2 22	221.0 0.0484	-	338 0.182	82 1.22	\vdash	10.46 1.35	35 6.93	1.24	161.7	0.0647	325	0.254	27.32	12.4	9.3	19.4	7.1 1.	15.9	55.25	1.19	22.71	3.98
H7TE1501	10.73	1.48	7.12	1.29 27	279.3 0.0384		314 0.222	22 1.37		11.34 1.53	53 7.4	4 1.32	2 195.6	0.0580	306	0.308	28.59	13.5	12.9	21.9	7.4	17.6	69.83	1.20	27.35	4.40
		1.7			335.6 0.0325			29 1.49	-	12.58 1.77		9 1.44			-	0.335	25.95	13.4	13.6	22.1	6.9	22.1	83.90	1.17	31.63	5.53
	11.46				409.4 0.0280	_	_	_	-		_	_	-	0.0473	-	0.394	25.26			_	-	19.8	102.35	1.09	39.84	4.95
H7TH1501	12.00 2.55		7.35	1.89 53	532.8 0.0225	_	212 0.32	32 1.79	-	13.97 2.:	2.52 8.37	7 1.87	_	348.2 0.0401	218	0.439	24.61	16.6	24.8	31.6	6.6 2	22.1	133.20	0.95	46.96	5.53

表 4-9 傾斜板 cot=2.75 (20°) 不規則波パラメーター

									í	,	100	1	;	i	ļ	,	1//	1000	,		` .				
			灰	冲波波高ch1	ch1,2							法先波高ch3;	高 ch3,4				潮	₫上高R	上高Rの解析		放長	長 (原型)		波power (原型)	打上げ高 (原型)
case	H _{1/3}	T _{1/3} H	Have	Tave L		放数	74 17 14 14 14 14 14 14 14 14 14 14 14 14 14	II.	H _{1/3}	$T_{1\beta}$	Have	Tave	L	彩 :	放数印料	R(zero)	ro) Rave	命令/d	Rmax	Rmin	₹ _{1/3}	L	D (原型)	W	$\mathbf{R}_{1:3}$
	(cm)	(s)	(cm)	(s) (cm)		(厘)	_	+	(cm)	(s)	(cm)	(s)	(cm)		(画)	(cm)	(cm)	X	(cm)	(cm)	(cm)	(m)		(kW/m)	(m)
H1TA2001	1.53	0.60 0.	0.94	0.54 56.1	6.1 0.0273	73 748	8 0.752	2 1.47	1.3	9.0	0.83	0.55	55.0 0	0.0236 7	704 0.8	0.834 0.54	4 0.7	0.1	1.4	0.2	1.1	14.03	1.00	0.06	0.28
H1TB2001	1.63	0.81	1.04	0.73 104	104.6 0.0156	_	0.628	8 1.94	1.51	0.81	0.95	0.7	92.2	0.0164 5	542 0.7	0.789 0.26	5 1	0.4	2.9	0.1	1.7	26.15	1.02	0.30	0.43
H1TC2001	1.51	1.01	0.92	0.83 153	153.2 0.0099	99 446	5 0.675	5 2.44	1.43	1.01	0.89	0.79	122.3 0	0.0117 4	456 0.7	0.764 0.32	2 1.1	0.4	3.4	-0.1	1.9	38.30	1.10	0.34	0.48
H1TD2001	1.58	1.19 0.	0.93	0.86 205	205.5 0.0077	77 453	3 0.694	4 2.77	1.60	1.19	0.96	0.86	152.7 0	0.0105	448 0.7	0.756 0.14	4 1.4	0.8	3.7	0.1	2.5	51.38	1.17	0.47	0.63
H1TE2001	-+				236.3 0.0073	_	_	_	-	1.41	1.13	_					-	-	S	_	8	59.08	1.19	0.65	0.75
H1TF2001	\rightarrow				289.7 0.0061	_	\rightarrow	\rightarrow	-	1.61	1.12		-	\dashv	\rightarrow	\dashv	2 1.8	-	4.9	\dashv	2.9	72.43	1.19	0.79	0.73
H1TG2001	\rightarrow	-	1.02	1.27 361	361.9 0.0048	_	\rightarrow	-	-	1.92	1.1		-		_	\dashv	1.4	1.1	4.6	-	2.7	90.48	1.14	68'0	0.68
H1TH2001	1.81	2.62	-	1.56 490	490.6 0.0037	37 246	5 0.646	6 3.99	2.01	2.56	1.08	1.46	322.3 0	0.0062 2	-	0.718 0.26	5 1.5	1.3	9	-	2.8	122.65	1.00	1.15	0.70
H2TA2001	2.58	0.67	1.7 (0.65 71.	71.0 0.0363	_	0.701	1.27	2.26	0.69	1.43	0.62	67.7 0	0.0334 6	642 0.6	0.645 1.8	1.7	0.7	4	9.0	2.7	17.75	1.00	09.0	0.68
H2TB2001	2.73	0.82	1.75	0.77 106	106.2 0.0257	57 526	5 0.513	3 1.51	2.55	0.83	1.61	0.74	93.2 0	0.0274 5	525 0.6	0.638 1.71	1 2	-	5.2	9.0	3.2	26.55	1.03	0.84	0.80
H2TC2001	3.02	1.01	1.94	0.92	156.4 0.0193	93 439	9 0.524	4 1.75	2.92	1.03	1.81	0.86	124.2 0	0.0235 4	450 0.6	0.649 2.42	3.2	2.6	10	6.0	5	39.10	1.10	1.36	1.25
H2TD2001	3.03	1.24 1.	1.94	1.03 213	213.3 0.0142		9 0.645	5 2.04	3.06	1.25	1.95	1	157.2 0	0.0195	386 0.727	727 2.67	7 3.8	3.5	9.7		5.9	53.33	1.18	1.80	1.48
H2TE2001	3.18	1.38 2.	2.04	1.12 251	251.2 0.0127		919:0	6 2.16	3.31	1.41	2.13	1.09	179.1	0.0185	345 0.6	0.665 3.01	1 4.2	4.2	11.3	1.1	9.9	62.80	1.20	2.24	1.65
H2TF2001	3.01	1.6	1.8	1.14 301	301.1 0.0100	00 349	9 0.643	3 2.43	3.22	1.63	1.98	1.15 2	208.4 0	0.0155 3	326 0.6	0.695	4	4.1	10.6	6.0	6.3	75.28	1.19	2.31	1.58
H2TG2001	3.18	1.92	1.94	1.34 384	384.0 0.0083	83 304	4 0.626	6 2.67	3.43	1.9	5.09	1.29	257.8 0	0.0133 3	305 0.6	0.691 3.02	2 4.1	5.7	11.7	11	6.9	00'96	1.12	2.92	1.73
H2TH2001	3.24	2.33	1.87	1.49 459	459.7 0.0070	70 256	5 0.624	4 2.89	3.73	2.44	2.25	1.61	303.5 0	0.0123 2	-	0.698 2.76	5 4.2	7.6	14.1	-	7.4	114.93	1.04	3.40	1.85
H3TB2001	3.73	0.74 2.	2.25 (0.69 85.	85.6 0.0436	_	9 0.422	2 1.16	3.34	0.76	2.08	0.7	0 6.87	0.0423 \$	-	0.541 4.45	5 3.4	1.9	7.7	1.5	5	21.40	1.01	1.39	1.25
H3TC2001	4.01	0.99	2.57 (0.89 150	150.3 0.0267	-	5 0.416	6 1.48	3.79	0.99	2.4	0.87	120.7 0	 	-	0.518 6.53	3 5.3	4.9	14.6	1.8	∞	37.58	1.09	2.33	2.00
H3TD2001	4.23	1.22 2.	2.76	1.07 204	204.9 0.0206	_	4 0.523	3 1.69	4.16	1.26	2.68	1.04	152.4 0	0.0273	-	0.61 7.91	1 6.7	7.5	14.3	2.7	8.6	51.23	1.17	3.43	2.45
H3TE2001	4.62	1.43 2.	2.97	1.17 261	261.8 0.0176	_	8 0.519	9 1.83	4.76	1.47	3.05	1.15	185.4 0		333 0.5	0.581 8.92	7.7	10.6	20.9	3	11.4	65.45	1.20	4.91	2.85
H3TF2001	+-			1.22 312	312.4 0.0142	_	_	+	+	1.72	3.07	+-	+	+-	+-	+-	5 7.2	11.9	22.5	2.1 1	11.2	78.10	1.18	5.00	2.80
H3TG2001	+				399.1 0.0115	_	+-	-	+	1.92	3.08		_	+	-	+	+	18.2	23.4	+	12.3	99.78	1.10	6.05	3.08
H3TH2001	-			1.64	5063 0.0093		-	-	+	44	-	+	\top	+	-	+	+	9%	27.8	2	4	126.58	0.98	722	3.50
H4TR2001	_					_	-	+	+	80	+	_	_	+	_	+	~	33	11.4	,	000	25.45	1.02	28.6	1.70
H4TC2001	_	_		0.92	152.6 0.0340	_		+	-	100	80 %	+-	1.	+	_	~	+	9.4	17.8	3.3.	11.1	38.15	1.10	3.96	2.78
H4TD2001	_	Τ.,			2116 0.0256	+	_	_	+	1 37	3.52	+	\neg	+	_	+	+	13.6	2 - 1-	+	13.5	52 90	1.18	125	3.38
H4TE2001	-				264.9 0.0213	_	_	_	+	1.48	3.86	+	-	_	_	_	+	16.4	23.4	_	14.5	66.23	1.20	7.37	3.63
H4TF2001	+	1.64			321.1 0.0179	+	-	+	+	1.7	4.03	+	-	-	_	+	+	22.6	24.8	+	16.2	80.28	1.18	8.53	4.05
H4TG2001	+				415.0 0.0140	_	_	+	+	1 97	4.06			+		+-	+	31.7	26.6	+	17.6	103.75	1.09	£0'01	4.40
H4TH2001	_				531.1 0.0114		_	+	+-	2.59	4.32	_	_	+-	_	+	÷	49.3	35.4	+	21	132.78	0.96	12.06	5.25
H5TC2001	+-				151.9 0.0417	_	+-	_	+-	1.03	3.82	+-		+	+	+	+	9.2	16.4	+	12.2	37.98	1.10	5.91	3.05
H5TD2001	+		+		208.9 0.0315	_	Ť	+	+	1.27	4.29	+	_	+	-	+	+	16.2	22.2	+	17.1	52.23	1.18	8.30	4.28
H5TE2001	69.9	1.45 4.	4.39	1.21 268	268.3 0.0249	49 336	5 0.395	5 1.54	7.09	1.5	4.6	1.23	189.1	0.0375 3	320 0.2	0.486 16.86	86 12.6	20.9	24.3	5.8	17.9	67.08	1.20	10.43	4.48
H5TF2001	689	1.7 4.	1.46	1.33 329	329.7 0.0209	90 307	7 0.4	1.68	7.94	1.7	4.97	1.35	225.3 0	0.0352 2	287 0.4	0.493 17.59	9 14	32.9	26.7	6.1 2	21.2	82.43	1.17	12.67	5.30
H5TG2001	7.62	2.01 4.	4.85	1.58 403	403.9 0.0189		5 0.41	1.77	8.62	1.96	5.24	1.49	269.7 0	0.0320 2	270 0.5	0.512 17.79	9 15.7	40.1	33.1	6.2 2	23.2	100.98	1.10	17.20	5.80
H5TH2001	7.39	2.56 4.	4.36	1.79 529	529.0 0.0140	40 230	0.474	4 2.05	9.00	2.67	5.33	1.85	345.8 0	0.0260 2	213 0.5	0.547 15.78	15.7	\$	36.8	4.7	24.4	132.25	0.96	17.96	6.10
H6TC2001	_					-+	\rightarrow	-	-	1.09	5.15	-+	-	-	-	-+		16.9	24.4	-	16.9	41.43	1.12	11.01	4.23
H6TD2001	\rightarrow	-	-	_		\rightarrow	_	-	\dashv	1.3	2.62	_	\neg	_	_	\rightarrow	_	21.2	28.9	_	21.2	54.08	1.18	14.50	5.30
H6TE2001	-	1.43 6.	-		3.3 0.0343	-	8 0.335	5 1.31	9.63	1.51	6.33	\rightarrow	186.2 0	0.0517	-	0.451 27.86	96 17.9	22.5	27.5	9.1	23.3	65.83	1.20	18.71	5.83
H6TF2001	8.87	1.7 5	5.8	1.36 327	327.3 0.0271	\rightarrow	2 0.352	1.47	_	1.68	6.27	1.36	223.9 0	0.0455 2	-	0.455 25.31	17.3	33.7	29.7	7.7	24.2	81.83	1.17	21.02	90.9
H6TG2001	9.37	2.05 5.	5.92	1.56 402	402.6 0.0233	\rightarrow	0.383	-	10.46	\rightarrow	6.49	1.5	268.9 0	_	-	0.499 24.54	18.3	43.1	40.6	8.2	25.7	100.65	1.10	26.56	6.43
H6TH2001	-	2.45 5.	5.84	1.78 515	515.4 0.0186	_	_	2 1.78	11.61	2.46	6.95		337.5 0			0.545 17.42	17.7	48.4	39.9	6.3 2	25.5	128.85	0.97	29.33	6.38
H7TC2001		1.07 6.		1.06	168.5 0.0609		-	1 0.98	9.63	1.12	9.09	-	131.4 0		_	-	5 13.6		22.6	7.4	18	42.13	1.12	16.97	4.50
H7TD2001	10.77	1.27 6.	6.99	1.17 224	224.4 0.0480		0.269	9 1.11	10.72	1.35	68.9	1.19	163.7 0	0.0655 3	336 0.3	0.352 28.05	5 17.9	17.8	26.8	8.2	22.6	56.10	1.19	23.46	5.65
H7TE2001	10.93	1.46 7.	7.18	1.26 268	268.9 0.0406	06 325	5 0.321	1.20	11.75	1.55	7.53	1.29	189.5 0	0.0620	315 0.4	0.419 29.53	18.9	23.7	29.2	10.2	24.4	67.23	1.20	28.04	6.10
H7TF2001	11.31	1.74 7.	7.44	1.42 339	339.4 0.0333		5 0.335	5 1.33	12.60	1.71	7.9	1.41	231.1 0	0.0545 2	282 0.4	0.453 26.67	22 18	25.6	32.3	6.7 2	23.6	84.85	1.16	34.70	5.90
H7TG2001	11.79	1.99 7.	7.43	1.56 393	393.2 0.0300		3 0.334	1.40	_	1.91	7.98	1.52 2		_			7 19.4	36.6	34.1	7.2 2	26.3	98.30	1.11	41.19	6.58
H7TH2001	12.14	2.52 7.	7.56	1.85 538	538.8 0.0225	25 216	5 0.402	2 1.62	13.77	2.44	8.28	1.78	351.8 0	0.0391 2	236 0.5	0.515 24.56	20.7	46	38	6.9	28.4	134.70	0.95	47.17	7.10

表 4-10 傾斜板 cot=2.14 (25°) 不規則波パラメーター

Martin	打上げ高(原型)	Ria	(iii)	0.28	0.38	0.53	0.63	0.60	0.63	0.58	0.53	0.58	0.88	1.33	1.28	1.28	1.18	1.20	1.25	0.85	1.75	2.00	2.03	1.93	2.15	2.48	1.55	2.48	2.83	2.78	3.00	3.40	3.65	3.28	3.15	4.20	4.48	5.38	4.33	4.80	5.40	5.88	6.33	6.70	4.83	5.63	80.9	6.05	6.80
1,			(kW/m)	0.13	0.32	0.38	0.50	0.59	0.70	0.65	0.65	0.80	1.02	1.81	1.83	2.13	2.32	2.44	2.48	1.62	2.77	3.69	4.76	4.77	5.37	6.17	3.02	4.62	6.02	7.05	8.11	8.92	9.61	69.9	11.44	12.04	13.37	15.83	12.12	15.07	18.75	18.90	23.36	24.71	17.39	23.13	28.30	31.90	35.51
The column The	A	(原型)		1.00	1.02	1.10	1.16	1.20	1.20	1.14	86:0	1.00	1.03	1.10	1.17	1.19	1.20	1.14	1.07	1.01	1.08	1.16	1.20	1.19	1.13	1.04	1.02	1.09	1.17	1.20	1.19	1.12	1.00	1.10	1.20	1.19	1.11	0.99	1.12	1.18	1.20	1.17	1.09	1.02	1.13	1.18	1.20	1.17	1111
	皮長 (原型)	T T	(m)	14.03	25.80	39.03	49.35	59.85	69.30	90.58	127.65	17.43	26.68	38.48	50.45	58.05	69.65	90.70	107.85	22.15	36.05	49.18	60.90	72.15	92.90	114.63	25.88	37.60	50.35	59.53	74.58	96.28	121.93	38.10	62.83	76.63	99.23	125.08	42.20	52.98	62.35	82.30	103.83	117.40	43.13	54.85	08.00	83.13	22 20
1.	795	+	(cm)	1.1	1.5	2.1	2.5	2.4	2.5	2.3	2.1	2.3	3.5	5.3	5.1	5.1	4.7	8.4	S	3.4	7	∞	8.1	7.7	9.8	6.6	6.2	6.6	11.3	11.1	12	13.6	14.6	13.1	12.6	16.8	17.9	21.5	17.3	19.2	21.6	23.5	25.3	26.8	19.3	22.5	24.3	24.2	
The column The				0.2	0	0.3	-0.1	0.1	0	0.2	0	0.4	1	9.0	0.6	9.0	0.4	0.1	0.4	0.4	1.1	1.3	1.3	0.7	1.1	1	1.4	1.6	2.2	1.9	1.8	2.1	9.0	3.2	2.2	2.8	1.9	2.1	4.5	4.9	4.5	5.3	5.4	5.2	5.5	6.3	3.6	5.2	1
	の解析			2.4	2.2	3.4	4.9	4.7	4.2	3.9	4.1	3.9	5.5	6.6	8.7	8.2	9.1	8.4	9.1	8.1	15.2	14.8	16.4	15.9	16.9	22.4	12.8	17.4	21.9	21.7	21.4	27.6	30.6	21.4	8	27.1	33.3	35.1	22	27	28.7	34.5	38.8	37.8	27.9	29.6	32.3	33.2	
	1上南R		K(分散	0.1	0.2	0.5	0.7	9.0	0.7	0.7	0.7	0.5	6.0	3.1	2.8	2.7	2.7	3.1	3.6	1.4	5.4	6.5	7.1	7	10.4	15.8	3.8	10.4	12.8	13.3	17.5	28.2	35.3	16.1	15.7	32.3	43.7	1.99	24.3	28.9	35.7	53.6	62.2	76.9	25.2	32.6	40.2	41.6	4 1 1
14 15 15 15 15 15 15 15	郷	Rave	(cm)	0.7	6.0	1.4	1.6	1.5	1.6	1.4	1.1	1.5	2.4	3.3	3.2	3.2	2.8	2.7	2.8	2.1	4.3	5.2	5.1	4.6	4.9	5.3	4	6.2	7.3	7.1	7.2	7.7	7.8	8.3	8	10.1	10.2	11.7	11.4	_	14.4	-	-	-	13.4	15.8		16.7	
		R(zero	(cm)	0.45	0.35	0.58	0.23	0.24	0.49	0.45	-0.02	0.82	2.2	1.65	1.27	1.22	1.02	0.94	0.93	1	2.77	3.05	2.87	2.39	2.58	2.74	3.22	4.68	5.08	4.48	4.35	4.82	4.52	7.36	5.25	7.28	6.58	7.06	10.51	11.93	12.71	12.41	12.59	12.16	12.91	14.87	15.73	13.98	
Hand Trans Hand Han			对外格	0.975	0.790	0.79	0.807	0.775	0.770	0.742	0.723	0.894	0.731	0.742	0.744	0.744	0.730	0.739	0.734	0.763	0.671	0.674	0.663	0.686	0.704	0.707	0.752	0.592	0.609	0.629	0.632	0.655	0.688	0.562	0.586	0.581	0.615	0.637	0.447	0.507	0.524	0.557	0.575	0.584	0.423	0.501	0.505	0.532	
14. 14. <td></td> <td>_</td> <td></td> <td>200</td> <td>570</td> <td>495</td> <td></td> <td>391</td> <td>_</td> <td>297</td> <td></td> <td>848</td> <td></td> <td>448</td> <td></td> <td></td> <td></td> <td>301</td> <td>250</td> <td>583</td> <td>466</td> <td>406</td> <td>374</td> <td>348</td> <td>300</td> <td>250</td> <td>525</td> <td>449</td> <td>395</td> <td>329</td> <td>322</td> <td>589</td> <td>244</td> <td>24 %</td> <td>345</td> <td>311</td> <td>281</td> <td>235</td> <td></td> <td>360</td> <td>339</td> <td>310</td> <td>282</td> <td>-+</td> <td>\dashv</td> <td>352</td> <td>327</td> <td>301</td> <td>000</td>		_		200	570	495		391	_	297		848		448				301	250	583	466	406	374	348	300	250	525	449	395	329	322	589	244	24 %	345	311	281	235		360	339	310	282	-+	\dashv	352	327	301	000
1982 1982			H/L	0.0248	0.0174	0.0123	0.0111	0.0098	0.0089	8900'0	0.0050	0.0357	0.0295	0.0274	0.0211	.0195	9910.0	0.0130	91107	0.0433	0.0359	0.0303	0.0274	0.0225	0.0186	0.0168	8150.0	0.0443	0.0384	0.0348	0.0294	0.0233	0.0199	0.0518	0.0402	0.0350	0.0282	0.0256	0.0637	0.0575	0.0544	0.0429	0.0357	0.0335	0.0745	0.0682	0.0619	0.0523	0 0 1 0 0
Harm Trans L. Common Col	ch3,4	Г	cm)	\vdash		.																		\dashv					_	_	\dashv	_	_	+				H			\dashv				1		-	227.0	
Heigh Sign Mehal 2 Heigh Sign Mehal 2 Heigh Sign Mehal 3 Heigh Sign Mehal 3 Heigh Mehal 3	先波高	I.ve	-	-							_					-									-	_			-	_	\dashv	+	+	_	+	+-	-				\dashv	-		-	\dashv		-	1.29 2	
Hayes ji	批	\vdash	+	-			0.			1.																			-		-		-	+	+						\dashv				-				H
H外波波高の11 HAR Tan LAR HAR Tan LAR HAR Tan LAR HAR Tan LAR Tan HAR Tan HAR Tan HAR Tan HAR Tan HAR Tan LAR L		\vdash	+	\vdash		\vdash	2			1 68	_								_		2.0	_						3.	_	_	\dashv	+	_	+	+	-	-				\dashv	-			\dashv		-		12.1
(47) (27) (27) (27) (27) (27) (27) (27) (2		-																			1							2			+	+												-					-
(cm) (s) (cm) (c) (cm) (d) (cm) (d) (cm) (e) (cm) (e) (cm) (e) (cm) (e) (cm) (e) (e) (cm) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	L	H	(cu	1.3	1.5	1.5	1.6	1.6									3.2		_				4.7					5.3	-	-	+		-	+	+						\dashv		9.8		6.6	10.5		11.87	11.00
H _{1/3} 下 _{1/2} 中水 上 中水 並 (cm) (s) <	L			2.80	3.62	4.61	5.09	5.58	5.99	7.18	8.72		2.78	3.09	3.74			5.16	5.73			3.09	3.37	3.78	4.30	_	2.08	2.41	2.78	3.01	3.38	3.88	4.39	2.22	2.77	3.11	3.55	3.94	2.05	2.29	2.44	2.88	3.17	3.39	1.91	2.11	2.32	2.56	,,,
(cm) (e) (em) (em			反射率	0.88	0.697	0.705	0.707	0.734	0.677	0.654	0.615	0.854	0.622	0.629	0.677	0.654	0.663	0.645	0.667	0.619	0.554	0.631	0.606	0.603	0.603	0.616	0.574	0.463	0.537	0.55	0.537	0.553	0.605	0.481	0.537	0.501	0.522	0.561	0.37	0.409	0.435	0.442	0.47	0.511	0.32	0.362	0.372	0.407	017
(cm) (s) (cm) (d) (em) (em) (em) (em) (em) (em) (em) (em		波数	(國)	723	551	474	393	366	330	339	287	624	528	446	404	385	341	303	292	555	467	398	362	346	292	255	513	442	384	353	323	277	244	432	353	316	279	240	398	369	336	308	267	250	330	346	321	296	000
1.00 0.55 56.11 (cm) (s) (cm			H/L	0.0278	0.0166	0.0102	0.0084	0.0070	0.0061	0.0042	0.0029	0.0429	0.0281	0.0227	0.0155	0.0137	0.0110	0.0082	0.0066	0.0450	0.0307	0.0228	0.0192	0.0152	0.0118	0.0097	0.0503	0.0373	0.0281	0.0240	0.0191	0.0144	0.0113	0.0440	0.0284	0.0224	0.0173	0.0140	0.0516	0.0414	0.0366	0.0262	0.0217	0.0190	0.0598	0.0488	0.0405	0.0331	10000
H ₁₅ T ₁₅ Have (cm) (s) (cm) 1.56 0.60 1.00 1.71 0.81 1.07 1.66 1.17 1.05 1.67 1.13 1.05 1.68 1.54 0.79 1.69 0.67 1.85 3.9 0.67 1.85 3.9 0.67 1.85 3.9 0.75 2.84 4.43 0.97 2.85 4.44 0.79 2.85 4.44 0.79 2.85 4.44 0.79 2.85 4.44 0.79 2.85 4.44 1.54 2.76 4.47 1.85 2.89 4.47 1.85 2.84 4.48 1.18 2.89 4.67 1.36 2.99 4.71 1.85 2.84 4.43 0.97 2.85 4.44 1.54 2.76 4.47 1.85 2.84 4.48 1.18 2.89 4.67 1.36 2.99 4.67 1.36 2.99 4.67 1.36 2.99 4.7 1.85 2.84 4.8 1.18 2.89 4.67 1.36 2.99 4.67 1.36 2.99 4.67 1.36 2.99 4.67 1.36 2.89 4.67 1.36 2.89 4.7 1.34 3.69 5.51 1.35 3.69 5.51 2.35 3.41 6.71 1.01 4.32 6.88 1.19 4.46 7.12 1.40 4.65 6.88 1.19 4.46 7.13 1.40 4.65 6.88 1.19 4.46 7.10 1.43 5.69 8.80 2.27 5.47 1.10 1.66 5.60 8.80 2.27 5.47 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	事ch1,2	ı	(cm)	56.1	103.2	156.1		239.4	277.2									362.8				196.7							201.4		_			+	+	+						329.2	415.3		_	219.4		332.5	0000
H ₁₅ T ₁₅ Have (cm) (s) (cm) 1.56 0.60 1.00 1.71 0.81 1.07 1.67 1.17 1.05 1.67 1.17 1.05 1.68 1.17 1.05 1.69 1.17 1.05 1.40 2.34 0.79 1.40 2.34 0.79 2.99 0.67 1.85 3.3 1.19 1.98 3.3 1.19 1.98 3.4 1.22 2.04 4.43 0.97 2.85 4.44 0.97 2.85 4.44 0.97 2.85 4.48 1.18 2.89 4.67 1.36 2.99 4.7 1.85 2.84 4.43 0.97 2.85 4.44 1.54 2.76 4.3 3.69 5.51 0.8 3.69 5.60 1.7 3.69 5.60 1.7 3.69 5.71 1.35 3.69 5.81 1.94 4.46 5.81 1.94 4.46 5.81 1.94 4.46 5.81 1.94 4.46 5.81 1.94 4.45 5.81 1.94 4.55 6.88 1.19 4.46 5.89 2.27 5.47 9.13 1.40 6.00 8.87 1.24 5.75 9.13 1.40 6.00 8.89 2.27 5.47 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	中放放す	Tave	-		 		_				_								_					_	_					-	_	_		_	+			H				_			\rightarrow	_	_	1.39	
H _{1/3} T _{1/3} (cm) (s) 1.56 0.60 1.71 0.81 1.66 1.17 1.67 1.13 1.68 1.54 1.53 1.81 1.46 2.34 1.53 1.81 1.46 2.34 1.53 1.81 1.46 2.34 2.99 0.67 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.82 3.0.81	-	\vdash	+	+	-	\vdash	_		-															\dashv	-				-	_	\dashv	\rightarrow	_	+	+	+	<u> </u>	Н			\dashv	-			\dashv		\rightarrow	7.28	
H _{1/3} (cm) 1.56 1.71 1.67 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68		\vdash	+		-	1													_										_	-	-	$^{+}$		+	+	1		H			_				\dashv			, 89.1	,
			+	+		1.6																						19:	-		\dashv		+	+	+						\dashv				\dashv		_	11.01	
	H	case		H1TA2501	H1TB2501	H1TC2501	H1TD2501	H1TE2501 1	H1TF2501 1	H1TG2501 1	H1TH2501 1	H2TA2501 2	H2TB2501	H2TC2501	H2TD2501 3	H2TE2501 3	H2TF2501 3	H2TG2501 2	H2TH2501 2	H3TB2501 3	H3TC2501 4.	H3TD2501 4	H3TE2501 4	H3TF2501	H3TG2501 4	H3TH2501 4	H4TB2501 5	H4TC2501 5	_	_	-	_	_	+			H5TG2501 6.	H5TH2501 7.	H6TC2501 8.		\rightarrow	-	H6TG2501 9.	-	H7TC2501 10	H7TD2501 10	_	H7TF2501 11	

表 4.-11 傾斜板 cot=1.73 (30°) 不規則波パラメーター

森集
1000年時
(cm) (s) (cm)
0.858 3.48 1.35 0.61 0.86
0.792 4.56 1.61 0.82
6.35 1.62
88.9
0.634 8.91 1.7 1.98
10.07
0.726 2.83 2.33
0.775 3.29 2.98
3.82
0.694 4.55 3.25
4.82
5.56
6.25 3.18
6.99 3.38
2.66
0.652 3.18 4.43 1
4.04 5.14
163 480
2.00
5.63
2.48
0.578 2.89 5.65
3.28
3.71
0.58 4.08 6.49
5.09
2.72
0.548 3.07 7.09
0.517 3.45 7.44
0.528 3.73 7.84
4.13
4.83
0.464 2.44 8.8
3.03
3.42
3.74
4.18
0.428 2.34 10.39
0.429 2.58 11.02
0.412 2.85
0.431 3.16
3.29
0.513 3.73 12.61

不規則波における既往の研究との比較を次に述べる. 3.1.7 で紹介したが,一様勾配の滑斜面への打上げ高について,間瀬の実験的研究(Mase, 1989)がある. 間瀬は,水深0.43~0.45m,勾配1/5,1/10,1/20,1/30の4種類の斜面に対し,不規則波(the Pierson-Moskowitz type spectrum)の波浪条件下において波が遡上する状況を連続的に記録して打上げ高を統計的に解析しIribarren数と相対打上げ高の式(3.25)を示した.

図 4-19 は、Iribarren 数(Ir)と相対打上げ高($R_{ave}/H_{1/3}$)の関係である。規則波の実験と同様に、実験時に波の様子を観測し breaking waves と surging waves であるか判断した。この図に示す Iribarren 数の範囲は、既往の研究よりも広範囲となっている。規則波同様、波の打上げ高は Iribarren 数だけでなく傾斜板角度によって傾向が異なり、傾斜板角度 20° までは増加し、その後減少する傾向となった。 breaking waves と surging waves の区分も傾斜板角度で異なった。波高と波形勾配が増加するにつれ、沖で砕波することになり、傾斜板角度の位置における波の現象のみで打上げ高を評価することは限界がある。図中の数字で示す既往の研究(Mase, 1989)と今回得た実験式は下記の通りである。ここでは、傾向が明らかな breaking waves について記す。ここで,R は平均打上げ高, H_0 は沖波有義波高である。

- ① $R/H_0=0.88Ir^{0.69}$ (1/30<tan θ <1/5) (Mase)
- $@R_{ave}/H_{1/3}\!\!=\!\!0.860 Ir^{1.34}~(~\theta=\!10^{\circ}~$, breaking waves)
- $3R_{ave}/H_{1/3}=0.740Ir^{1.20}$ ($\theta = 15^{\circ}$, breaking waves)
- $\textcircled{4}R_{ave}/H_{1/3}{=}1.49Ir^{0.490}$ (θ =20° , breaking waves)
- $5R_{ave}/H_{1/3}=1.04Ir^{0.369}$ ($\theta = 25^{\circ}$, breaking waves)
- $(6)R_{ave}/H_{1/3}=1.00Ir^{0.234}$ ($\theta=30^{\circ}$, breaking waves)

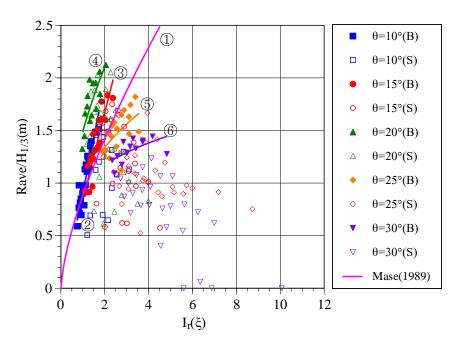


図 4-19 Iribarren 数と相対打上げ高の関係

規則波と同様に波の打上げ高($R_{1/3}$)を Iribarren 数と波パワー (W: kW/m)で表したものが図 4-20, 4-21 である. ここで,不規則波の波パワーは Bretschneider-光易型スペクトルと群速度から求めると式(4.44)となる.係数は淡水($\rho=1000 kg/m^3$)で実験をした場合の値である.なお,D は式(4.30)である.

$$W = 0.429 \rho D H_{1/3}^2 T_{1/3} = 0.429 D H_{1/3}^2 T_{1/3}$$
 (kW/m) (4.44)

その結果、規則波と同様な傾向となり、Iribarren 数が増加すると打上げ高は減少した. 角度ごとで確認すると、10°の場合が最も打上げ高は低く、次いで 15°、30°、25°と続き、20°の場合が7.1mと最も打上げ高は高くなった.25°の場合も最高打上げ高は6.9mとなり、20°の場合に近い. 打上げ高が高い傾斜板角度の条件ではあるが、高い打上げ高となりやすい breaking waves 領域で確認すると、20°の場合と同様に狭い範囲に集中している. 一方、25°は20°よりも広い範囲にデータが点在していることから、波浪条件による打上げ高のバラつきを確認できる. このことから、20°が最も打上げ高が高い条件であることを確認できた.

波パワーが増加すると打上げ高は増加し、傾斜板角度が増加すると 20°まで増加し、その後減少する結果となった. この結果から、越波式波力発電装置の傾斜板角度は 20°が最適であると決定した. さらに、x、y 軸にそれぞれ Iribarren 数と波パワーとし、色の濃淡で打上げ高さを表した 3 次元グラフが図 4-22~図 4-26 である. 規則波と同様に、打上げ高は Iribarren 数が小さく、波パワーが大きいほど大きくなる傾向がある. これらの関係から、打上げ高さは波パワーと比例関係にあることがわかった.

また、図 4-27 は波パワーと反射率の関係であり、規則波と同様に傾斜板角度が急になればなるほど反射率が大きく。傾斜板角度 20°の最大波パワーの時、打上げ高も最大(7.1m)となり、反射は約 4 割(0.402)となっている。傾斜板角度 30°の最大波パワーの時打上げ高 4.9m は最大ではない(最大は 6.9m、波パワー36.4kW/m、反射 0.458)。この時の反射は約 5 割(0.513)となっている。規則波と同様に波が傾斜板を遡上する前に、急な勾配によって波パワーの半分はすでに反射していることわかる。また、波パワーが小さい領域では、打上げ高は Iribarren 数に関係しないことがわかる。規則波と同様に、波パワーを反射率の関係は明瞭でないため、図 4-28 に傾斜板角度ごとの波形勾配と反射の関係を示す。この図から傾斜板角度が大きくなるにしたがって反射率も大きくなることがわかる。なお、各傾斜板角度に対して波形勾配と反射の関係は K_r = α e β x と表すことができ、表 4-12 に傾斜板角度ごとの α 、 β の値を示す。

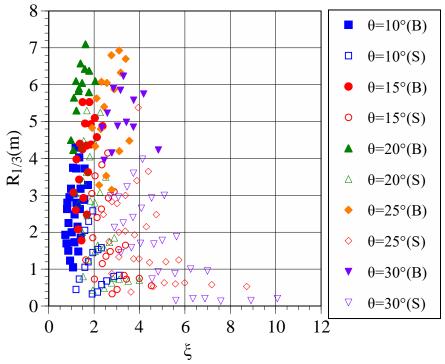


図 4-20 Iribarren 数と打上げ高の関係

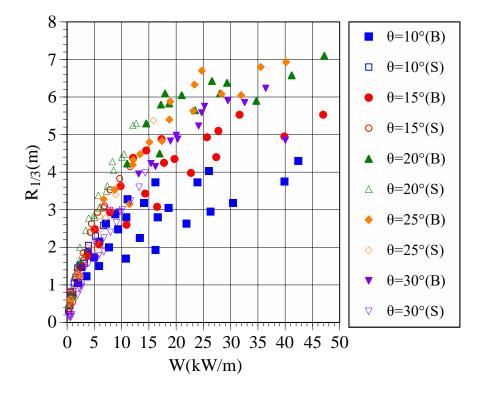


図 4-21 波パワーと打上げ高の関係

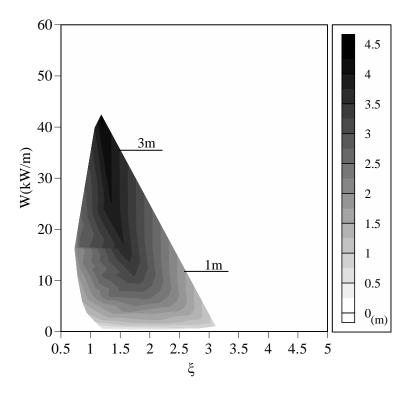


図 4-22 Iribarren 数と波パワー, 打上げ高の関係 (10°)

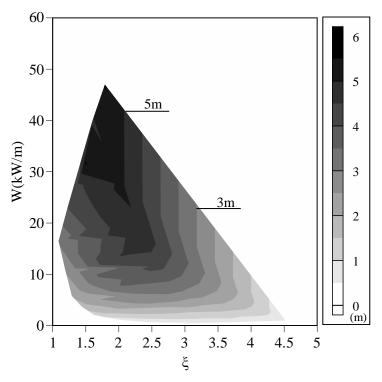


図 4-23 Iribarren 数と波パワー, 打上げ高の関係 (15°)

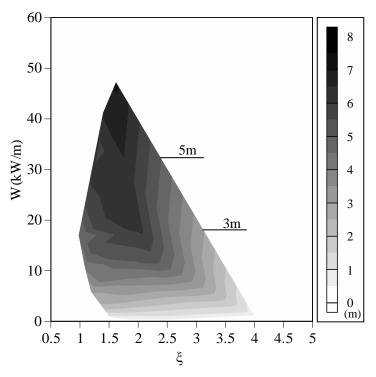


図 4-24 Iribarren 数と波パワー, 打上げ高の関係 (20°)

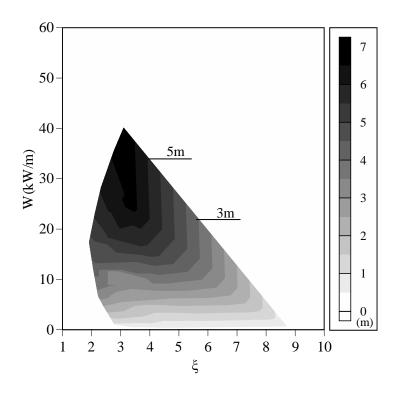


図 4-25 Iribarren 数と波パワー, 打上げ高の関係 (25°)

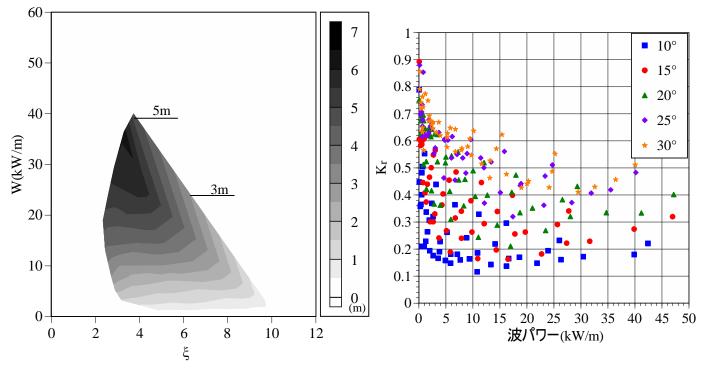


図 4-26 Iribarren 数と波パワー, 打上げ高の関係 (30°)

図 4-27 波パワーと反射率の関係

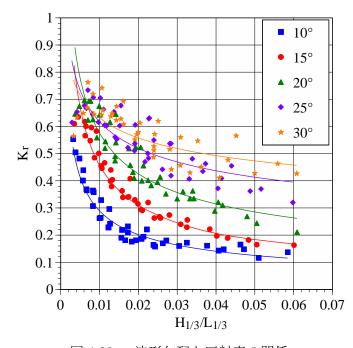


図 4-28 波形勾配と反射率の関係

表 4-12 波形勾配と反射率の関係 (α, βの値)

角度	α	β
10°	0.027	-0.52
15°	0.035	-0.56
20°	0.078	-0.44
25°	0.196	-0.25
30°	0.278	-0.18

4.8 まとめ

本研究は、波エネルギーを有効に使うために、固定式の越波式波力発電システムの効率 を上昇させるための実験的研究として、波の打上げ高特性の研究を行った.

主要な考察を以下に示す.

(1) 規則波

傾斜板角度と波形勾配でまとめた結果、H/L=0.019 は、実験値や実験値を基に既存の理論を考慮した結果は既存の理論とよく合っており、(S) surging waves 領域と (B) breaking waves 領域に分けた Sainflou の重複波の水面波形を考慮した式を適用した場合が顕著で、完全に傾向と一致している.

H/L=0.032 は,高田(海底勾配 0) の結果と,田中ら(海底勾配 1/30),田中ら実験値(高田(B) Sainflou),田中ら実験値(高田(B) Miche)の結果は傾向が完全に一致し、Saville、Savage、田中ら実験値(高田(S) Sainflou)、田中ら実験値(高田(S) Miche)の傾向が完全に一致していることから、実験値や実験値を基に既存の理論を考慮した結果は既存の理論とよく合っているが、(S) surging waves 領域と(B) breaking waves 領域による差異が確認された.

H/L=0.051 の結果は、すべてのデータの傾向が完全に一致していることから、実験値や 実験値を基に既存の理論を考慮した結果は既存の理論とよく合っているといえる.

打上げ高と Iribarren 数でまとめた結果,surging waves 領域,breaking waves 領域に関わらず Iribarren 数が増加すると打上げ高は減少した.また,傾斜板角度 θ =25°の場合,極端に打上げ高が低くなっていることから,傾斜板角度 θ =20°を超えると打上げ高が低くなることが示唆された.また,Iribarren 数と波浪領域の関係は,Ir =2 付近で明瞭に分かれているため,波浪領域を分けることで打上げ高を予測できると考えられる.なお,傾斜板角度に関わらず Iribarren 数が小さくなる条件は(B)breaking waves 領域であることがわかる.また,このことから,波形勾配が大きいほど打上げ高が低くなることもわかる.

波パワーと打上げ高の関係は比例関係にあることがわかる. surging waves 領域では 15° の場合,打上げ高が最も高くなることがわかる. 一方, breaking waves 領域では 20° の breaking waves 領域, surging waves 領域と, 30° の breaking waves 領域はほぼ同じ傾向を示す結果となった. なお, 20° は breaking waves 領域と surging waves 領域に大きな差はないためどの波浪条件においても打上げ高が安定していることがわかる.

角度ごとに波パワーW(kw/m), Iribarren 数 (ξ), 打上げ高 R_m (m) をまとめた結果, 傾斜板角度 15°では,波パワーは 54.8kw/m で最大となり,その際の打上げ高が 6.1m となり最大となる.傾斜板角度 20°では,波パワーは 57.2kw/m で最大となり,その際の打上げ高は 6.3m となり最大となる.傾斜板角度 25°ではほかの角度と違い,波パワーが最大のとき(50.8kw/m),打上げ高は最大(2.8m)ではない.最大打上げ高は 3.6m であり,その際の波パワーは W=46.5kw/m である.この原因は,傾斜板角度 25°では反射率が非常に大き

いことが考えられる. 具体的には波パワーが最大の時, 傾斜板角度 15°では約2割(0.152)の反射となり, 傾斜板角度 20°では約3割(0.314)反射している. 一方, 傾斜板角度 25°では約5割(0.529)が反射していることから, 波が傾斜板を遡上する前に, 急な勾配によって波パワーの半分はすでに反射していることわかる. また, 波パワーと反射率の関係は明瞭でないため, 従来表している波形勾配と反射率の関係から, 傾斜板角度が大きくなるにしたがって反射が大きくなっていることがわかった.

これらの結果から、傾斜板角度による違いはあるものの、概して、打上げ高は波浪領域を分けて考えなくてはならない Iribarren 数よりも、波パワーに強く関係することがわかる. また、傾斜板角度が増加するにしたがい、反射の影響により打上げ高は波パワーよりも Iribarren 数に関係する.

(2) 不規則波

既往の研究として、間瀬 (Mase, 1989) がまとめた、Iribarren 数 (Ir) と相対打上げ高 ($R_{ave}/H_{1/3}$) の関係を比較した。実験で得られた Iribarren 数の範囲は、既往の研究よりも広範囲となっている。規則波同様、波の打上げ高は Iribarren 数だけでなく傾斜板角度によって傾向が異なり、傾斜板角度 20° までは増加し、その後減少する傾向となった。 breaking waves と surging waves の区分も傾斜板角度で異なった。 波高と波形勾配が増加するにしたがい、沖で砕波することになり、傾斜板の位置における波の現象のみで打上げ高を評価することは限界がある。

規則波と同様に、概して Iribarren 数が増加すると打上げ高は減少した. なお、10°の場合が最も打上げ高は低く、次いで 15°、30°、25°と続き、20°の場合が最も打上げ高は高くなった. 25°の場合も最高打上げ高は 20°の場合とほぼ同じだが、breaking waves 領域では、25°のデータは 20°の場合よりもデータが広い範囲に点在していることから、波浪条件による打上げ高のバラつきを確認できる. このことから、20°が最も安定して打上げ高が高い条件であることを確認できた. surging waves 領域は、簡単に打上げ高を判断できないが、Iribarren 数が増加すると打上げ高は減少した.

打上げ高と波パワーの関係は、波パワーが増加すると打上げ高は増加する比例関係を確認した. 傾斜板角度との関係では、角度が 20°までは打上げ高も増加するが、それよりも大きな角度となると打上げ高は減少する結果となった. この結果から、越波式波力発電装置の傾斜板角度は 20°となった.

3次元で示した結果から、打上げ高は、Iribarren 数が小さく波パワーが大きいほど高くなる傾向がある。また、不規則波では角度が 20°までは打上げ高も増加するが、それよりも大きな角度となると打上げ高は減少する結果となった。この結果は、規則波と同様に傾斜板角度が急になればなるほど反射率が大きくなるためと考えられる。傾斜板角度 20°の最大波パワーの時、打上げ高も最大 (7.1m) となり、反射は約4割 (0.402) となっている。傾斜板角度 30°の最大波パワーの時、打上げ高 4.9m は最大ではない(最大は 6.9m、波パワー36.4kW/m、反射 0.458)。この時の反射は約5割 (0.513) となっている。この結果から、

波が傾斜板を遡上する前に、急な勾配によって波パワーの半分はすでに反射しており、打上げ高が低くなってしまったことがわかる。また、規則波と同様に波パワーと反射率の関係は明瞭でないため、波形勾配と反射率の関係から傾斜板角度が大きくなるにしたがって反射が大きくなっていることがわかった。なお、波パワーが小さい領域では、打上げ高は Iribarren 数に関係しない.

これらの結果から、Iribarren 数から打上げ高を想定するよりも、波パワーを使って想定する容易さ、有効性が確認できた.

第5章 越波量特性

5.1 研究背景および研究目的

本研究における越波式波力発電装置は、図 5-1 に示すように襲来した波を傾斜板によって遡上させ位置エネルギーに変換する。そして越波した水の送水エネルギーによってタービンを回転させ、トルクを得ることで発電を行っている。また我々が考案している越波式波力発電装置はどのような波の条件(波高・周期)に対しても効率良く波を越波させ、より多くの水を取り入れることが必須条件である。

そのために、本研究では打上げ高の結果を踏襲しつつ、実際の設備投資なども含め、より効率の良い傾斜板の検討や、より正確な越波量を算出するため以下に示す2つの実験を行った。本章では次の2つの実験について記す。

- ・各種傾斜板長さによる越波量特性実験
- ・貯水タンクを用いた越波量特性実験

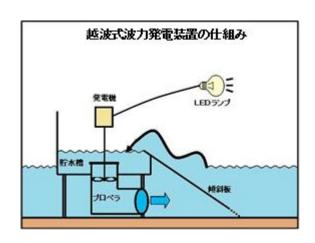


図 5-1 越波式波力発電装置の仕組み

5.2 各種傾斜板長さによる越波量特性

5.2.1 実験目的

著者が所属する研究室において、過去の実験では、写真 5-1 に示すように傾斜板は横幅 2m, 縦幅 2m の寸法を使用していた.しかし、波力発電装置を開発するにあたり、制作費の点から材料を抑えることは重要であることから、本実験ではこの傾斜板の長さ(縦幅)を再検討することとした.具体的に、ベースとなる傾斜板の長さ(2m)に対して、1.75m、1.5m、1.25m の3種類を追加し越波量特性を調べた.

写真 5-1 傾斜板(横幅 2m,縦幅 2m)

5.2.2 実験施設および実験装置

(1) 実験水槽

実験は東海大学海洋学部臨海実験場第一水理実験棟平面水槽を用いて行なった.この水槽には造波機が取り付けてあり、さまざまな波を造り、ブロックの安定実験や波の変形実験および海岸侵食実験を行うことができる.写真 5-2 に実験水槽全景を示す.

平面水槽の仕様

縦: 22.0m 横: 23.0m 深さ.: 1.2m (最大)

写真 5-2 平面水槽

(2) 造波機

東海大学海洋学部臨海実験場第一水理実験棟平面水槽に取り付けられている造波機は、一方向または多方向の規則波および不規則波を発生することができる. 写真 5-3 に示す造波制御コンピュータは第一水理実験棟平面水槽の2階部にあり平面水槽を見下ろすように設置してある. 写真 5-4 と写真 5-5 は造波機であり、20枚のパネルを制御して造波している.

造波機の仕様

型式:多方向不規則波造波方式(スネーク式)

多方向不規則波(SS 法, SD 法)

一方向規則波(斜め波含む)

一方向不規則波(斜め波含む)

造波板長: 80cm×20 台(全幅 16m)

周期:T=0.5~5.0s, T_{1/3}=0.8~3.0s

波高:規則波最大 20cm (周期 1.5~2.5s), H_{1/3}=10cm

波向:造波板に垂直方向を中心に±45 度

写真 5-3 造波機制御コンピュータ

写真 5-4 造波機

写真 5-5 造波機(正面)

(3) 波力発電用貯水実験水槽と傾斜板

写真 5-6 と写真 5-7 は実験貯水槽であり、前面は傾斜板を取り付けるようにカットされており、様々な越波揚程に対応すべく上下に可動式になっている。底には φ200mm の放流管が取り付けられている。また、放流管を密閉して使用することができ、水抜きコックによる排水が可能である。写真 5-8、写真 5-9、写真 5-10 は本実験で使用した傾斜板である。

水槽の仕様

幅: 2.0m 奥行: 1.0m 高さ: 0.8m 管径: φ=20cm

写真 5-6 実験貯水槽

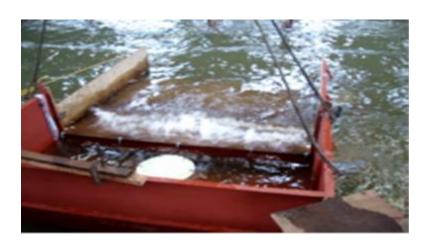


写真 5-7 実験貯水槽設置後

写真 5-8 傾斜板 (横幅 2m, 縦幅 1.25m)

写真 5-9 傾斜板 (横幅 2m, 縦幅 1.50m)

(4) 容量式波高計

写真 5-10 傾斜板 (横幅 2m, 縦幅 1.75m)

写真 5-11 と写真 5-12 はそれぞれ容量式波高計のアンプと波高計測部である. 仕様を下記に示す.

容量式波高計の仕様

型名: CH-401型 チャンネル数: 1ch.

測定モード:1,2,4倍(3点手動切り替え)

較正電圧:1, 1/2, 1/4, 0 (4点手動切り替え)

出力電圧: ± 2.5 V/FS (負荷 10k Ω 以上) 出力電流: ± 20 mA/FS (負荷 20\Omega 以下)

使用温度範囲:0~40℃

電源: AC100V±10% 50&60Hz

消費電力:約15VA

外形寸法 (mm): 66W×168H×215D

重量約:1.4kg

検出部

最大測定波高 : 10cm (CHT4-10), 20cm (CHT4-20), 40cm (CHT4-40), 50cm (CHT4-50),

60cm (CHT4-60), 80cm (CHT4-80), 100cm (CHT4-100)

直線性誤差:±0.5%/FS 応答性:5Hz(波高±5cm)

安定性:±1%/FS

相互干涉:±1%以下(容量線間隔 10cm 以上)

使用温度範囲:0~40℃

重量:約0.5kg

製造元:株式会社 ケネック

写真 5-11 波高計アンプ

写真 5-12 波高計

(5) データ収録器

写真 5-13 はデータ収録器である. この仕様を下記に示す.

データ収録器の仕様

PCD320A

測定対象:電圧

測定チャンネル数: 4ユニット(最大4ユニット16チャンネルまで測定可能)

測定レンジ:1,2,5,10,20,50V および OFF の7段

精度:±0.2%FS以内(23℃にて)

応答周波数範囲: DC カップリング DC~1kHz,

AC カップリング 0.2~1kHz

分解能:12ビット 逐次比較型,出力2の補数

サンプリング周波数:1, 2, 5, 10, 20, 50, 100, 200, 500Hz, 1, 2, 5kHz まで測定可

能

4 チャンネル同時サンプリング

インターフェース:USB

測定入力端子:入力端子 BNC コネクタ

電源: AC100V~240V(標準付属 AC アダプタ SA10A 使用)

製造元:株式会社 共和電業

写真 5-13 PCD320A

(6) その他の使用器具

今回の実験で使用した備品と装置を写真 5-14~写真 5-19 に示す.

写真 5-14 クレーン

写真 5-17 消波ボックス

写真 5-19 排水用ポンプ

写真 5-16 消波材

写真 5-18 データ収録用パソコン

5.2.3 実験方法および実験条件

実験は写真 5-2 に示す平面水槽を使用し、図 5-2 に示すように造波機から 9.7m の位置に貯水槽を設置した. なお、模型縮尺を 1/10 とし、実験条件は Froude の相似則から決定した. 以下に実験方法と実験条件を示す.

- ・実験水深は越波揚程に合わせて 65cm~70cm の範囲で固定した.
- ・実験条件は静岡県御前崎の波を目標として決定した.表 5-1 は御前崎の年平均波高と周期である.この表をグラフ化したものが図 5-3 である.
- ・実験波浪は Bretschneider-光易型を目標スペクトルとする不規則波を用いた.
- ・実験条件を表 5-2 に示す. 表には現地の値と模型実験の値を記載してある.実験条件は 御前崎観測所のデータを参考に決定し、Case1 から Case5 までは有義波高($H_{1/3}$)を 0.5m から 1.65m,有義波周期($T_{1/3}$)を 6.01s から 8.22s とした. また,波形勾配による知見を 得るために Case6 から Case9 までは有義波高($H_{1/3}$)を 1.65m 前後,有義波周期($T_{1/3}$)を 3.79s から 6.64s とした.
- ・傾斜板の長さを 1.25m, 1.5m, 1.75m, 越波揚程 (R) は 8cm, 10cm, 15cm, 20cm とし, 傾斜板角度 (θ) は 20°で固定した.
- ・収録データ仕様を表 5-3 に示す. 計測時間は貯水槽が満水状態になるまでとした.
- ・ファイルネームは図 5-4 の通りとする.
 - i : 傾斜板の長さ L (1.75m), M (1.5m), S (1.25m) の単位時間・単位幅当たりの越波量 Q
- ii : 実験 No. (Case1~Case9)
- iii: 傾斜板の角度(20°固定)
- iv: 越波揚程の条件 F (R=8cm), A (R=10cm), B (R=15cm), C (R=20cm), 以上の条件を合わせて 108 ケースを行い, 貯水槽内の水位変化をもとに単位時間・単位幅当たりの越波量を算出した.

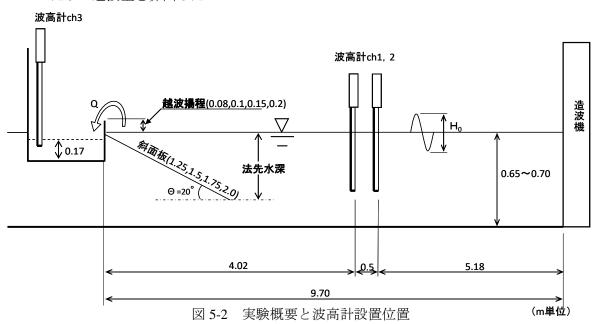


表 5-1 各地の年平均波高と周期(2004年)

细光肽	平均波高H _{1/3} (m)	0.13	0.38	0.48	0.88	1.13	1.38	1.63	1.88	2.26	2.76	3.26	3.76
御前崎	平均周期T _{1/3} (s)	_	5.6	6	6.4	6.6	6.8	8	9.2	10	10.5	10.8	11.7

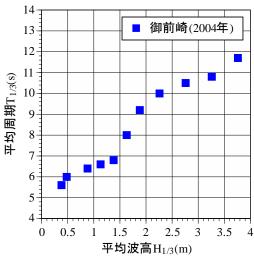


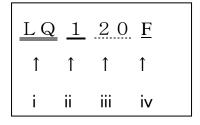
図 5-3 御前崎の年間波高と周期

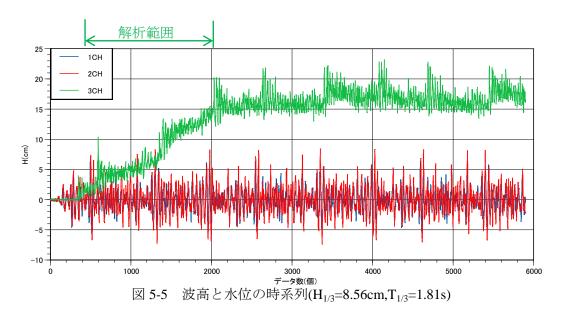
表 5-2 実験条件(御前崎)

	実活	与 域	模型実験	$(\lambda = 1/10)$
実験No.	H _{1/3} (m)	T _{1/3} (s)	H _{1/3} (cm)	T _{1/3} (s)
Case 1	0.50	6.01	5.0	1.90
Case2	0.75	6.64	7.5	2.10
Case3	1.00	6.96	10.0	2.20
Case4	1.25	7.59	12.5	2.40
Case5	1.65	8.22	16.5	2.60
Case6	1.65	3.79	16.5	1.20
Case7	1.65	4.90	16.5	1.55
Case8	1.65	5.69	16.5	1.80
Case9	1.70	6.64	17.0	2.10

表 5-3 収録データ仕様

収録項目	仕様
収録データ数	8192
サンプリング周波数	20Hz




図 5-4 ファイルネーム

5.2.4 解析方法

図 5-2 に示す貯水槽前方に設置した波高計 2 個によりゼロアップクロス法を用いて沖波波高および周期を求め、入反射分離法より反射率を求めた。波長 L は式 (4.15) から算出した。また貯水槽内に設置した波高計により水位変化を求め、その水位変化に水槽の底面積を乗じて越波量とした。例として図 5-5 と図 5-6 は傾斜板長 1.75m,越波揚程 8.0cm,傾斜板角度 20°のときの,それぞれ $H_{1/3}=8.56$ cm, $T_{1/3}=1.81$ s と $H_{1/3}=20.08$ cm, $T_{1/3}=1.88$ s の時系列である。これらの時系列から貯水槽が満水になる解析範囲を求めて単位時間・単位幅当たりの越波量を算定した。

よって越波量が多い実験ケースでは,水槽内が越波した波により満水が早期になるため,

データ数が少なくなり、各実験ケースによってデータ数が異なる. 従って、波の解析に当たっては越波量を解析した範囲のデータで波の諸量を算定した.

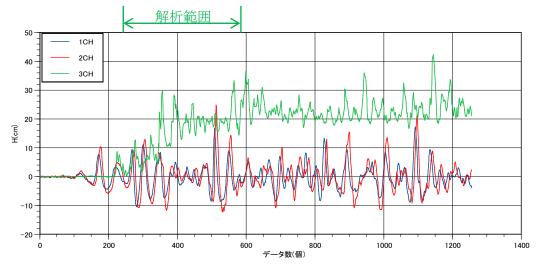


図 5-6 波高と水位の時系列(H_{1/3}=20.08cm,T_{1/3}=1.88s)

5.2.5 実験結果および考察

本項では、田中らの過去の研究結果(田中ら,2010)と本実験の結果を基に、5.2.5.1 項で各傾斜板の越波量の関係を示し、5.2.5.2 項では各傾斜板長による越波量の相違を見るため越波揚程ごとの越波量の関係を示す。

5.2.5.1 各傾斜板長に対する実験結果および考察

表 5-4~5-6 は、本実験結果における傾斜板長 SQ(1.25m)、MQ(1.50m)、LQ(1.75m)の解析データを記す. なお LQ120C は越波しなかった. また表 5-7 の HQ(2.00m)は田中

らの過去の研究結果(田中ら, 2010)から引用したものである. なお SQ (1.25m), MQ (1.50m), LQ (1.75m) はそれぞれ傾斜板の縦幅を表す.

(1) 各傾斜板における有義波高 $H_{1/3}$ (cm) と越波量 q ($m^3/s/m$) の関係

図 5-7~5-10 はそれぞれ傾斜板長 1.25m, 1.50m, 1.75m, 2.00m の各越波揚程に対する有義波高 $(H_{1/3})$ と単位時間・単位幅当たりの越波量 $(m^3/s/m)$ の関係である. この図は、御前崎の波高と周期に相当する Casel から Case5 までの実験結果をまとめたものである.

これらの図から、どの傾斜板長においても越波揚程が小さいほど越波量が多く、波高が高いほど越波量も増加する傾向があることがわかる. また傾斜板長 1.25m のときに越波量が減少する傾向がある.

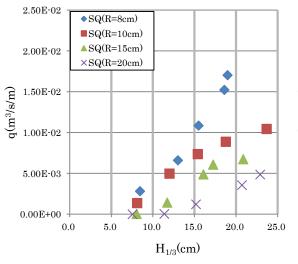


図 5-7 各越波揚程に対する波高と越波量の関係(傾斜板長 1.25m)

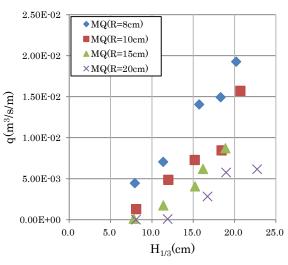


図 5-8 各越波揚程に対する波高と越波 量の関係(傾斜板長 1.50m)

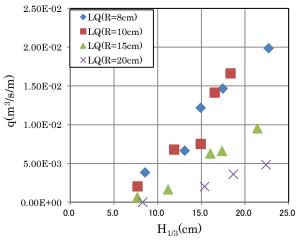


図 5-9 各越波揚程に対する波高と越波 量の関係(傾斜板長 1.75m)

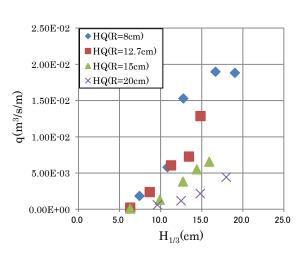


図 5-10 各越波揚程に対する波高と越波 量の関係(傾斜板長 2.00m)

表 5-4 SQ(1.25m)の解析データ

						П										П																				_
越波量(m³/s/m)	2.8279E-03	6.6038E-03	1.0850E-02	1.5229E-02	1.7032E-02	1.2149E-02	1.5399E-02	1.8163E-02	2.0712E-02	1.3609E-03	4.9825E-03	7.3612E-03	8.8810E-03	1.0451E-02	8.2914E-03	1.2159E-02	1.3411E-02	1.4479E-02	3.8571E-05	1.4351E-03	4.8859E-03	6.0826E-03	6.7459E-03	2.3285E-03	5.5591E-03	6.7926E-03	7.1583E-03	2.5221E-07	4.1504E-05	1.2051E-03	3.5641E-03	4.8495E-03	2.7716E-03	5.4821E-03	6.2867E-03	6 9738E-03
反射率	0.498	0.445	0.405	0.394	0.381	0.288	0.342	0.337	0.374	0.496	0.453	0.403	0.404	0.403	0.302	0.342	0.375	0.379	0.581	0.491	0.411	0.405	0.404	0.347	0.338	0.352	0.383	0.465	0.397	0.389	0.419	0.419	0.379	0.373	0.379	0.400
波形勾配 H _{1/3} /L	0.0198	0.0268	0.0321	0.0362	0.0347	0.0775	0.0612	0.0593	0.0533	0.0204	0.0260	0.0333	0.0340	0.0352	0.0767	0.0639	0.0556	0.0467	0.0200	0.0246	0.0329	0.0351	0.0336	0.0671	0.0585	0.0584	0.0432	0.018	0.023	0.031	0.038	0.040	0.070	0.055	0.053	0.050
波教	92	34	20	12	12	20	18	14	10	161	43	31	24	18	35	22	19	15	263	136	40	32	56	115	41	38	31	265	230	156	49	36	96	39	36	33
Tave(s)	1.52	1.64	1.55	1.73	1.64	1.27	1.29	1.43	1.64	1.42	1.58	1.55	1.77	2.12	1.18	1.29	1.32	1.52	1.46	1.57	1.61	1.68	2.00	1.17	1.34	1.37	1.5	1.43	1.64	1.63	1.77	1.84	1.17	1.45	1.44	1 57
Have(cm)	5.01	7.27	9.13	10.99	10.50	14.05	12.56	13.13	13.73	4.73	6.83	9.18	11.21	13.42	12.34	12.75	11.71	11.81	4.95	6.99	9.50	10.09	12.12	98.6	12.03	12.24	11.48	4.58	96.9	90.6	12.18	13.09	10.32	12.65	12.37	12 96
L(cm) H	428.4	486.2	482.6	514.2	546.6	273.7	324.7	409.6	446.8	398.2	461.0	462.4	552.6	673.3	255.6	317.7	361.8	449.3	402.0	476.8	488.9	491.8	621.0	246.4	347.3	359.6	453.0	431.6	492.6	489.9	549.9	573.0	249.4	373.1	403.8	7 7 7 7
T _{1/3} (s)	1.89	2.08	2.07	2.18	2.29	1.38	1.54	1.82	1.95	1.8	2.01	2.02	2.34	2.77	1.33	1.53	1.67	1.97	1.83	2.10	2.14	2.15	2.63	1.30	1.64	1.68	2.01	1.94	2.16	2.15	2.36	2.45	1.31	1.73	1.84	1 98
H _{1/3} (cm)	8.46	13.02	15.51	18.61	18.99	21.20	19.88	24.31	23.82	8.11	12.00	15.40	18.78	23.68	19.61	20.30	20.10	20.97	8.05	11.74	16.09	17.25	20.87	16.52	20.30	21.01	19.58	7.56	11.39	15.19	20.71	22.92	17.35	20.45	21.49	23.29
解析データ数	2350	1150	089	480	450	550	490	400	370	4610	1380	066	068	008	850	009	540	200	7742	4290	1340	1100	1080	2710	1140	1060	950	7590	7610	5120	1800	1450	2270	1150	1050	1050
計算範囲	350-2700	250-1400	420-1100	220-700	200-650	300-850	310-800	250-650	230-600	390-5000	320-1700	210-1200	210-1100	190-990	350-1200	300-900	310-850	200-700	450-8192	210-4500	250-1590	200-1300	200-1280	250-2960	260-1400	310-1370	250-1200	600-8190	580-8190	280-5400	200-2000	200-1650	330-2600	350-1500	350-1400	350-1400
データ総数	8192	5786	3664	2718	1654	3052	1598	1562	1576	8192	2600	3018	3014	2588	3012	2350	2006	2012	8192	8192	8192	2840	2224	8192	5368	3222	2508	8192	8192	8192	5498	3296	6002	3632	3286	3280
法先水深 (cm)		I			34.8	l	I							32.8									27.8						I	l	I	22.8				
初期水深 (cm)					17.0									17.0									17.0									17.0				
大					92									89									65									65				
θ					20									20									20									20				
R(cm)					∞									10									15									20				
CASE	SQ120F	SQ220F	SQ320F	SQ420F	SQ520F	SQ620F	SQ720F	SQ820F	SQ920F	SQ120A	SQ220A	SQ320A	SQ420A	SQ520A	SQ620A	SQ720A	SQ820A	SQ920A	SQ120B	SQ220B	SQ320B	SQ420B	SQ520B	SQ620B	SQ720B	SQ820B	SQ920B	SQ120C	SQ220C	SQ320C	SQ420C	SQ520C	SQ620C	SQ720C	SQ820C	SO920C

表 5-5 MQ(1.50m)の解析データ

_																													<u> </u>							\neg
越波量(m³/s/m)	4.4517E-03	7.0455E-03	1.4050E-02	1.4931E-02	1.9260E-02	1.3096E-02	1.7269E-02	1.9865E-02	2.2699E-02	1.2990E-03	4.8725E-03	7.2832E-03	8.4640E-03	1.5719E-02	6.3250E-03	1.2429E-02	1.9423E-02	1.9803E-02	1.2749E-04	1.7393E-03	4.0616E-03	6.2005E-03	8.7120E-03	4.1393E-03	8.2317E-03	1.2007E-02	1.2496E-02	5.9235E-06	8.4285E-05	2.8275E-03	5.7539E-03	6.1622E-03	3.1194E-03	6.3221E-03	6.6669E-03	7.9714E-03
反射率	0.452	0.407	0.349	0.328	0.353	0.257	0.263	0.277	0.328	0.485	0.429	0.369	0.375	0.353	0.272	0.308	0.316	0.347	0.493	0.450	0.398	0.394	0.382	0.313	0.338	0.329	98:0	0.516	0.449	0.424	0.395	0.384	0.330	0.355	0.347	0.378
波形勾配 H _{1/3} /L	0.0211	0.0227	0.0343	0.0357	0.0420	0.0743	0.0598	0.0602	0.0472	0.0198	0.0243	0.0350	0.0311	0.0346	0.0747	0.0636	0.0527	0.0552	0.0197	0.0240	0.0303	0.0330	0.0332	0.0749	0.0624	0.0606	0.0484	0.0197	0.0250	0.0347	0.0363	0.0382	0.0695	0.0544	0.0542	0.0443
波数	46	30	15	12	10	21	16	12	8	174	42	34	22	11	4	21	12	10	278	124	49	31	24	99	56	16	15	254	234	72	26	30	83	37	35	24
Tave(s)	1.51	1.58	1.45	1.74	1.87	1.26	1.29	1.52	1.69	1.43	1.60	1.41	1.84	1.79	1.22	1.28	1.41	1.50	1.40	1.54	1.58	1.62	1.70	1.21	1.35	1.29	1.40	1.49	1.65	1.57	1.70	1.90	1.21	1.36	1.46	1.6
Have(cm)	4.92	6.85	8.24	10.54	11.50	12.58	11.96	14.18	11.93	4.78	96'9	8.55	10.86	11.53	12.06	12.43	11.45	12.79	4.70	69.9	8.79	9.19	10.44	11.90	12.68	11.43	10.81	4.98	7.49	9.57	10.58	12.30	10.61	12.31	12.41	11.54
L(cm)	377.1	501.2	458.1	513.2	481.2	266.6	345.7	411.9	424.9	410.5	493.6	433.6	592.2	598.5	258.3	325.7	404.5	428.0	397.1	474.5	502.1	490.1	9.695	252.9	322.9	321.8	415.8	411.1	476.9	481.5	522.6	595.4	251.6	376.7	397.5	451.7
T _{1/3} (s)	1.71	2.14	1.99	2.18	2.07	1.36	1.61	1.83	1.87	1.84	2.13	1.92	2.48	2.50	1.33	1.55	1.82	1.9	1.81	2.09	2.19	2.15	2.44	1.32	1.56	1.55	1.88	1.86	2.10	2.12	2.26	2.53	1.32	1.74	1.82	2.01
H _{1/3} (cm)	26.7	11.37	15.72	18.33	20.20	19.80	20.67	24.81	20.04	8.11	11.99	15.18	18.43	20.71	19.30	20.72	21.3	23.63	7.81	11.40	15.22	16.19	18.9	18.95	20.16	19.51	20.10	80.8	11.91	16.73	18.99	22.73	17.49	20.51	21.54	20.01
解析データ 数	1410	086	480	480	390	550	430	400	320	4040	1410	066	006	440	1100	550	350	350	0622	3820	1600	1050	850	1620	800	520	480	7590	0622	2280	920	1180	2020	1040	1070	810
計算範囲	380-1790	230-1210	220-700	220-700	210-600	330-880	320-750	240-640	210-530	360-5400	190-1600	160-1150	150-1050	160-600	300-1400	280-830	200-550	180-530	400-8190	280-4100	250-1850	150-1200	150-1000	380-2000	300-1100	300-820	210-690	600-8190	400-8190	400-2680	380-1300	200-1380	380-2400	340-1380	310-1380	350-1160
データ総数	5016	2006	1570	1452	1150	1568	1222	1072	1138	8192	8192	2818	3002	1470	9090	2074	1970	1772	8192	8192	8192	3956	3110	8192	6338	3162	2522	8192	8192	8192	8192	8192	8192	2604	2068	2394
法先水深 (cm)					43.3									41.3									36.3									31.3				
初期水深 (cm)					17.0									17.0									17.0									17.0				
水深					92									89									9									65				
θ					20									20									20									20				\Box
R(cm)					∞									10									15									20				
CASE	MQ120F	MQ220F	MQ320F	MQ420F	MQ520F	MQ620F	MQ720F	MQ820F	MQ920F	MQ120A	MQ220A	MQ320A	MQ420A	MQ520A	MQ620A	MQ720A	MQ820A	MQ920A	MQ120B	MQ220B	MQ320B	MQ420B	MQ520B	MQ620B	MQ720B	MQ820B	MQ920B	MQ120C	MQ220C	MQ320C	MQ420C	MQ520C	MQ620C	MQ720C	MQ820C	MQ920C

表 5-6 LQ(1.75m)の解析データ

			⊢											-	
θ	长彩	初期水深 (cm)	法先水深 (cm)	データ総数	計算範囲	解析データ数	H _{1/3} (cm)	T _{1/3} (s)	L(cm)	Have(cm)	Tave(s)	汝教	波形勾配 H1/3/L	反射率	越波量(m³/s/m)
				0065	380-2000	1621	8.56	1.81	404.7	5.18	1.53	52	0.0211	0.471	3.8527E-03
				3090	220-1390	1171	13.1	2.06	478.7	7.82	1.71	33	0.0274	0.430	6.6502E-03
				2780	220-780	561	14.95	1.93	442.6	8.16	1.44	17	0.0338	0.395	1.2187E-02
				2848	200-700	501	17.48	2.08	486.2	9.61	1.69	14	0.0360	0.385	1.4672E-02
20	9	17.0	51.9	1228	210-600	391	22.71	2.47	596.3	13.25	2.29	8	0.0381	0.382	1.9877E-02
				1568	330-880	551	19.57	1.38	274.2	12.45	1.22	21	0.0714	0.287	1.3354E-02
				1652	310-750	441	21.11	1.59	339.8	11.68	1.21	17	0.0621	0.325	1.7810E-02
				1230	240-640	401	24.91	1.81	405.1	14.28	1.54	12	0.0615	0.300	2.0642E-02
				1256	210-530	321	20.08	1.88	425.5	11.83	1.68	8	0.0472	0.351	2.2825E-02
				8192	390-3600	3211	7.70	1.82	405.3	4.55	1.46	108	0.0190	0.459	2.0448E-03
				2088	350-1410	1061	11.9	2.00	456.4	6.59	1.56	33	0.0261	0.416	6.8108E-03
				5266	220-1200	981	14.94	2.11	489.5	8.83	1.60	29	0.0305	0.362	7.5148E-03
				1972	230-650	421	18.36	2.18	509.3	9.49	1.57	12	0.0361	0.366	1.6637E-02
20	89	17.0	49.9	1592	210-720	511	16.54	2.00	457.5	9.61	1.74	14	0.0362	0.372	1.4141E-02
				2562	330-1000	671	20.65	1.38	271.0	12.74	1.22	27	0.0722	0.287	6.9046E-03
				1916	320-800	481	20.29	1.62	346.7	12.59	1.33	17	0.0585	0.319	1.5209E-02
				1412	310-730	421	22.19	1.73	379.0	12.41	1.44	13	0.0586	0.289	1.7628E-02
				1222	220-570	351	23.97	1.88	423.0	13.44	1.53	10	0.0567	0.346	2.0618E-02
				8192	400-7500	7101	7.68	1.78	388.5	4.52	1.38	256	0.0198	0.507	6.5692E-04
				8192	280-4200	3921	11.2	2.06	466.5	6.56	1.5	129	0.0240	0.465	1.6704E-03
				4156	350-1450	1101	16.04	2.04	460.8	9.26	1.60	33	0.0348	0.405	6.2886E-03
				1900	210-1250	1041	17.38	2.27	524.9	10.11	1.7	29	0.0331	0.412	6.6223E-03
20	65	17.0	44.9	1820	210-1000	791	21.43	2.58	609.1	12.30	2.06	19	0.0352	0.424	9.5278E-03
				2908	350-2000	1651	17.95	1.32	251.1	11.23	1.2	89	0.0715	0.312	3.8993E-03
				2008	310-1280	971	19.87	1.56	322.9	12.47	1.34	35	0.0616	0.330	7.3630E-03
				1506	058-088	521	19.58	1.73	372.1	11.26	1.3	19	0.0526	0.348	1.2160E-02
				1572	320-800	481	17.3	1.90	420.4	10.08	1.44	16	0.0412	0.369	1.2853E-02
				越波なし											
				8192	500-8190	7690	8.29	1.95	435.3	5.36	1.57	244	0.0190	0.470	1.4878E-05
				8192	300-3500	3200	15.39	2.04	461.0	9.29	1.62	26	0.0334	0.415	2.0368E-03
				8192	210-2050	1840	18.68	2.30	532.0	11.14	1.73	52	0.0351	0.417	3.6243E-03
20	65	17.0	39.9	8192	200-1680	1480	22.41	2.41	562.2	13.16	1.92	37	0.0399	0.414	4.8503E-03
				8192	300-4900	4600	17.81	1.31	249.7	10.77	1.19	193	0.0713	0.324	1.4398E-03
				8192	300-2640	2340	19.33	1.63	344.3	11.35	1.31	88	0.0561	0.340	2.9515E-03
				8192	350-2100	1750	20.26	1.76	382.1	12.11	1.40	61	0.0530	0.347	3.9973E-03
				8192	300-1650	1350	20.79	2.10	477.4	12.02	1.58	41	0.0436	0.385	5.2660E-03
	50 20 20 30 00 00 00 00 00 00 00 00 00 00 00 00		茶 5 8 8	大森 (cm) (cm) 68 17.0 65 17.0 65 17.0	大森 (cm) (cm) 70 17.0 51.9 68 17.0 49.9 65 17.0 44.9 65 17.0 39.9	大孫 初類水深 法先水深 元一夕総数 1200 17.0 51.9 1238 1230	水深 (cm) (cm) 5900 380-2000 1621 70 17.0 51.9 220-1390 1171 70 17.0 51.9 12848 200-700 561 70 17.0 51.9 1228 30-600 391 70 17.0 51.9 1228 30-600 391 1562 310-750 441 1256 210-530 321 68 17.0 49.9 1592 320-400 401 1256 210-530 321 30-300 551 1250 220-1200 981 320-800 421 1256 210-730 321 30-30 421 1250 230-1000 671 101 671 1256 320-400 320-800 481 1101 1250 230-1000 671 1101 1041 1250 320-400 320 320 1101 1250 230-100 210-1200 320 1101 1250<	水深 (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)	水藻 (cm) 大子 (cm) 大子 (cm) キーラ (cm) 日本 (cm)	水深 (cm) (cm) データ総数 計算範囲 解析データ 数0-200 計算を (cm) 17.1(s) 70 17.0 51.9 120-20-1390 1171 13.1 2.06 70 17.0 51.9 1228 200-700 561 14.95 1.93 70 17.0 51.9 1228 200-700 501 17.48 2.08 70 17.0 51.9 1228 200-700 501 17.48 2.08 10 17.0 51.9 1228 210-600 391 1.24 1.38 10 17.2 240-640 401 24.91 1.88 1.88 10 17.2 240-640 401 24.91 1.88 1.88 10 17.2 240-640 401 24.91 1.88 1.88 11 20 240-640 401 24.91 1.88 1.18 11 20 240-640 401 24.91 1.88 1.18 1.18 20	水液 初期水深 法先水深 (cm) (cm) </td <td>水液 (cm) 発売水漆 (cm) 子の (cm) 子の (cm) 発売水漆 (cm) 所・データ (cm) 解析データ (cm) 用・データ (cm) 日本の (cm)</td> <td>水液 (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)</td> <td>水藻 (cm) 本光水深 (cm) 本子系数 計算範囲 解析データ (cm) 解析データ (cm) 解析データ (cm) Hove(cm) Tave(s) (cm) 技術 (cm) Tave(s) (cm)</td> <td>水源 (CDM) (CDM) (CDM) (CDM) (TA/45) L(A/45) L(A/45)</td>	水液 (cm) 発売水漆 (cm) 子の (cm) 子の (cm) 発売水漆 (cm) 所・データ (cm) 解析データ (cm) 用・データ (cm) 日本の (cm)	水液 (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)	水藻 (cm) 本光水深 (cm) 本子系数 計算範囲 解析データ (cm) 解析データ (cm) 解析データ (cm) Hove(cm) Tave(s) (cm) 技術 (cm) Tave(s) (cm)	水源 (CDM) (CDM) (CDM) (CDM) (TA/45) L(A/45) L(A/45)

表 5-7 HQ(2.00m)の解析データ

(m/s	13	13	21	21	21	21	21	21	21	13	13	13	13	21	13	21	21	21	5	13	13	13	13	13	13	13	13	77	5	13	13	13	13	13	13	13
越波量(m³/s/m)	2.8279E-03	6.6038E-03	1.0850E-02	1.5229E-02	1.7032E-02	1.2149E-02	1.5399E-02	1.8163E-02	2.0712E-02	1.3609E-03	4.9825E-03	7.3612E-03	8.8810E-03	1.0451E-02	8.2914E-03	1.2159E-02	1.3411E-02	1.4479E-02	3.8571E-05	1.4351E-03	4.8859E-03	6.0826E-03	6.7459E-03	2.3285E-03	5.5591E-03	6.7926E-03	7.1583E-03	2.5221E-07	4.1504E-05	1.2051E-03	3.5641E-03	4.8495E-03	2.7716E-03	5.4821E-03	6.2867E-03	6.9238E-03
反射率	0.498	0.445	0.405	0.394	0.381	0.288	0.342	0.337	0.374	0.496	0.453	0.403	0.404	0.403	0.302	0.342	0.375	0.379	0.581	0.491	0.411	0.405	0.404	0.347	0.338	0.352	0.383	0.465	0.397	0.389	0.419	0.419	0.379	0.373	0.379	0.400
波形勾配 (H _{1/3} /L)	0.0198	0.0268	0.0321	0.0362	0.0347	0.0775	0.0612	0.0593	0.0533	0.0204	0.0260	0.0333	0.0340	0.0352	0.0767	0.0639	0.0556	0.0467	0.0200	0.0246	0.0329	0.0351	0.0336	0.0671	0.0585	0.0584	0.0432	0.018	0.023	0.031	0.038	0.040	0.070	0.055	0.053	0.052
汝教	9/	34	20	12	12	20	18	14	10	161	43	31	24	18	35	22	19	15	263	136	40	32	26	115	41	38	31	265	230	156	49	36	96	39	36	33
Tave(s)	1.52	1.64	1.55	1.73	1.64	1.27	1.29	1.43	1.64	1.42	1.58	1.55	1.77	2.12	1.18	1.29	1.32	1.52	1.46	1.57	1.61	1.68	2.00	1.17	1.34	1.37	1.5	1.43	1.64	1.63	1.77	1.84	1.17	1.45	1.44	1.57
Have(cm)	5.01	7.27	9.13	10.99	10.50	14.05	12.56	13.13	13.73	4.73	6.83	9.18	11.21	13.42	12.34	12.75	11.71	11.81	4.95	6.99	9.50	10.09	12.12	98.6	12.03	12.24	11.48	4.58	96.9	90.6	12.18	13.09	10.32	12.65	12.37	12.96
L(cm)	428.4	486.2	482.6	514.2	546.6	273.7	324.7	409.6	446.8	398.2	461.0	462.4	552.6	673.3	255.6	317.7	361.8	449.3	402.0	476.8	488.9	491.8	621.0	246.4	347.3	359.6	453.0	431.6	492.6	489.9	549.9	573.0	249.4	373.1	403.8	444.7
$T_{1/3}(s)$	1.89	2.08	2.07	2.18	2.29	1.38	1.54	1.82	1.95	1.8	2.01	2.02	2.34	2.77	1.33	1.53	1.67	1.97	1.83	2.10	2.14	2.15	2.63	1.30	1.64	1.68	2.01	1.94	2.16	2.15	2.36	2.45	1.31	1.73	1.84	1.98
H _{1/3} (cm)	8.46	13.02	15.51	18.61	18.99	21.20	19.88	24.31	23.82	8.11	12.00	15.40	18.78	23.68	19.61	20.30	20.10	20.97	8.05	11.74	16.09	17.25	20.87	16.52	20.30	21.01	19.58	7.56	11.39	15.19	20.71	22.92	17.35	20.45	21.49	23.29
解析データ数	2350	1150	089	480	450	550	490	400	370	4610	1380	066	890	800	850	009	540	500	7742	4290	1340	1100	1080	2710	1140	1060	950	7590	7610	5120	1800	1450	2270	1150	1050	1050
計算範囲	350-2700	250-1400	420-1100	220-700	200-650	300-850	310-800	250-650	230-600	390-5000	320-1700	210-1200	210-1100	190-990	350-1200	300-900	310-850	200-700	450-8192	210-4500	250-1590	200-1300	200-1280	250-2960	260-1400	310-1370	250-1200	600-8190	580-8190	280-5400	200-2000	200-1650	330-2600	350-1500	350-1400	350-1400
データ総数	8192	5786	3664	2718	1654	3052	1598	1562	1576	8192	2600	3018	3014	2588	3012	2350	2006	2012	8192	8192	8192	2840	2224	8192	2368	3222	2508	8192	8192	8192	5498	3296	6002	3632	3286	3280
法先水深 (cm)					34.8									32.8									27.8									22.8				
初期水深(cm)					17.0									17.0									17.0									17.0				
头 (cm)					70									89									65									65				
n) θ					20									0 20									5 20									0 20				\dashv
R(cm)	Гт	Гт	ſτ	ſτ	Ω.	ſτ	ſτ·	ſτ	ſτ	\ \ \	<i>~</i>	<i>~</i>	\ \	4 10	<i>~</i>	<i>~</i>	<i>~</i>	<i>~</i>	3		3	~	3 15	~	~	3	3	7.)	7)	7)	7)	20	7.)	7.1	7.)	
CASE	SQ120F	SQ220F	SQ320F	SQ420F	SQ520F	SQ620F	SQ720F	SQ820F	SQ920F	SQ120A	SQ220A	SQ320A	SQ420A	SQ520A	SQ620A	SQ720A	SQ820A	SQ920A	SQ120B	SQ220B	SQ320B	SQ420B	SQ520B	SQ620B	SQ720B	SQ820B	SQ920B	SQ120C	SQ220C	SQ320C	SQ420C	SQ520C	SQ620C	SQ720C	SQ820C	SQ920C

(2) 各傾斜板における波形勾配 H_{1/3}/L と越波量 q (m³/s/m) との関係

下の図はそれぞれ傾斜板長 1.25m, 1.50m, 1.75m, 2.00m の各越波揚程に対する波形勾配 $H_{1/3}/L$ と単位時間・単位幅当たりの越波量 q $(m^3/s/m)$ の関係である.

図 5-11~5-14 は御前崎の波高と周期に相当する Case1 から Case5 までをまとめた結果を示し、図 5-15~5-18 は Case6 から Case9 の結果をまとめたものである.

どの傾斜板においても越波揚程が8cmから20cmに増加するにしたがい越波量は減少する. また最も越波するR=8cmで比較すると顕著だが、傾斜板長1.25mのときに越波量が減少する傾向がある.

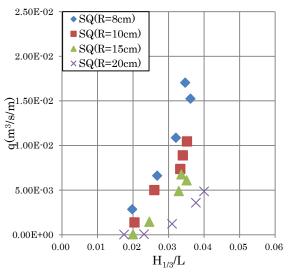


図 5-11 各越波揚程に対する波形勾配と越波量の関係(Case1~5:傾斜板長 1.25m)

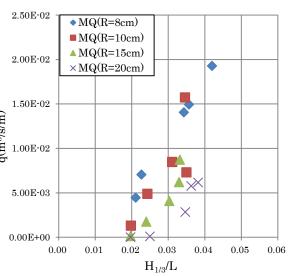


図 5-12 各越波揚程に対する波形勾配と越波量の関係(Case1~5:傾斜板長 1.50m)

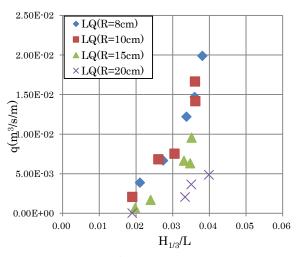


図 5-13 各越波揚程に対する波形勾配と越波 量の関係(Case1~5: 傾斜板長 1.75m)

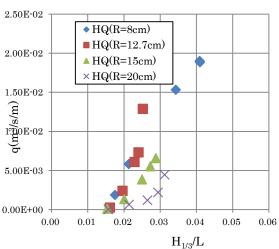


図5-14 各越波揚程に対する波形勾配と越波量の関係(Case1~5:傾斜板長 2.00m)

波高を固定し周期を変えた図 5-15~5-18 の関係から、周期が短く波形勾配が増すと越波量が減少する傾向がある. これは波形勾配が増すほど砕波 (波形が崩れ、運動が乱れにかわること)が発生し易くなるため、それに伴い波パワーが散逸されたことにより遡上出来なかったと推測される.

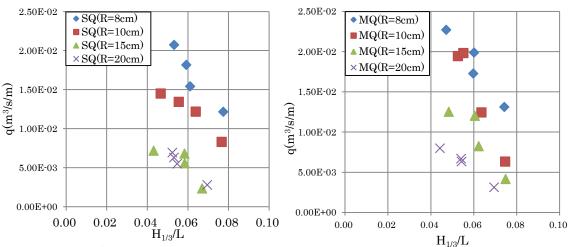


図 5-15 各越波揚程に対する波形勾配と越波量の関係(Case6~9: 傾斜板長 1.25m)

図 5-16 各越波揚程に対する波形勾配と越波量の関係(Case6~9: 傾斜板長 1.50m)

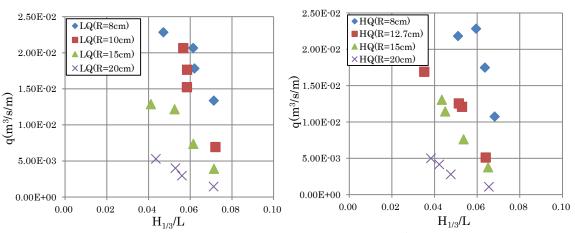


図 5-17 各越波揚程に対する波形勾配と越波 量の関係(Case6~9:傾斜板長 1.75m)

図 5-18 各越波揚程に対する波形勾配と越波量の関係(Case6~9:傾斜板長 2.00m)

5.2.5.2 各越波揚程に対する実験結果および考察

次項以降に示す表 5-8~5-11 は、本実験における各傾斜板長さにおける各越波揚程 8cm、10cm、12.7cm (HQ のみ)、15cm、20cm に対する解析データをまとめた表となる. なお LQ120C は越波しなかった. また前項と同様 HQ (2.00m) は田中らの過去の研究(田中ら、2010)から引用した.

表 5-8 越波揚程 8cm の解析データ

越波量(原型) (m³/s/m)	0.09	0.21	0.34	0.48	0.54	0.38	0.49	0.57	0.65	0.14	0.22	0.44	0.47	0.61	0.41	0.55	0.63	0.72	0.12	0.21	0.39	0.46	0.63	0.42	0.56	0.65	0.72	0.06	0.18	0.48	09:0	09:0	0.34	0.55	0.72	0.69
波エネルギー (kW/m)	2.82	7.70	10.84	16.79	18.72	10.59	11.25	22.02	23.43	1.41	2.23	4.44	4.72	6.09	4.14	5.46	6.28	7.18	2.70	69.7	9.10	13.87	29.59	9.04	13.38	22.88	15.75	2.13	4.57	9.59	16.90	24.69	6.08	15.72	26.61	25.80
D	1.54	1.61	1.61	1.64	1.67	1.26	1.36	1.51	1.56	1.46	1.63	1.58	1.64	1.60	1.24	1.40	1.51	1.53	1.50	1.60	1.56	19'1	1.71	1.26	1.39	1.50	1.53	1.53	1.60	1.56	1.60	1.66	1.20	1.41	1.54	1.59
波長L(原型)(m)	42.84	48.62	48.26	51.42	54.66	27.37	32.47	40.96	44.68	37.71	50.12	45.81	51.32	48.12	26.66	34.57	41.19	42.49	40.47	47.87	44.26	48.62	59.63	27.42	33.98	40.51	42.55	42.40	47.69	44.53	47.66	53.75	24.77	35.21	43.41	47.36
越波量(m³/s/m)	2.8279E-03	6.6038E-03	1.0850E-02	1.5229E-02	1.7032E-02	1.2149E-02	1.5399E-02	1.8163E-02	2.0712E-02	4.4517E-03	7.0455E-03	1.4050E-02	1.4931E-02	1.9260E-02	1.3096E-02	1.7269E-02	1.9865E-02	2.2699E-02	3.8527E-03	6.6502E-03	1.2187E-02	1.4672E-02	1.9877E-02	1.3354E-02	1.7810E-02	2.0642E-02	2.2825E-02	1.8526E-03	5.8002E-03	1.5297E-02	1.8983E-02	1.8827E-02	1.0751E-02	1.7489E-02	2.2842E-02	2.1817E-02
反射率	0.498	0.445	0.405	0.394	0.381	0.288	0.342	0.337	0.374	0.452	0.407	0.349	0.328	0.353	0.257	0.263	0.277	0.328	0.471	0.430	0.395	0.385	0.382	0.287	0.325	0.300	0.351	0.447	0.381	0.232	0.208	0.192	0.229	0.260	0.236	0.206
波形勾配 (H _{1/3} /L)	0.0198	0.0268	0.0321	0.0362	0.0347	0.0775	0.0612	0.0593	0.0533	0.0211	0.0227	0.0343	0.0357	0.0420	0.0743	0.0598	0.0602	0.0472	0.0211	0.0274	0.0338	0.0360	0.0381	0.0714	0.0621	0.0615	0.0472	0.0175	0.0213	0.0343	0.0409	0.0410	0.0683	0.0637	0.0596	0.0511
波数	92	34	20	12	12	20	18	14	10	46	30	15	12	10	21	16	12	8	52	33	17	14	8	21	17	12	8	110	31	11	8	7	24	14	8	6
Tave(s)	1.52	1.64	1.55	1.73	1.64	1.27	1.29	1.43	1.64	1.51	1.58	1.45	1.74	1.87	1.26	1.29	1.52	1.69	1.53	1.71	1.44	1.69	2.29	1.22	1.21	1.54	1.68	1.51	1.74	1.73	1.92	2.31	1.17	1.40	1.58	1.62
Have(cm)	5.01	7.27	9.13	10.99	10.50	14.05	12.56	13.13	13.73	4.92	6.85	8.24	10.54	11.50	12.58	11.96	14.18	11.93	5.18	7.82	8.16	19.61	13.25	12.45	11.68	14.28	11.83	4.48	98.9	8.55	11.28	14.52	10.74	12.61	13.50	12.58
L(cm)	428.4	486.2	482.6	514.2	546.6	273.7	324.7	409.6	446.8	377.1	501.2	458.1	513.2	481.2	266.6	345.7	411.9	424.9	404.7	478.7	442.6	486.2	596.3	274.2	339.8	405.1	425.5	424.0	476.9	445.3	476.6	537.5	247.7	352.1	434.1	473.6
T _{1/3} (s)	1.89	2.08	2.07	2.18	2.29	1.38	1.54	1.82	1.95	1.71	2.14	1.99	2.18	2.07	1.36	1.61	1.83	1.87	1.81	2.06	1.93	2.08	2.47	1.38	1.59	1.81	1.88	1.87	2.05	1.94	2.05	2.26	1.30	1.63	1.90	2.04
H _{1/3} (cm)	8.46	13.02	15.51	18.61	18.99	21.20	19.88	24.31	23.82	7.95	11.37	15.72	18.33	20.20	19.80	20.67	24.81	20.04	8.56	13.1	14.95	17.48	22.71	19.57	21.11	24.91	20.08	7.40	10.14	15.29	19.50	22.01	16.92	22.42	25.86	24.18
解析データ数	2350	1150	680	480	450	550	490	400	370	1410	980	480	480	390	550	430	400	320	1621	1171	561	501	391	551	441	401	321	3350	1120	420	350	360	590	410	310	330
計算範囲	350-2700	250-1400	420-1100	220-700	059-007	058-008	310-800	250-650	230-600	380-1790	230-1210	220-700	220-700	210-600	330-880	320-750	240-640	210-530	380-2000	220-1390	220-780	002-007	210-600	088-088	310-750	240-640	210-530	150-3500	150-1270	160-580	150-500	140-500	210-800	50-460	100-410	150-480
データ総数	8192	5786	3664	2718	1654	3052	1598	1562	1576	5016	2006	1570	1452	1150	1568	1222	1072	1138	2000	3090	2780	2848	1228	1568	1652	1230	1256	4400	1350	920	630	029	1050	510	460	009
法先水 深(cm)					34.8									43.3									51.9									60.4				
初期水 深(cm)					17.0									17.0									17.0					16.8	16.5	17.0	17.3	16.4	16.2	16.3	16.0	15.8
水潔(cm)					70									0/									70							I		70				
θ(°)					20									8									8									8				
R(cm)					∞									∞									∞									∞				
CASE	SQ120F	SQ220F	SQ320F	SQ420F	SQ520F	SQ620F	SQ720F	SQ820F	SQ920F	MQ120F	MQ220F	MQ320F	MQ420F	MQ520F	MQ620F	MQ720F	MQ820F	MQ920F	LQ120F	LQ220F	LQ320F	LQ420F	LQ520F	LQ620F	LQ720F	LQ820F	LQ920F	HQ120F	HQ220F	HQ320F	HQ420F	HQ520F	HQ620F	HQ720F	HQ820F	HQ920F

表 5-9 越波揚程 10cm, 12.7cm(HQ のみ)の解析データ

越波量(原型) (m ³ /s/m)	0.04	0.16	0.23	0.28	0.33	0.26	0.38	0.42	0.46	0.04	0.15	0.23	0.27	0.50	0.20	0.39	0.61	0.63	90:00	0.22	0.24	0.53	0.45	0.22	0.48	0.56	0.65	0.01	80.0	0.19	0.23	0.41	0.16	0.38	0.40	0.53
波エネルギー (kW/m)	2.40	6.20	10.27	18.77	37.16	8.47	11.54	13.10	18.38	0.41	1.54	2.30	2.68	4.97	2.00	3.93	6.14	6.26	2.20	6.05	10.31	16.29	11.69	10.01	12.70	16.88	22.40	1.42	3.19	5.13	6.56	15.98	4.68	10.57	13.09	12.61
D	1.49	1.58	1.58	1.68	1.76	1.22	1.35	1.43	1.56	121	1.62	1.54	1.71	1.71	1.23	1.36	1.50	1.54	1.50	1.57	191	1.63	1.57	1.25	1.40	1.46	1.53	1.48	1.56	65.1	1.61	1.74	1.18	1.40	1.46	1.59
波長L(原型)(m)	39.82	46.10	46.24	55.26	67.33	25.56	31.77	36.18	44.93	41.05	49.36	43.36	59.22	59.85	25.83	32.57	40.45	42.80	40.53	45.64	48.95	50.93	45.75	27.10	34.67	37.90	42.30	39.12	44.53	46.78	49.09	63.26	23.67	34.70	37.74	47.35
越波量(m³/s/m)	1.3609E-03	4.9825E-03	7.3612E-03	8.8810E-03	1.0451E-02	8.2914E-03	1.2159E-02	1.3411E-02	1.4479E-02	1.2990E-03	4.8725E-03	7.2832E-03	8.4640E-03	1.5719E-02	6.3250E-03	1.2429E-02	1.9423E-02	1.9803E-02	2.0448E-03	6.8108E-03	7.5148E-03	1.6637E-02	1.4141E-02	6.9046E-03	1.5209E-02	1.7628E-02	2.0618E-02	2.3565E-04	2.3909E-03	6.0712E-03	7.2923E-03	1.2869E-02	5.0959E-03	1.2085E-02	1.2546E-02	1.6918E-02
反射率	0.496	0.453	0.403	0.404	0.403	0.302	0.342	0.375	0.379	0.485	0.429	0.369	0.375	0.353	0.272	0.308	0.316	0.347	0.459	0.416	0.362	0.366	0.372	0.287	0.319	0.289	0.346	0.427	0.348	0.288	0.27	0.27	0.254	0.261	0.233	0.191
波形勾配 (H _{1/3} /L)	0.0204	0.0260	0.0333	0.0340	0.0352	0.0767	0.0639	0.0556	0.0467	0.0198	0.0243	0.0350	0.0311	0.0346	0.0747	0.0636	0.0527	0.0552	0.0190	0.0261	0.0305	0.0361	0.0362	0.0722	0.0585	0.0586	0.0567	0.0161	0.0196	0.0229	0.0240	0.0252	0.0641	0.0530	0.0515	0.0353
波数	161	43	31	24	18	35	22	16	15	174	42	32	22	11	4	21	12	10	108	33	56	12	14	27	17	13	10	195	08	32	24	11	52	18	19	6
Tave(s)	1.42	1.58	1.55	1.77	2.12	1.18	1.29	1.32	1.52	1.43	1.60	1.41	1.84	1.79	1.22	1.28	1.41	1.50	1.46	1.56	1.60	1.57	1.74	1.22	1.33	1.44	1.53	1.41	1.55	1.55	1.65	2.07	1.13	1.34	1.34	1.93
Have(cm)	4.73	6.83	9.18	11.21	13.42	12.34	12.75	11.71	11.81	4.78	96'9	8.55	10.86	11.53	12.06	12.43	11.45	12.79	4.55	6.59	8.83	9.49	9.61	12.74	12.59	12.41	13.44	3.86	5.27	6.36	7.08	10.43	10.12	10.85	10.59	11.55
L(cm)	398.2	461.0	462.4	552.6	673.3	255.6	317.7	361.8	449.3	410.5	493.6	433.6	592.2	598.5	258.3	325.7	404.5	428.0	405.3	456.4	5.684	5.603	457.5	271.0	346.7	379.0	423.0	391.2	445.3	8.794	6'065	632.6	236.7	347.0	377.4	473.5
$T_{1/3}(s)$	1.8	2.01	2.02	2.34	2.77	1.33	1.53	1.67	1.97	1.84	2.13	1.92	2.48	2.50	1.33	1.55	1.82	1.9	1.82	2.00	2.11	2.18	2.00	1.38	1.62	1.73	1.88	1.79	1.98	2.07	2.15	2.67	1.27	1.64	1.75	2.09
H _{1/3} (cm)	8.11	12	15.4	18.78	23.68	19.61	20.3	20.1	20.97	8.11	11.99	15.18	18.43	20.71	19.30	20.72	21.3	23.63	7.70	11.9	14.94	18.36	16.54	20.65	20.29	22.19	23.97	6.29	8.73	10.73	11.80	15.93	15.16	18.39	19.45	16.70
解析データ数	4610	1380	066	890	800	850	009	540	500	4040	1410	066	006	440	1100	550	350	350	3211	1061	981	421	511	671	481	421	351	5500	2500	1030	930	480	1200	700	500	390
計算範囲	390-5000	320-1700	210-1200	210-1100	190-990	350-1200	300-900	310-850	200-700	360-5400	190-1600	160-1150	150-1050	160-600	300-1400	280-830	200-550	180-530	390-3600	350-1410	220-1200	230-650	210-720	330-1000	320-800	310-730	220-570	300-5800	200-2700	220-1250	170-1100	170-650	200-1400	150-850	220-720	240-630
データ総数	8192	2600	3018	3014	2588	3012	2350	2006	2012	8192	8192	2818	3002	1470	5060	2074	1970	1772	8192	2088	2266	1972	1592	2562	1916	1412	1222	6200	3100	1300	1150	700	1450	900	950	680
法先术 深(cm)					32.8									41.3									49.9									55.7				
初期水 深(cm)					17.0									17.0									17.0					16.1	15.5	17.0	16.3	15.7	16.4	15.8	16.3	16.2
水深(cm)					89									89									8									99				
θ(°)					20									20									20									20				
R(cm)					10									10									10									12.7				
CASE	SQ120A	SQ220A	SQ320A	SQ420A	SQ520A	SQ620A	SQ720A	SQ820A	SQ920A	MQ120A	MQ220A	MQ320A	MQ420A	MQ520A	MQ620A	MQ720A	MQ820A	MQ920A	LQ120A	LQ220A	LQ320A	LQ420A	LQ520A	LQ620A	LQ720A	LQ820A	LQ920A	HQ120A	HQ220A	HQ320A	HQ420A	HQ520A	HQ620A	HQ720A	HQ820A	HQ920A

表 5-10 越波揚程 15cm の解析データ

越波量(原型) (m ³ /s/m)	0.00	0.05	0.15	0.19	0.21	0.07	0.18	0.21	0.23	0.00	90.0	0.13	0.20	0.28	0.13	0.26	0.38	0.40	0.02	0.05	0.20	0.21	0.30	0.12	0.23	0.38	0.41	0.00	0.04	0.12	0.17	0.21	0.12	0.24	0.36	0.41
波エネルギー (kW/m)	2.41	6.28	12.12	14.02	26.89	5.78	12.88	14.36	16.40	0.04	0.55	1.28	1.96	2.75	1.31	2.60	3.80	3.95	2.10	5.57	11.24	15.35	27.68	6.99	11.36	13.04	11.76	1.47	3.60	6.94	9.36	11.61	4.87	7.23	12.17	14.75
D	1.50	1.60	1.61	1.62	1.73	1.20	1.41	1.43	1.57	1.49	1.60	1.63	1.61	1.69	1.22	1.36	1.36	1.52	1.48	1.59	1.58	1.65	1.72	1.21	1.36	1.45	1.52	1.50	1.57	1971	1.63	1.65	1.18	1.32	1.50	1.55
波長L(原型)(m)	40.20	47.68	48.89	49.18	62.10	24.64	34.73	35.96	45.30	39.71	47.45	50.21	49.01	56.96	25.29	32.29	32.18	41.58	38.85	46.65	46.08	52.49	60.91	25.11	32.29	37.21	42.04	40.57	45.44	48.80	50.74	52.43	23.72	30.49	40.13	43.66
越波量(m ³ /s/m)	3.8571E-05	1.4351E-03	4.8859E-03	6.0826E-03	6.7459E-03	2.3285E-03	5.5591E-03	6.7926E-03	7.1583E-03	1.2749E-04	1.7393E-03	4.0616E-03	6.2005E-03	8.7120E-03	4.1393E-03	8.2317E-03	1.2007E-02	1.2496E-02	6.5692E-04	1.6704E-03	6.2886E-03	6.6223E-03	9.5278E-03	3.8993E-03	7.3630E-03	1.2160E-02	1.2853E-02	1.0192E-04	1.3301E-03	3.8457E-03	5.5273E-03	6.5699E-03	3.7667E-03	7.6053E-03	1.1452E-02	1.3065E-02
反射率	0.581	0.491	0.411	0.405	0.404	0.347	0.338	0.352	0.383	0.493	0.450	0.398	0.394	0.382	0.313	0.338	0.329	0.365	0.507	0.465	0.405	0.412	0.424	0.312	0.330	0.348	0.369	0.452	0.371	0.328	0.298	0.299	0.248	0.248	0.256	0.266
波形勾配 (H _{1/3} /L)	0.0200	0.0246	0.0329	0.0351	0.0336	0.0671	0.0585	0.0584	0.0432	0.0197	0.0240	0.0303	0.0330	0.0332	0.0749	0.0624	0.0606	0.0484	0.0198	0.0240	0.0348	0.0331	0.0352	0.0715	0.0616	0.0526	0.0412	0.0154	0.0201	0.0250	0.0273	0.0288	0.0652	0.0537	0.0451	0.0435
波数	593	136	40	32	56	115	41	38	31	8/2	124	46	31	24	99	29	16	15	256	129	33	56	61	89	35	61	91	622	138	45	32	28	72	29	17	14
Tave(s)	1.46	1.57	1.61	1.68	2.00	1.17	1.34	1.37	1.50	1.40	1.54	1.58	1.62	1.70	1.21	1.35	1.29	1.40	1.38	1.5	1.60	1.7	2.06	1.2	1.34	1.3	1.44	1.40	1.61	1.73	1.86	1.78	1.16	1.37	1.53	1.79
Have(cm)	4.95	66'9	9.50	10.09	12.12	98.6	12.03	12.24	11.48	4.70	69.9	8.79	9.19	10.44	11.90	12.68	11.43	10.81	4.52	95'9	9.26	10.11	12.30	11.23	12.47	11.26	10.08	3.84	5.61	7.31	88.88	8.69	10.28	10.52	10.62	12.03
L(cm)	402.0	476.8	488.9	491.8	621.0	246.4	347.3	359.6	453.0	397.1	474.5	502.1	490.1	569.6	252.9	322.9	321.8	415.8	388.5	466.5	460.8	524.9	609.1	251.1	322.9	372.1	420.4	405.7	454.4	488.0	507.4	524.3	237.2	304.9	401.3	436.6
T _{1/3} (s)	1.83	2.10	2.14	2.15	2.63	1.30	1.64	1.68	2.01	1.81	2.09	2.19	2.15	2.44	1.32	1.56	1.55	1.88	1.78	2.06	2.04	2.27	2.58	1.32	1.56	1.73	1.90	1.84	2.02	2.14	2.21	2.27	1.27	1.50	1.83	1.95
H _{1/3} (cm)	8.05	11.74	16.09	17.25	20.87	16.52	20.3	21.01	19.58	7.81	11.40	15.22	16.19	18.9	18.95	20.16	19.51	20.10	7.68	11.2	16.04	17.38	21.43	17.95	19.87	19.58	17.3	6.25	9.15	12.18	13.83	15.12	15.46	16.38	18.10	18.98
解析データ数	7742	4290	1340	1100	1080	2710	1140	1060	950	06/2	3820	1600	1050	850	1620	800	520	480	7101	3921	1101	1041	791	1651	971	521	481	7850	4500	1600	1250	1050	1700	006	550	500
計算範囲	450-8192	210-4500	250-1590	200-1300	200-1280	250-2960	260-1400	310-1370	250-1200	400-8190	280-4100	250-1850	150-1200	150-1000	380-2000	300-1100	300-820	210-690	400-7500	280-4200	350-1450	210-1250	210-1000	350-2000	310-1280	330-850	320-800	150-8000	250-4750	150-1750	150-1400	150-1200	150-1850	100-1000	150-700	150-650
データ総数	8192	8192	8192	2840	2224	8192	5368	3222	2508	8192	8192	8192	3956	3110	8192	6338	3162	2522	8192	8192	4156	1900	1820	2908	2008	1506	1572	8100	4800	2250	1450	1250	1900	1230	1080	960
法先水 深(cm)					27.8									36.3									6.44									53.4				
初期水 深(cm)					17.0									17.0									17.0					18.6	15.6	15.6	16.2	16.1	16.0	15.2	15.3	15.4
水深(cm)					92									65									92						<u> </u>			99		!		
θ(°)					20									70									20									21				
R(cm)					15									15									15									15				
CASE	SQ120B	SQ220B	SQ320B	SQ420B	SQ520B	SQ620B	SQ720B	SQ820B	SQ920B	MQ120B	MQ220B	MQ320B	MQ420B	MQ520B	MQ620B	MQ720B	MQ820B	MQ920B	LQ120B	LQ220B	LQ320B	LQ420B	LQ520B	LQ620B	LQ720B	LQ820B	LQ920B	HQ120B	HQ220B	HQ320B	HQ420B	HQ520B	HQ620B	HQ720B	HQ820B	HQ920B

表 5-11 越波揚程 20cm の解析データ

越波量(原型) (m ³ /s/m)	0.00	0.00	0.04	0.11	0.15	0.09	0.17	0.20	0.22	0.00	0.00	0.09	0.18	0.19	0.10	0.20	0.21	0.25	0.00	0.00	90:0	0.11	0.15	0.05	0.09	0.13	0.17	0.00	0.02	0.04	0.07	0.14	0.03	0.09	0.13	0.16
波エネルギー (kW/m)	2.32	6.14	10.86	22.99	29.58	6.46	14.24	17.29	22.70	0.00	0.03	0.89	1.82	1.95	0.99	2.00	2.11	2.52	0.00	2.81	10.35	18.04	27.66	6.81	11.57	14.36	19.69	1.55	3.93	9.47	10.70	18.34	4.51	8.14	10.17	13.44
D	1.54	1.62	1.61	1.67	1.69	1.21	1.45	1.50	1.56	1.51	1.60	1.60	1.65	1.71	1.21	1.46	1.49	1.57		1.55	1.58	1.66	1.68	1.21	1.40	1.47	1.60	1.51	1.56	1.59	1.63	1.70	1.17	1.39	1.49	1.58
波長山(原型)(m)	43.16	49.26	48.99	54.99	27.30	24.94	37.31	40.38	44.47	41.11	69.74	48.15	52.26	59.54	25.16	19.18	39.75	45.17	00.0	43.53	46.10	53.20	56.22	24.97	34.43	38.21	47.74	40.82	44.97	47.25	50.51	57.60	23.01	34.15	39.45	45.84
越波量(m³/s/m)	2.5221E-07	4.1504E-05	1.2051E-03	3.5641E-03	4.8495E-03	2.7716E-03	5.4821E-03	6.2867E-03	6.9238E-03	5.9235E-06	8.4285E-05	2.8275E-03	5.7539E-03	6.1622E-03	3.1194E-03	6.3221E-03	6.6669E-03	7.9714E-03		1.4878E-05	2.0368E-03	3.6243E-03	4.8503E-03	1.4398E-03	2.9515E-03	3.9973E-03	5.2660E-03	1.1076E-05	6.1861E-04	1.1885E-03	2.1800E-03	4.4309E-03	1.0703E-03	2.7963E-03	4.1682E-03	4.9853E-03
反射率	0.465	0.397	0.389	0.419	0.419	0.379	0.373	0.379	0.400	0.516	0.449	0.424	0.395	0.384	0.330	0.355	0.347	0.378		0.470	0.415	0.417	0.414	0.324	0.340	0.347	0.385	0.442	0.400	0.345	0.311	0.295	0.195	0.246	0.260	0.273
波形勾配 (H _{1/3} /L)	0.0175	0.0231	0.0310	0.0377	0.0400	9690.0	0.0548	0.0532	0.0524	0.0197	0.0250	0.0347	0.0363	0.0382	0.0695	0.0544	0.0542	0.0443		0.0190	0.0334	0.0351	0.0399	0.0713	0.0561	0.0530	0.0436	0.0157	0.0214	0.0265	0.0294	0.0312	0.0656	0.0477	0.0423	0.0384
波数	265	230	156	49	36	%	36	36	33	254	234	72	26	30	83	32	35	24		244	26	25	33	193	88	19	41	283	251	184	6	32	285	06	\$	41
Tave(s)	1.43	1.64	1.63	1.77	1.84	1.17	1.45	1.44	1.57	1.49	1.65	1.57	1.70	1.90	1.21	1.36	1.46	1.6		1.57	1.62	1.73	1.92	1.19	1.31	1.40	1.58	1.39	1.57	1.64	1.74	2.11	1.15	1.40	1.56	1.73
Have(cm)	4.58	96.9	90.6	12.18	13.09	10.32	12.65	12.37	12.96	4.98	7.49	9.57	10.58	12.30	10.61	12.31	12.41	11.54		5.36	9.29	11.14	13.16	10.77	11.35	12.11	12.02	3.95	5.86	7.53	8.80	11.01	10.09	10.18	10.37	10.92
L(cm)	431.6	492.6	489.9	549.9	573.0	249.4	373.1	403.8	444.7	411.1	476.9	481.5	522.6	595.4	251.6	376.7	397.5	451.7		435.3	461.0	532.0	562.2	249.7	344.3	382.1	477.4	408.2	449.7	472.5	505.1	576.0	230.1	341.5	394.5	458.4
T _{1/3} (s)	1.94	2.16	2.15	2.36	2.45	1.31	1.73	1.84	1.98	1.86	2.10	2.12	2.26	2.53	1.32	1.74	1.82	2.01		1.95	2.04	2.30	2.41	1.31	1.63	1.76	2.10	1.85	2.00	2.80	2.20	2.46	1.25	1.62	1.81	2.03
H _{1/3} (cm)	7.56	11.39	15.19	20.71	22.92	17.35	20.45	21.49	23.29	8.08	11.91	16.73	18.99	22.73	17.49	20.51	21.54	20.01		8.29	15.39	18.68	22.41	17.81	19.33	20.26	20.79	6.40	9.62	12.51	14.83	18.00	15.10	16.30	16.70	17.60
解析データ数	7590	7610	5120	1800	1450	2270	1150	1050	1050	7590	0622	2280	920	1180	2020	1040	1070	810		0692	3200	1840	1480	4600	2340	1750	1350	7050	7350	6100	3250	1450	0099	2550	1700	1500
計算範囲	0618-009	580-8190	280-5400	200-2000	200-1650	330-2600	350-1500	350-1400	350-1400	0618-009	400-8190	400-2680	380-1300	200-1380	380-2400	340-1380	310-1380	350-1160		500-8190	300-3500	210-2050	200-1680	300-4900	300-2640	350-2100	300-1650	0008-05	20-8000	50-6150	20-3300	100-1550	100-6700	50-2600	100-1800	50-1550
データ総数	8192	8192	8192	5498	3296	6002	3632	3286	3280	8192	8192	8192	8192	8192	8192	2604	2068	2394	越波なし	8192	8192	8192	8192	8192	8192	8192	8192	8100	8100	6200	3350	1600	0089	2650	1850	1600
法先水 深(cm)					22.8									31.3									39.9									48.4				
初期水 深(cm)					17.0									17.0									17.0					18.0	17.0	16.7	15.0	16.0	14.9	15.7	16.8	16.8
水深(cm)					65									65									65						1			92				
θ(°)					20									20									20									20				
R(cm)					20									50									20									20				
CASE	SQ120C	SQ220C	SQ320C	SQ420C	SQ520C	SQ620C	SQ720C	SQ820C	SQ920C	MQ120C	MQ220C	MQ320C	MQ420C	MQ520C	MQ620C	MQ720C	MQ820C	MQ920C	LQ120C	LQ220C	LQ320C	LQ420C	LQ520C	LQ620C	LQ720C	LQ820C	LQ920C	HQ120C	HQ220C	HQ320C	HQ420C	HQ520C	HQ620C	HQ720C	HQ820C	HQ920C

(1) 各傾斜板長における波形勾配 $H_{1/3}/L$ と越波量 q $(m^3/s/m)$ の関係

図 5-19~5-22 はそれぞれ揚程が R=8.0cm,約 10.0cm,15.0cm,20.0cm のときの傾斜板長が 1.25m,1.50m,1.75m,2.00m の各越波揚程に対する波形勾配 $H_{1/3}$ /L と単位時間・単位幅当たりの越波量 q (m^3 /s/m) の関係である.この図は,御前崎の波高と周期に相当する Case1から Case5までと,補間する波条件である Case6から Case9 の実験結果をまとめたものである.

これらの図から、越波揚程 8cm のときの越波量は傾斜板の長さによる差異はほとんど見受けられない。また、越波揚程 10.0cm、15.0cm の場合、SQ(1.25m)のみ越波量が減少した。これは SQ(1.25m)の法先水深が浅く、他の傾斜板に比べ波のエネルギーを得られなかったためと考えられる。MQ(1.50m)の傾斜板がどの越波揚程においても、ほぼ最大越波量を得られることが分かる。したがって傾斜板長 1.50m 以上あれば十分な越波量が得られることが分かった。

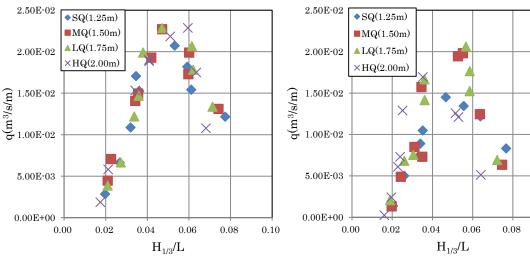


図 5-19 各傾斜板長に対する波形勾配と越波 量の関係(R=8.0cm)

図 5-20 各傾斜板長に対する波形勾配と越波量の関係(R=約 10.0cm)

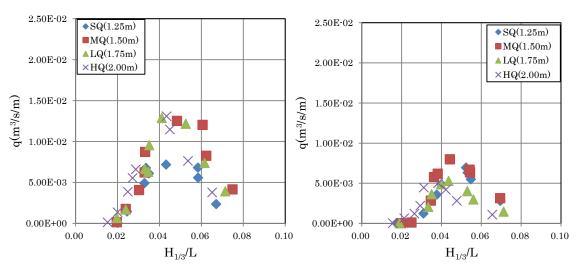


図 5-21 各傾斜板長に対する波形勾配と越波 量の関係(R=15.0cm)

図 5-22 各傾斜板長に対する波形勾配と越波 量の関係(R=20.0cm)

5.2.6 傾斜板の長さによる波パワーと越波量の関係

不規則波の場合,打上げ高と波パワーは比例関係であることが本論文の第 4 章で示されていることから,越波量も波パワーとの関係性を追求することができると考えられる.下図 $5-23\sim5-30$ は越波量と波パワーの関係を,傾斜板長さ 1.25m, 1.5m, 1.75m, 2.0m 0.49 イプ,越波揚程 R=8cm, 10cm, 15cm, 20cm 0.49 4 タイプでまとめた結果となる.なお,以下のグラフに表示された値は原型とした.そのため,越波揚程,越波量,波パワーは実海域を想定した値となる.

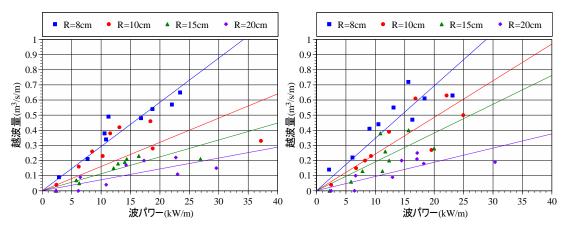


図 5-23 各越波揚程越波量と波パワーの関 係(傾斜板 12.5m) (原型)

図 5-24 各越波揚程越波量と波パワーの 関係(傾斜板 15.0m) (原型)

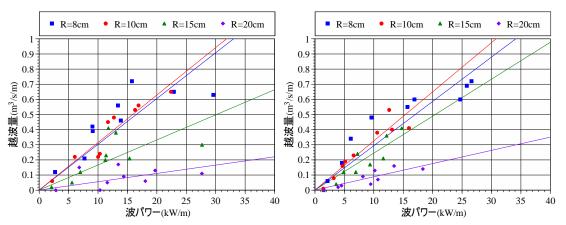


図 5-25 各越波揚程越波量と波パワーの関係(傾斜板 17.5m) (原型)

図 5-26 各越波揚程越波量と波パワーの 関係(傾斜板 20.0m) (原型)

R=8cm (0.8m) の場合

傾斜板の長さが 12.5, 15.0m, 17.5m, 20.0m のどの場合も比較的同様な越波量が見込めることがわかる. 特に, 17.5m と 20.0m ではほとんど同じ傾きを持っていることがわかるためこの 2 タイプは大きく差がないことが示唆された.

R=10cm (1.0m) の場合

傾斜板 12.5m の場合, ほかの 3 タイプと比較すると明らかに越波量が少ない傾向が見て取れる. また, 15.0m の場合, 17.5m, 20.0m と比較すると若干傾きが緩やかである. 17.5m と 20.0m の場合, R=0.8m よりも越波量が多く見込める結果が得られた.

R=15cm (1.5m) の場合

傾斜板の長さが 12.5m<15m<17.5m<20.0m という結果が明らかとなった. 特に, 20.0m は他のタイプと比較すると大幅に越波量が増えていることがわかった.

R=20cm (2.0m) の場合

どの傾斜板長さに対しても同様の結果が得られた. 波力発電を開発するにあたっては越波揚程 R=20cm (実モデル 2.0m) では高すぎることが考えられる.

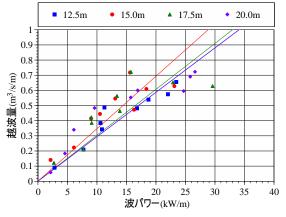


図 5-27 各越波揚程越波量と波パワーの関係(R=0.8m) (原型)

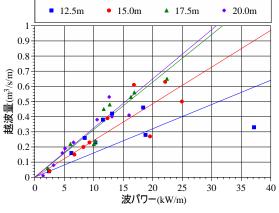


図 5-28 各越波揚程越波量と波パワーの関係(R=1.0m) (原型)

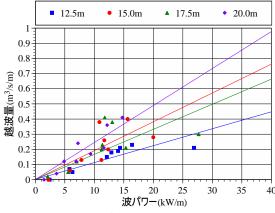


図 5-29 各越波揚程越波量と波パワーの関係(R=1.5m) (原型)

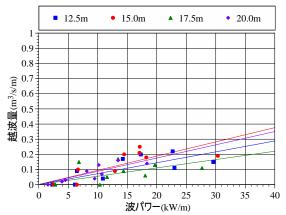


図 5-30 各越波揚程越波量と波パワーの関 係(R=2.0m) (原型)

5.2.7 まとめ

本研究は,越波式波力発電装置開発に向けて,最適な傾斜板の長さを見出すために,各傾斜板の長さ(1.25m, 1.5m, 1.75m, 2.0m)における越波量特性を実験から得た.主要な考察結果を以下に示す.

波高と越波量,越波揚程の関係から,越波揚程が低いほど越波量が多く波高が大きいほど ど越波量も増加する傾向がある.

波形勾配と越波量、越波揚程の関係から、越波揚程 8cm のときの越波量は傾斜板の長さによる差異はほとんど見受けられないが、SQ (1.25m) だけ越波量が減少する傾向を得た。また、越波揚程 10.0cm, 15.0cm の場合、SQ (1.25m) のみ越波量が減少した。これは SQ (1.25m) の法先水深が浅く、他の傾斜板に比べ波のエネルギーを得られなかったためと考えられる。 MQ (1.50m) の傾斜板がどの越波揚程においてもほぼ最大越波量を得られることが分かる。したがって傾斜板長 1.50m 以上あれば効率良く越波量が得られることが分かった。また、周期が短く波形勾配が大きくなるにしたがって越波量は減少する。これは、波形勾配が大きくなる (H/L=0.06 を超える) と砕波が発生しやすくなりエネルギーが散逸したためだと考えられる。

波パワーと越波量,越波揚程を考慮すると,越波揚程に関わらず傾斜板の長さは12.5m(模型スケール:1.25m)では越波量が少ない。また,20.0m(模型スケール:2.0m)が最も効率良く越波量を得られることが分かった。しかしながら,17.5m(模型スケール:1.75m)と15.0m(模型スケール:1.5m)であっても越波量に大きな差がないことから,設置場所の水深や,日本近海の潮位変動を鑑み,現実的な発電装置の越波揚程を考慮すると十分に機能を果たす長さであると考えられる。これらの結果から,15m(模型スケール:1.5m)以上必要であることが判明した。

5.3 単水槽を使った越波量特性

5.3.1 実験目的

本研究室で先に行った 5.2 項では、傾斜板の長さを特定するために実験を行ったため写真 5-6 に示した貯水槽により越波量を算出していた。しかし、この貯水槽では最大貯水量が 1.6m³であり高波浪の条件ではすぐに満水になってしまうため、より正確に越波量を把握するためには大きな貯水タンクが必要となる.

そのため本項では、貯水タンクを使用し波高が大きい条件でも十分な収録データを得られるシステムを構築し、より正確な越波量を算出することを目的とし実験を行った. さらに、波浪条件を 5.2 項で使用した条件に加え、新たに我が国沿岸においてどの地点の波にも対応すべく幅広い波形勾配と越波量の傾向を掴むために波浪条件を付け加え、下記に示すように 2 つの波浪条件に分けて実験を行った.

- ①静岡県御前崎の波を想定した波浪条件
- ②我が国沿岸の波条件を考慮した波浪条件

5.3.2 実験施設および装置

(1) 実験水槽

実験は東海大学海洋学部臨海実験場第一水理実験棟平面水槽を用いて行なった. 第5章 5.2項(1)を参照.

- (2) 使用器具
- 造波機

第5章5.2項(2)を参照.

- · 波力発電用貯水槽
 - 第5章5.2項(3)を参照.
- 容量式波高計

第5章5.2項(4)を参照.

・データ収録器

第5章5.2項(5)を参照.

- ・クレーン, 導波板, 消波ボックス, 消波材, 排水用ポンプ, 収録用 PC 第5章5.2項(6)を参照.
- (3) 送水用ポンプ,ホース,インバータ起動盤

本実験で使用した越波した水を貯水タンクへ送るホース,水中ポンプ,および水中ポンプの出力を制御するインバータ起動盤の写真および仕様を以下に記す.

写真 5-20 送水用ホース

写真 5-21 インバータ起動盤(11kW,200V)

写真 5-22 水中ポンプ

企業名: AKTIO

商品コード: CA107542

種類:普通揚程 口径:100mm 出力:7.5kW

電圧:三相 200V 起動方法:直入 揚程:12m

揚水量: 2m³/min 最大高: 860mm 最大径: 370mm

運転可能水位:210mm

質量:82kg

(4) 貯水タンク

本実験で使用した貯水タンクの写真と仕様を下に記す.

写真 5-23 貯水タンク

企業名:AKTIO

商品コード: ZZE03000

種類:水タンク

容量:3m³

寸法:全長(内寸)2480mm(2200)

全幅(内寸)1300mm(1200)

全高(内寸)1206mm(1200)

質量:510kg

(5) 傾斜板

本実験で使用した傾斜板は横幅 2.0m, 縦幅 2.0m のコンパネを使用した.

写真 5-24 傾斜板

5.3.3 実験方法および実験条件

実験は前項と同じく写真 5-2 に示す平面水槽を使用し、図 5-2 に示すように造波機から 9.7m の中央断面に設置した. また、本実験では写真 5-24 に示した貯水タンクの水位変 化を観測するため貯水タンク内に波高計をもう一つ追加した. なお、模型縮尺を 1/10 とし実験条件は Froude の相似則から決定した.

以下に実験方法と実験条件を示す.

- ・実験水深は、70cm と固定して実験を行った.
- ・実験波浪は、Bretschneider-光易型を目標スペクトルとする不規則波を用いた.
- ・波浪条件は5.2 項と同じく,静岡県御前崎の波を目標とした条件に加え,波形勾配と越波量の傾向を掴むための条件として決定した(表5-12). 更に,新たに全国どの地点の波にも対応すべく幅広い波形勾配と越波量の傾向を掴むため,表5-13に示す波高5.0~23.0cm,周期1.26~2.53sを組み合わせた波浪条件を設定した.

表 5-12 波浪条件(御前崎)

表 5-13 波浪条件(我が国沿岸)

	実活	 毎域	模型実験	(λ =1/10)
実験No.	H _{1/3} (m)	T _{1/3} (s)	H _{1/3} (cm)	T _{1/3} (s)
Case1	0.50	6.01	5.0	1.9
Case2	0.75	6.64	7.5	2.1
Case3	1.00	6.96	10.0	2.2
Case4	1.25	7.59	12.5	2.4
Case5	1.65	8.22	16.5	2.6
Case6	1.65	3.79	16.5	1.2
Case7	1.65	4.90	16.5	1.6
Case8	1.65	5.69	16.5	1.8
Case9	1.65	6.64	17.0	2.1

	実海域	模型実験λ =1/10
	0.5m	5.0cm
	0.7m	7.0cm
	0.9m	9.0cm
	1.1m	11.0cm
ш	1.3m	13.0cm
H _{1/3}	1.5m	15.0cm
	1.7m	17.0cm
	1.9m	19.0cm
	2.1 m	21.0cm
	2.3m	23.0cm
	4.0s	1.26s
T _{1/3}	6.0s	1.90s
	8.0s	2.53s

- ・本実験では、120 秒以内に越波した水が貯水槽を満水にする場合は貯水タンク内の水位変 化により越波量を算出し、満水にならない場合は貯水槽内の水位変化により越波量を算出 した.
- ・写真 5-24 に示した傾斜板(横幅 2.0m, 縦幅 2.0m) を使用し、傾斜板角度 (θ) は 20°で 固定した. 越波揚程 (R) は御前崎を考慮した実験条件では 8cm, 10cm, 15cm, 20cm と し、我が国沿岸を考慮した実験条件では 8cm、15cm とした.
- ・収録データ仕様を表 5-14 に示す. 計測時間は 2400 データ数取得か、貯水タンクが満水状 態になるまでとした. 表 5-14 収録データ仕様

・ファイルネームは図 5-31, 5-32 の通りとする.

1) 静岡県御前崎

i:越波量Q

ii:造波ケース番号

iii: 傾斜板の角度(20°固定)

iv: 越波揚程の条件 F (R=8cm), A (R=10cm),

B (R=15cm), C (R=20cm), 以上の条件を合わせ て36ケースを行い、貯水槽内または貯水タンクの

収録項目 仕様 収録データ数 2400 サンプリング周波数 20Hz

^	
	Ť
iii	iv
	iii

0

1

iii

図 5-32 ファイルネーム(我が国沿岸)

0

1

ii

図 5-31 ファイルネーム(御前崎)

20 F

1 1

iv v

水位変化をもとに単位時間・単位幅当たりの越波量を算出した.

2) 我が国沿岸

i:越波量 Q

ii:波高階級 0~9 (表 5-15 に表示)

ⅲ:周期階級 0~2 (表 5-15 に表示)

iv:傾斜板の角度(20°固定)

V:越波揚程の条件 F (R=8cm), B (R=15cm), 以上の

条件を合わせて30ケースを行い、貯水槽内また

8.0s

は貯水タンクの水位変化をもとに単位時間・単位幅当たりの越波量を算出した.

模型実験λ =1/10 波高・周期階級 実海域 0.5m 5.0cm **(0**) 0.7m 7.0cm 1 2 0.9m 9.0cm 1.1m 11.0cm 13.0cm **4**) 1.<u>3m</u> $H_{1/3}$ 1.5m 15.0cm (5) 17.0cm **(6)** 1.7m 1.9m 19.0cm 7 21.0cm 2.1m (8) 2.3m 23.0cm 9 (1) 4.0s 1.26s 1.90s 2 6.0s $T_{1/3}$ (3)

表 5-15 波高階級, 周期階級表(我が国沿岸)

5.3.4 解析方法

5.2 項と同様にして沖波波高,周期,波長,反射率を求め,貯水槽または貯水タンクによ

2.53s

り水位変化を求め、底面積を乗じて越波量とした。また時系列から貯水槽および貯水タンクが満水になる解析範囲を求めて単位時間・単位幅当たりの越波量を算定した。(田中ら、2014) 本実験でも越波量が多い実験ケースでは貯水タンクが越波した波により満水になるケースがあり、その場合だけデータ数が少なくなる。よって各実験ケースによってデータ数が異なる。従って、越波量を解析した範囲のデータで波の諸量を算定し解析を行った。

5.3.5 実験結果および考察

(1) 静岡県御前崎の波を想定した実験結果

表 5-16 に本実験における実験結果を記す. なお貯水タンクの欄に×印が付いているケースでは越波した波が収録時間内に貯水槽を満水にしなかったため、貯水タンクを使用せず貯水槽内の水位変化によって越波量を算出したことを示している.

(2) 我が国沿岸の波条件を考慮した実験結果

表 5-17 と 5-18 に本実験における実験結果を記す. なお貯水タンクの欄に×印が付いているケースでは越波した波が収録時間内に貯水槽を満水にしなかったため、貯水タンクを使用せず貯水槽内の水位変化によって越波量を算出したことを示している.

(3) 波高 H_{1/3} (cm) と越波量 q (m³/s/m) の関係

図 5-33 は御前崎の波浪条件と我が国沿岸を想定した波浪条件の実験結果をまとめたものであり、各越波揚程 R に対する有義波高 $H_{1/3}$ (cm) と単位時間・単位幅当たりの越波量 q ($m^3/s/m$) の関係である. この図から波高を高くすると越波量が増え、越波揚程が高くなるにしたがって越波量が減少することがわかる. また、どちらの波浪条件を用いても、越波揚程は 8cm の方が 15cm よりも越波量が大きいことがわかる.

因みに、今回の実験で越波量が最大となった R=8.0cm, $H_{1/3}=22.91$ cm, $T_{1/3}=2.46$ s (御前崎) のとき q=0.0132m 3 /s/m の値から、模型縮尺 1/10 として実際の越波量を算定すると、 $H_{1/3}=2.29$ m, $T_{1/3}=7.78$ s のときに q=0.4m 3 /s/m となる. 装置 1m 幅当たりでこの越波量が得られるのであれば、仮に 100m 幅の越波式波力発電装置を設置すると Q=40m 3 /s となり、膨大な越波量が見込めることから、越波式波力発電による出力に期待が持てる.

(4) 波形勾配 H_{1/3}/L と越波量 q (m³/s/m) の関係

図 5-34 は御前崎の波浪条件と我が国沿岸を想定した波浪条件の実験結果をまとめたものであり、各越波揚程に対する波形勾配 $H_{1/3}/L$ と単位時間・単位幅当たりの越波量 q ($m^3/s/m$) の関係である。波形勾配 $H_{1/3}/L=0.04$ 付近に越波量のピークがあることがわかる。また、それを超えると越波量は大きく減少する。波形勾配は波の峰の鋭さを表すが、波高や周期の大小を表してはいないことから波形勾配のみで越波量を推定することはできないことがわかった。

表 5-16 実験結果 (御前崎)

를(原 /s/m)	6	2	1	6	2	2	+	0	8	6	6	8	2	7	2	2	8	3	2	6	2	8	1	2	3	2	6	0	2	6		4	2	~	6	3
越波量(原 型)(m ³ /s/m)	0.09	0.12	0.21	0.29	0.42	0.15	0.24	0.30	0.38	0.09	60'0	0.18	0.25	0.34	0.12	0.22	0.28	0.33	0.02	0.09	0.15	0.18	0.21	90'0	0.13	0.16	0.20	0.00	0.02	60'0	0.11	0.14	0.05	0.08	0.10	0.13
波power(原 型)(kW/m)	1.91	4.46	7.98	13.01	18.85	6.44	10.66	13.38	15.29	1.87	4.58	7.54	10.91	17.27	5.63	9.21	11.31	13.92	2.11	5.04	8.81	12.22	17.20	6.25	10.34	11.91	13.17	1.62	4.33	7.86	12.03	18.26	5.87	10.55	11.42	14.50
D(原型)	1.19	1.15	1.15	1.12	1.08	1.15	1.20	1.19	1.15	1.19	1.15	1.16	1.13	1.09	1.13	1.20	1.19	1.15	1.19	1.14	1.14	1.13	1.08	1.14	1.20	1.20	1.17	1.19	1.16	1.14	1.10	1.07	1.13	1.20	1.20	1.16
L(原型)(m)	42.5	49.8	49.6	53.7	59.4	26.2	35.6	41.4	49.7	40.8	49.7	48.5	52.7	57.5	24.5	34.4	40.3	49.4	42.0	50.4	51.3	52.2	58.4	24.6	34.2	39.1	45.9	40.8	47.3	50.8	56.9	60.1	24.6	34.2	39.3	48.0
T _{1/3} (原型)(s)	5.98	6.70	6.70	7.15	7.78	4.24	5.19	5.82	6.70	5.76	6.70	6.58	7.02	7.56	4.08	5.09	5.69	29.9	5.88	08.9	98.9	66.9	7.65	4.08	5.06	5.57	6.29	5.76	6.45	6.83	7.51	7.84	4.08	5.06	5.60	6.51
H _{1/3} (原型)(m)	0.79	1.16	1.55	1.95	2.29	1.76	200	2.12	2.15	0.80	1.18	1.52	1.79	2.21	1.68	1.88	1.97	2.06	0.84	1.23	1.62	1.90	2.20	1.77	200	204	204	0.74	1.16	1.53	1.85	2.25	1.72	2.02	1.99	2.12
	3.0307E-02	2.2453E-02	2.4008E-02	2.3792E-02	2.7089E-02	1.4544E-02	1.8968E-02	2.2250E-02	2.7074E-02	2.7206E-02	1.6590E-02	2.1772E-02	2.3279E-02	2.3190E-02	1.2611E-02	1.9741E-02	2.2941E-02	2.4959E-02	7.2080E-03	1.8064E-02	1.5892E-02	1.5636E-02	1.4539E-02	5.4040E-03	1.0379E-02	1.2142E-02	1.5793E-02	5.5124E-04	3.4051E-03	1.0638E-02	1.0078E-02	9.3157E-03	4.8126E-03	6.6082E-03	7.7587E-03	9.3406E-03
越波量 (m³/s/m)	2.9913E-03	3.9379E-03	6.5101E-03	9.0188E-03	1.3151E-02	4.7332E-03	7.5040E-03	9.6238E-03	1.1955E-02	2.7100E-03	2.9672E-03	5.7106E-03	7.8180E-03	1.0659E-02	3.8576E-03	7.0985E-03	8.8759E-03	1.0291E-02	7.7473E-04	2.9700E-03	4.5917E-03	5.7219E-03	6.6337E-03		4.0937E-03	4.9585E-03	6.4421E-03	4.9250E-05	6.7421E-04	2.8258E-03	3.5390E-03	4.4038E-03	1.5191E-03	2.6457E-03	3.0553E-03	4.0229E-03
反射率	0.410	0.375	0.349	0.342	0.346	0.253	0.283	0.289	0.338	0.413	0.387	0.344	0.365	0.376	0.262	0.291	0.238	0.315	0.431	0.405	0.368	0.374	0.385	0.258	0.293	0.298	0.325	0.473	0.421	0.397	0.395	0.406	0.285	0.395		0.341
波形勾配 (H _{1/3} /L)	0.0186	0.0234	0.0313	0.0362	0.0386	0.0671	0.0562	0.0513	0.0433	0.0195	0.0237	0.0313	0.0340	0.0384	0.0687	0.0545	0.0488	0.0416	0.0200	0.0244	0.0316	0.0360	0.0377	0.0721	0.0583	0.0522	0.0445	0.0182	0.0247	0.0302	0.0324	0.0375	0.0700	0.0588		0.0441
波数 (F	0 19	73 (71 (48 (40 (101) 88) 62	53 (28 (73 (73 () 99	20 (100) 28	81 () 99	265 (52 (47 ()) 09) 66	84 () 08) //	26 (22 () 49) 99	59 (100			73 (
Tave(s)模型	1.46	1.61	1.61	1.88	1.95	1.17	1.33	1.43	1.62	1.48	1.57	1.57	1.72	1.91	1.15	1.61	1.39	1.55	1.41	1.62	1.71	1.72	1.92	1.17	1.33	1.43	1.49	1.45	1.53	1.60	1.72	1.91	1.16	1.40	1.38	1.56
Have(cm)模型	4.65	6.62	8.50	11.56	12.99	10.41	11.39	11.91	12.46	4.82	08'9	8.82	10.21	12.57	9.93	10.82	11.27	11.53	5.21	7.30	9.73	10.77	12.54	10.58	11.61	11.81	11.61	4.47	86'9	8.91	10.70	12.88	10.32	12.03	11.63	12.01
L(cm)模型	425.4	497.6	496.1	537.3	594.2	261.5	355.7	413.6	496.6	408.3	497.4	484.8	526.6	574.7	245.2	344.3	403.3	493.6	419.6	504.4	512.6	522.0	583.6	246.0	342.1	390.8	458.7	408.3	473.1	507.9	569.2	600.5	245.5	342.4	392.9	479.6
T _{I/3} (s)模型	1.89	2.12	2.12	2.26	2.46	1.34	1.64	1.84	2.12	1.82	2.12	2.08	2.22	2.39	1.29	1.61	1.80	2.11	1.86	2.15	2.17	2.21	2.42	1.29	1.60	1.76	1.99	1.82	2.04	2.16	2.37	2.48	1.29	1.60	1.77	2.06
H _{1/3} (cm)模型	7.92	11.62	15.54	19.46	22.91	17.55	19.99	21.21	21.51	767	11.77	15.20	17.92	22.09	16.84	18.76	69.61	20.55	838	12.29	16.21	18.98	21.98	17.74	19.95	20.41	20.40	7.41	11.59	15.33	18.46	22.51	17.19	20.15	19.93	21.15
解析データ数	1840	2390	2350	1850	1600	2390	2380	2270	1770	1740	2340	2330	2330	1990	2320	2330	2320	2170	7500	1710	1630	2330	2350	2340	2270	2340	2340	2400	2400	2400	2400	2400	2400	2400	2400	2400
計算範囲	350-2190	10-2400	50-2400	70-1920	400-2000	10-2400	20-2400	30-2300	10-1780	380-2120	60-2400	70-2400	70-2400	60-2050	80-2400	70-2400	80-2400	70-2180	200-8000	380-2090	50-1680	70-2400	50-2400	60-2400	130-2400	60-2400	60-2400	590-2350	590-2350	250-2350	80-2400	80-2400	80-2400	90-2400	80-2400	90-2400
データ総数	2400	2400	2400	2062	2094	2400	2400	2400	1866	2400	2400	2400	2400	2066	2400	2400	2400	2304	8192	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400
4.7	×	0	0	0	0	0	0	0	0	×	0	0	0	0	0	0	0	0	×	×	0	0	0	0	0	0	0	×	×	×	0	0	0	0	0	0
初期水深 (cm)	15.0	/	/	/	/	/				15.3		/		/	/	/	/		15.0	15.3	/	/	/		/	/		15.3	15.3	15.3		/	/	/	/	/
水絮(cm)	2													70									20									70				
θ(°)	20													20									20									20				
R(cm)	∞									10								15									20									
端尺	1/10								_					1/10									1/10			-		1/10								
CASE	QH120F QH220F QH320F QH420F QH520F QH620F QH720F QH820F							QH920F	QH120A QH220A QH320A QH520A QH520A QH520A QH520A QH520A QH820A QH820A QH820A									QH120F QH220B QH320B QH520B QH520B QH520B QH720B QH820B QH920B							QH920B	QH120C QH220C QH320C QH420C QH520C QH720C QH820C QH820C										

表 5-17 実験結果(我が国沿岸: R=8.0cm)

越波量(原 型)(m ³ /s/m)	0.00	0.01	0.03	90.0	0.11	0.13	0.16	0.17	0.20	0.21	0000	0.02	0.05	60.0	0.10	0.15	0.18	0.23	0.31	0.36	0.00	0.02	90:0	60:0	0.13	0.19	0.21	0.28	0.35
波power(原型)(kW/m)	0.47	0.84	1.41	1.98	3.16	4.08	5.37	09.9	8.82	10.28	99.0	1.35	2.32	3.45	4.96	5.98	7.92	10.57	11.82	15.09	0.95	1.63	2.46	4.78	90.9	6.07	11.03	13.24	15.73
D(原型)	1.12	1.11	1.12	1.11	1.13	1.13	1.13	1.13	1.14	1.14	1.19	1.20	1.19	1.19	1.19	1.19	1.18	1.18	1.19	1.18	1.04	1.08	1.07	1.02	1.00	1.01	1.02	1.02	1.04
L(原型)(m)	23.6	22.7	23.1	22.7	23.9	23.7	23.7	24.0	24.7	25.4	41.8	39.2	41.4	42.4	42.0	40.7	44.1	43.2	42.9	43.4	64.3	59.1	59.7	2.99	689	9.79	8.99	0.99	64.3
T _{1/3} (原型)(s)	4.0	3.9	3.9	3.9	4.0	4.0	4.0	3.8	4.1	4.2	6.5	9.6	8.5	6.5	6.5	2.5	6.1	0.9	0.9	0.9	8.3	L'L	7.8	8.6	6.8	2.8	9.8	8.5	8.3
H _{1/3} (原型)(m)	0.49	0.67	0.87	1.03	1.28	1.46	1.67	1.90	2.11	2.24	0.48	0.69	0.88	1.07	1.29	1.43	1.60	1.86	1.97	2.22	0.51	0.67	0.83	1.13	1.26	1.55	1.71	1.88	2.06
無次元流量 (q/√ 2oH²)	2.1717E-03	5.1745E-03	7.1374E-03	1.2969E-02	1.6674E-02	1.6363E-02	1.7109E-02	1.4923E-02	1.4545E-02	1.4149E-02	5.7626E-04	7.3936E-03	1.3959E-02	1.7879E-02	1.6198E-02	2.0168E-02	2.0247E-02	2.0729E-02	2.5185E-02	2.4607E-02	1.0397E-03	8.3942E-03	1.6919E-02	1.6833E-02	2.0623E-02	2.2534E-02	2.1419E-02	2.4223E-02	2.6621E-02
越波量 (m ³ /s/m)	1.0523E-04	3.9959E-04	8.0667E-04	1.9060E-03	3.3621E-03	4.0231E-03	5.1755E-03	5.4497E-03	6.2237E-03	6.6449E-03	2.6701E-05	5.8988E-04	1.6246E-03	2.7703E-03	3.3051E-03	4.8255E-03	5.7352E-03	7.3624E-03	9.7533E-03	1.1376E-02	5.2764E-05	6.5092E-04	1.7791E-03	2.8262E-03	4.1022E-03	6.0979E-03	6.7185E-03	8.7450E-03	1.1013E-02
反射率	0.467	0.386	0.369	0.319	0.276	0.277	0.275	0.277	0.280	0.265	0.509	0.460	0.414	0.383	0.360	0.337	0.323	0.318	0.309	0.314	0.537	0.496	0.465	0.439	0.430	0.404	0.380	0.371	0.382
波形勾配 (Hra/L)	0.0209	0.0297	0.0376	0.0456	0.0534	0.0614	0.0704	0.0791	0.0854	0.0883	0.0114	0.0175	0.0214	0.0252	0.0306	0.0351	0.0363	0.0431	0.0460	0.0511	0.0079	0.0114	0.0138	0.0169	0.0183	0.0230	0.0256	0.0285	0.0320
波数	95	76	114	114	112	101	104	98	26	96	71	69	88	2/2	99	72	8/	72	74	63	51	\$2	99	99	19	59	62	62	20
Tave(s)	1.07	1.04	1.02	1.00	1.03	1.12	1.15	1.20	1.19	1.22	1.40	1.46	1.32	1.47	1.45	1.47	1.46	1.52	1.46	1.44	1.90	1.82	1.73	1.92	1.85	1.92	1.86	1.86	1.98
Have(cm) Tave(s)	2.96	3.96	5.02	5.84	7.32	8.59	10.07	11.73	12.94	13.89	2.87	4.19	5.09	6.55	7.68	8.79	9.44	11.10	11.51	12.76	3.21	4.11	4.86	6.47	7.15	9.12	10.06	10.87	12.26
L(cm)	236.3	226.6	230.7	276.5	238.8	237.2	237.4	239.6	246.7	253.7	418.1	392.0	413.8	424.0	420.0	4.704	5.044	431.8	428.8	434.3	643.1	1.168	596.6	667.2	4.689	675.8	668.4	660.2	643.3
T _{1/3} (s)	1.26	1.23	1.24	1.23	1.27	1.26	1.26	1.20	1.29	1.32	1.85	1.76	1.84	1.87	1.86	181	1.93	1.90	1.89	16.1	2.63	2.45	2.47	2.72	2.80	2.75	2.73	2.70	2.64
H _{1/3} (cm)	4.93	6.73	8.67	10.33	12.75	14.56	16.71	18.95	21.06	22.41	4.78	6.87	8.84	10.70	12.85	14.29	16.00	18.60	19.71	22.18	5.08	6.74	8.26	11.29	12.64	15.52	17.12	18.80	20.59
解析データ数	2049	2049	2341	2321	2341	2301	2401	2101	2351	2351	2001	2049	2341	2331	1926	2121	2321	2321	2161	1861	2001	2049	2301	2341	2321	2341	2341	2321	2011
計算範囲	300-2348	190-2238	60-2400	80-2400	60-2400	100-2400	0-2400	100-2200	50-2400	50-2400	400-2400	190-2238	60-2400	70-2400	75-2000	80-2200	80-2400	80-2400	80-2240	70-1930	400-2400	20-2068	100-2400	60-2400	80-2400	60-2400	60-2400	80-2400	50-2060
データ総数	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2266	2016	2400	2400	2400	2400	2400	2400	2400	2400	2250
424	×	×	0	0	0	0	0	0	0	0	×	×	0	0	0	0	0	0	0	0	×	×	0	0	0	0	0	0	0
初期水深 (cm)	15.4	15.4									15.4	15.4		/		//			/	//	15.4	15.3				/	/		
关 (E)	70.0									70.0														70.0					
η (ο)	70										70										50								
E R(cm)	80)F										JE	80.8									
CASE	Q0020F	Q1020F	Q2020F	Q3020F	Q4020F	Q5020F	Q6020F	Q7020F	Q8020F	Q9020F	Q0120F	Q1120F	Q2120F	Q3120F	Q4120F	Q5120F	Q6120F	Q7120F	Q8120F	Q9120F	Q0220F	Q1220F	Q2220F	Q3220F	Q4220F	Q5220F	Q6220F	Q7220F	Q8220F

表 5-18 実験結果(我が国沿岸: R=15.0cm)

越波量(原 型)(m³/s/m)	0.00	0.00	0.01	0.01	0.02	0.04	90.0	0.08	0.09	0.10	0.00	0.00	0.01	0.03	0.04	0.06	0.09	0.11	0.15	0.18	0.00	0.00	0.00	0.02	0.03	0.06	0.10	0.12	0.14
波power(原型)(kW/m)	0.49	0.94	1.49	2.14	3.40	4.32	5.64	92.9	8.73	10.41	080	1.54	2.59	3.64	4.98	6.32	8.23	10.40	12.36	14.64	68'0	1.82	2.81	4.68	5.98	8.24	11.48	14.64	16.69
D(原型)	1.12	1.12	1.12	1.12	1.12	1.12	1.13	1.12	1.13	1.14	1.18	61.1	61.1	1.20	1.19	1.19	1.19	1.18	1.18	1.19	1.09	1.08	1.08	1.03	1.03	1.06	1.03	1.02	1.02
L(原型)(m)	23.1	23.4	23.5	23.4	22.9	23.0	24.2	23.6	24.6	24.6	45.1	41.8	42.6	40.0	41.3	43.1	43.0	44.2	43.4	42.9	57.5	59.4	59.0	65.7	65.1	61.2	65.3	66.4	65.8
T _{1/3} (原型)(s)	4.0	4.0	4.0	4.0	3.9	3.9	4.0	4.0	4.1	4.1	6.2	5.9	5.9	5.7	5.8	6.0	6.0	6.1	6.0	6.0	7.6	7.8	7.7	8.5	8.4	8.0	8.4	8.6	8.5
H _{1/3} (原型)(m)	0.51	0.70	0.88	1.06	1.35	1.52	1.70	1.88	2.10	2.29	0.51	0.72	0.93	1.12	1.30	1.44	1.65	1.83	2.01	2.19	0.50	0.71	0.89	1.12	1.27	1.50	1.76	1.98	2.11
無次元流量 (q/√2gH _{1/3} ³)	1.2051E-05	1.7545E-04	1.6442E-03	2.8324E-03	3.2627E-03	5.1398E-03	6.1446E-03	6.7236E-03	6.7551E-03	6.8340E-03	0.0000E+00	2.8958E-04	3.3093E-03	5.3476E-03	5.9483E-03	8.1539E-03	9.3693E-03	9.8853E-03	1.1784E-02	1.2586E-02	6.9196E-04	3.3126E-04	7.2025E-04	3.6729E-03	5.1866E-03	7.8905E-03	9.8668E-03	1.0119E-02	1.0020E-02
越波量 :: (m³/s/m) ((6.0726E-07	1.4478E-05	1.9067E-04	4.3276E-04	7.1336E-04	1.3426E-03	1.8986E-03	2.4162E-03	2.8693E-03	3.3140E-03	0.0000E+00	2.4614E-05	4.1217E-04	8.8739E-04	1.2297E-03	1.9686E-03	2.7663E-03	3.4377E-03	4.7093E-03	5.7258E-03	3.4456E-05	2.7862E-05	8.4093E-05	6.1030E-04	1.0367E-03	2.0369E-03	3.2147E-03	3.9371E-03	4.3083E-03
反射率	0.560	0.461	0.400	0.365	0.330	0.323	0.300	0.277	0.293	0.290	0.591	0.537	0.486	0.420	0.389	0.388	0.367	0.341	0.328	0.342	0.545	0.514	0.490	0.477	0.466	0.425	0.421	0.406	0.387
波形勾配 (H _{1/3} /L)	0.0218	0.0301	0.0375	0.0454	0.0589	0.0659	0.0700	0.0794	0.0853	0.0929	0.0112	0.0172	0.0217	0.0280	0.0314	0.0333	0.0383	0.0415	0.0464	0.0511	0.0087	0.0120	0.0150	0.0171	0.0195	0.0246	0.0269	0.0298	0.0321
汝教	82	88	97	96	108	105	102	66	06	96	99	<i>L</i> 9	89	69	82	75	08	22	75	73	28	22	27	51	09	64	09	09	61
Tave(s)	1.11	1.12	1.07	1.06	1.08	1.10	1.14	1.15	1.18	1.21	1.46	1.48	1.49	1.4	1.41	1.53	1.42	1.50	1.51	1.54	1.71	1.71	1.77	1.92	1.91	1.78	1.87	1.87	1.90
Have(cm)	3.14	4.33	5.21	6.34	8.02	9.20	10.21	11.40	12.75	14.29	3.09	4.53	5.64	6.84	7.79	8.97	6.77	11.06	12.29	13.63	2.96	4.29	5.33	6.80	7.46	8.83	10.46	11.53	12.17
L(cm)	231.4	234.1	235.1	233.7	228.7	230.0	242.2	236.1	245.8	246.4	450.5	417.9	425.6	400.2	412.7	431.4	429.6	442.0	433.9	429.4	575.0	594.3	589.6	656.5	650.7	612.3	653.2	664.2	622.9
T _{1/3} (s)	1.25	1.25	1.26	1.25	1.24	1.24	1.28	1.26	1.29	1.29	1.96	1.85	1.88	1.79	1.83	1.90	1.89	1.93	1.90	1.89	2.39	2.46	2.44	2.68	2.66	2.53	2.67	2.71	2.69
H _{1/3} (cm)	5.06	7.03	8.82	10.60	13.46	15.16	16.95	18.75	20.96	22.89	5.07	7.17	9.25	11.20	12.97	14.38	16.45	18.34	20.12	21.94	5.02	7.12	8.86	11.21	12.68	15.04	17.56	19.77	21.13
解析データ数	1940	1990	2049	2049	2351	2341	2351	2301	2131	2351	1951	2011	2049	2049	2341	2321	2301	2301	2291	2281	2001	2011	2031	2049	2331	2321	2321	2311	2351
計算範囲	460-2400	410-2400	260-2308	200-2248	50-2400	60-2400	50-2400	100-2400	70-2200	50-2400	450-2400	390-2400	200-2248	240-2288	60-2400	80-2400	100-2400	100-2400	110-2400	120-2400	400-2400	390-2400	370-2400	20-2068	70-2400	80-2400	80-2400	90-2400	50-2400
データ総数	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400
タンク	×	×	×	×	0	0	0	0	0	0	×	×	×	×	0	0	0	0	0	0	×	×	×	×	0	0	0	0	0
		3	15.3	15.3	/	/					14.9	15.2	15.2	15.3		/	/	/			15.1	15.3	15.3	15.3	/			/	/
初期水 (cm)	15.3	15.3	1		/	/				_						_					0.07								
水深 初期水深 (cm) (cm)	15.3	15.	1		/ C	0.0/	·								0.07	į									70				
θ(°) (cm) (cm)	15.3	15.			000										000										20 70.				
θ(°) (cm)	15.3	15.	1			3										3													
兴 (cm)	Q0020B 15.3	Q1020B	Q2020B	Q3020B	ξ	3	Q6020B	Q7020B	Q8020B	Q9020B	Q0120B	Q1120B	Q2120B	Q3120B	Ę	3	Q6120B	Q7120B	Q8120B	Q9120B	Q0220B	Q1220B	Q2220B	Q3220B	70	Q5220B	Q6220B	Q7220B	Q8220B

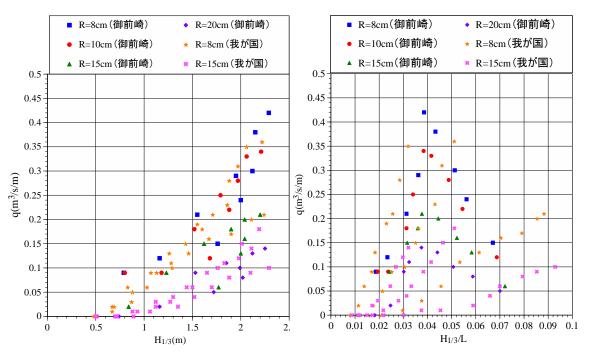


図 5-33 各越波揚程に対する波高と 越波量の関係(原型)

図 5-34 各越波揚程に対する波形勾配と 越波量の関係 (原型)

5.3.6 既存の研究との比較

(1) 合田との比較

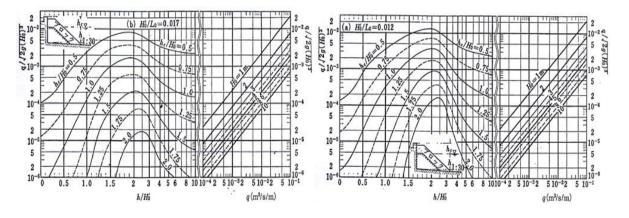
実験結果と理論値の比較を行うために以下に理論的考察を行う. 合田ら(合田ら, 1975) は規則波のある波高と周期に対する単位幅当り、単位時間当りの越波量 q がわかると、波高と周期の相関を無視して代表周期(たとえば $T_{1/3}$)についての流量を q_0 とすれば、不規則波が襲来したときの平均越波量は次式(5.1)で表した.

$$q_{\rm exp} = \int_0^\infty q_0 \cdot p(H) dH \tag{5.1}$$

ここで,p(H)は波高の確立密度関数であり $q_{\rm exp}$ は期待越波量とする.

合田ら(合田ら,1975)は越波流量に吉川・日野らの越波式を用い、波高がレーリー分布するものとし、具体的に期待越波量を次式で求めている.

$$\frac{q_{\text{exp}}}{\sqrt{2g(H_{1/3})_0^3}} = \int_0^\infty \frac{q(\eta)}{\sqrt{2g(H_{1/3})_0^3}} p(\eta) d\eta$$
 (5.2)


$$\frac{q(\eta)}{\sqrt{2g(H_{1/3})_0^3}} = 0.10 \left(\frac{K}{1+K}\right)^{3/2} \eta^{3/2} \left[1 - \frac{H_C}{(H_{1/3})} \frac{1}{K\eta}\right]^{5/2}$$
 (5.3)

$$K = \eta_0 / H$$
, $\eta = H / (H_{1/3})_0$ (5.4)

$$K = \min \left\{ \left[1 + a \frac{\eta \cdot (H_{1/3})_0}{h} + \frac{b}{(K_s)_{1/3}} \left(\frac{\eta \cdot (H_{1/3})_0}{h} \right)^2 \right], \qquad c \right\}$$
 (5.5)

ここで, $\left(H_{1/3}\right)_0$ は沖波有義波高, H_c は静水面からの天端高さ, η_0 は波峰高, $\left(K_s\right)_{1/3}$ は 砕波減衰を含めた有義波高の変化率, $\min\left\{[a],c\right\}$ は $\left[\ \right]$ または c のいずれか小さいほうを採用する. a, b, c は実験的に定まる定数で,鉛直壁ではa=1.0,b=0.8,c=10 という値を求めている.

合田ら(合田ら,1975) は式 (5.3) に基づき η を 50 に分けて式 (5.2) の積分を 50 区間の級総和に置き換え、海底勾配 1/10 および 1/30 に設置された鉛直堤の期待越波量を求める図を沖波波形勾配が 0.012, 0.017, 0.036 の場合について作成している。図 5-35 に合田による越波量の算定図 (消波護岸 1/30) を示す。

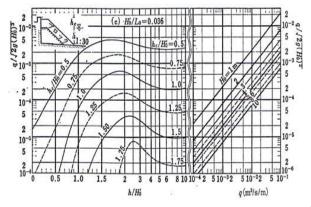


図 5-35 消波護岸の越波流量算定図(1:4/3) 合田ら(1975)

図 5-36~5-38 に合田ら(合田ら,1975)の越波量と本実験で得られた越波量を示す. なお合田ら(合田ら,1975)の越波量算定図は波形勾配が 0.012, 0.017, 0.036 の場合であることや, 越波揚程と波高の比に上下限を指定していることから表記は算定図を使用して求められるもののみである. 実線で合田の越波量を示し, プロットで実験値を示す.

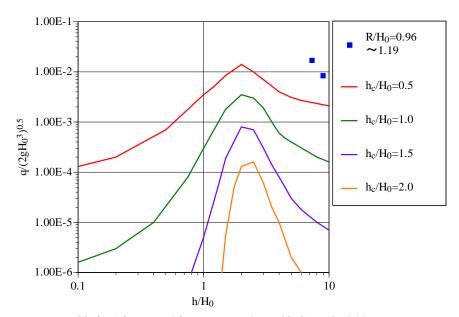


図 5-36 越波量合田ら(合田ら,1975)と越波量(実験値)(H/L=0.012)

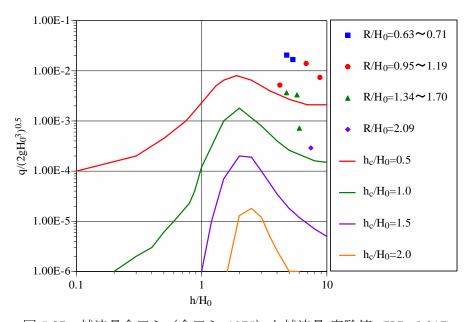


図 5-37 越波量合田ら(合田ら,1975)と越波量(実験値)(H/L=0.017)

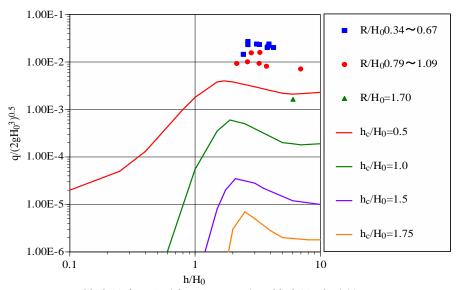


図 5-38 越波量合田ら(合田ら, 1975)と越波量(実験値) (H/L=0.036)

全ケースで合田の越波量より実験で得られた越波量の方が高い値を示すことがわかる. またこれら実験値のプロットから合田の理論値との比較を表 5-19 に示す.割合で示した数値は合田の越波量に対する本実験で得られた越波量の割合を示す.

全体として実験値の方が合田の越波量よりも総じて桁違いに大きい値を示した.この要因として、実験断面の違いが挙げられる.合田は、護岸を想定して前面に消波ブロックを設置し越波量を算定しているのに対し、著者らは、効率良く越波量得ることを目的として前面に傾斜板を設置している.傾斜板の効果は大きく遡上への影響は前述したとおりである. また10 はばまり(ARD) しばばり、(ARD) の対点

表 5-19 越波量(合田)と越波量(実験値)の割合

CASE	越波量(実験値)	越波量(合田)	割合(倍)
QH120F	3.0307E-02	1.70E-04	178.3
QH320F	2.4008E-02	2.60E-03	9.2
QH420F	2.3792E-02	5.10E-03	4.7
QH520F	2.7089E-02	8.00E-03	3.4
QH120A	2.7206E-02	4.00E-05	680.2
QH320A	2.1772E-02	1.50E-03	14.5
QH420A	2.3279E-02	2.30E-03	10.1
QH520A	2.3190E-02	5.00E-03	4.6
QH920A	2.4959E-02	3.60E-03	6.9
QH320B	1.5892E-02	4.00E-04	39.7
QH420B	1.5636E-02	1.00E-03	15.6
QH520B	1.4539E-02	2.20E-03	6.6
QH420C	1.0078E-02	4.50E-04	22.4
QH520C	9.3157E-03	9.00E-04	10.4
Q2020F	7.1374E-03	3.80E-04	18.8
Q1120F	7.3936E-03	6.00E-05	123.2
Q2120F	1.3959E-02	3.00E-04	46.5
Q5120F	2.0168E-02	2.10E-03	9.6
Q6120F	2.0247E-02	2.80E-03	7.2
Q1220F	8.3942E-03	8.00E-05	104.9
Q2220F	1.6919E-02	2.70E-04	62.7
Q3220F	1.6833E-02	1.30E-03	12.9
Q4220F	2.0623E-02	1.50E-03	13.7
Q2020B	1.6442E-03	2.50E-06	657.7
Q1120B	2.8958E-04	5.50E-07	526.5
Q2120B	3.3093E-03	7.50E-06	441.2
Q5120B	8.1539E-03	2.90E-04	28.1
Q6120B	9.3693E-03	5.20E-04	18.0
Q2220B	7.2025E-04	4.00E-06	180.1
Q3220B	3.6729E-03	4.00E-05	91.8
Q4220B	5.1866E-03	1.70E-04	30.5

(2) 玉田ら(玉田ら,2010) との比較

越波量を算定する既存の考え方には、先に論じた合田の他に玉田ら(玉田ら、2010)の考え方がある。玉田らは、図 5-39 に示す断面条件において行った実験で得られた越波流量 qを合田ら(合田ら、1975)と同様に $q/\sqrt{2gH_0^3}$ の形に無次元化し、水深ごとに $q/\sqrt{2gH_0^3}$ をプロットし、相対護岸天端高 h_c/H_0 ごとに対して実験曲線を描いた。 なお、波浪条件は有義波周期が 1s の Bretschneider・光易で制御された不規則波、海底勾配 i=1/10, 1/30, $H_0/L_0=0.017$, 0.036, $\cot\theta=3$, 5, 7 の条件となる。ただし、水深は一定で波形勾配が 2 種類となるため、使用波高も 2 種類と考えられ、著者らの実験と比較すると波浪条件が限定されている点に留意したい。また、海底勾配は、著者らの実験では水平(i=0)な海底地形であることから本論文で比較する条件は比較的近いと考えられる i=1/30 のみとしたい。

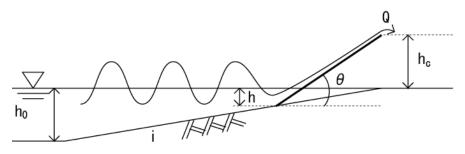


図 5-39 緩傾斜護岸の模式図 (玉田ら, 2010)

図 5-40 と図 5-41 はそれぞれ H/L=0.017 かつ $h_c/H_0=0.7$ と H/L=0.036 かつ $h_c/H_0=0.5\sim0.55$ の時の玉田らと今回の実験との比較である.

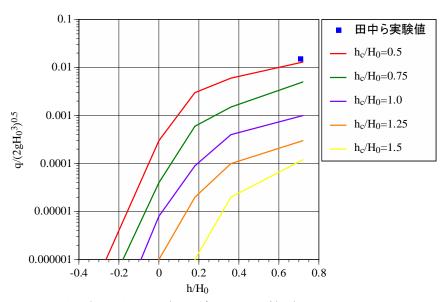


図 5-40 玉田ら(玉田ら, 2010)の結果との比較(H/L=0.017かつh_c/H₀=0.7)

図 5-41 玉田ら(玉田ら, 2010) の結果との比較(H/L=0.036 かつ hc/H₀=0.5~0.55)

著者らの実験条件では i=0 であることを考慮しつつ,得られた結果の中で,H/L=0.017 と 0.036 となるデータを抽出してグラフにプロットした. H/L=0.017 の条件下においては, $hc/H_0=0.7$ のため緑色のラインと比較する必要がある. 玉田らの示す結果と比較すると,著者らの実験結果は $hc/H_0=0.5$ の結果と近いことがわかる. この結果は,玉田らが得た結果より低い波高にも関わらず同等の打上げ高が得られた,もしくは同等の波高にも関わらず打上げ高が高い結果が得られたことを示す.

この理由の一つとして海底勾配の違いが考えられる. しかし、それ以上に、玉田らの実験結果が $T_{1/3}$ =1sと比較的短い波浪条件で得られた結果であることに対し、著者らの実験結果は $T_{1/3}$ =2.72s であることに大きな違いを生んだ原因があると考える. 前述した波パワーを考えると、同じ波高で周期が 1s の場合と 2.72s の場合では得られる波パワーは 2.72 倍となる. 波パワーと打上げ高は比例関係にあると考えられることからこのような結果が得られたと考えられる. H/L=0.03s の結果も同様に考えることができる.

5.3.7 波パワーによる越波量推定の考察

次に、打上げ高でも容易にまとめることができた波パワー (kW/m) と越波量 q $(m^3/s/m)$ の関係を考える。図 5-42 は御前崎の波浪条件と我が国沿岸を想定した波浪条件の実験結果をまとめたものであり、波浪条件に関わらず、越波揚程 R=8cm と 10cm は 8cm の方がわずかに上回るがどちらも非常に近い傾向を示している。一方、R=15cm、20cm の場合も波浪条件に関わらず、明らかに越波量が減少していることが分かる結果となった。この結果から、本研究における越波揚程 R は 8cm、10cm が 15cm、20cm と比較すると優れていることがいえる。また、波パワーと越波量の関係は比例関係にあり、現地の波条件から越波量を予測

する際に非常にシンプルにまとめることができる.

ここで、越波量を $q(m^3/s/m)$,入射する波パワーE(kW/m) とした場合の関係式を式 (5.6) で表す.

$$q = \alpha E \tag{5.6}$$

御前崎周辺の波浪条件では、越波揚程 (R) が 0.8m, 1.0m, 1.5m, 2.0m のとき α の値はそれぞれ 0.02312, 0.02234, 0.01390, 0.00840 となり、我が国沿岸を想定した波浪条件では越波揚程 (R) が 0.8m, 1.5m, のとき α の値はそれぞれ 0.02265, 0.00957 となった.

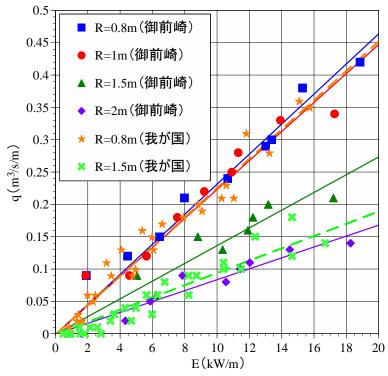


図 5-42 越波量と波パワーの関係 (御前崎・我が国)

5.3.8 まとめ

本実験は、貯水タンクを用いて越波量のデータを確実に得ることにより、より正確な越 波量を算出することを目的に行われた実験である.主要な結果および考察を以下に示す.

(1) 波高 H_{1/3} (cm) と越波量 q (m³/s/m) の関係

波浪条件に関わらず、波高を高くすると越波量が増え越波揚程が高くなるにしたがって越波量が減少することがわかる。また、越波揚程が 8cm の方が 15cm よりも越波量が多いことがわかった。本実験で越波量が最大となった R=8.0cm, $H_{1/3}=22.91cm$, $T_{1/3}=2.46s$ (御前崎)のとき、 $q=0.0132m^3/s/m$ の値から模型縮尺 1/10 として実際の越波量を算定すると、 $H_{1/3}=2.29m$, $T_{1/3}=7.78s$ のときに $q=0.4m^3/s/m$ となる。装置 1m 幅当たりでこの越波量が得られるのであれ

ば、仮に 100m 幅の越波式波力発電装置を設置すると $Q=40m^3/s$ となり、膨大な越波量が見込めることから、越波式波力発電による出力に期待が持てる.

(2) 波形勾配 H_{1/3}/L と越波量 q(m³/s/m)の関係

波形勾配 $H_{1/3}/L=0.04$ 付近に越波量のピークがあることがわかる。また、それを超えると 越波量は大きく減少する。波形勾配は波の峰の鋭さを表すが、波高や周期の大小を表して はいないことから波形勾配のみで越波量を推定することはできないことがわかった。

(3) 既往の研究との比較

実験値の方が合田の期待越波量よりも総じて桁違いに大きい値を示した.この要因として考えられることは目的の違いである.合田の場合,護岸を想定して消波ブロックを設置し越波量を算定しているのに対し,著者は越波量を増やすことを目的に傾斜板を用い越波量を計測した点で,そもそも双方の目的はかい離していることが桁違いの結果が生じた原因である.

また、玉田らが得た結果と比較して、著者らの結果は玉田らよりも低い波高にも関わらず 同等の打上げ高が得られた、もしくは、同等の波高にも関わらず打上げ高が高い結果が得 られた.この結果は、玉田らの実験結果と著者らの結果では設定された周期の違いが大き いためと考えられる.同じ波高の場合、周期の差と波パワーの差は比例するためこのよう な結果が得られたと考えられる.

(4) 波パワー (kW/m) と越波量 q (m³/s/m) の関係

波浪条件に関わらず、越波揚程 R=8cm と 10cm は 8cm の方がわずかに上回るが、どちらも非常に近い傾向を示している。一方、R=15cm、20cm の場合も波浪条件に関わらず、明らかに越波量が減少していることが分かる結果となった。この結果から、本研究における越波揚程 R は 8cm、10cm が 15cm、20cm よりも越波量を得ることができるといえる。また、波パワーと越波量の関係は比例関係にあり、現地の波条件から越波量を予測する際に容易にまとめることができる。

越波量は、波パワーと線形な関係となることから、単位幅当たりの越波量を q ($m^3/s/m$)、入射する波パワーE (kW/m) とすると、御前崎周辺の波浪条件では、越波揚程 (R) が 0.8m, 1.0m, 1.5m, 2.0m のときの関係式はそれぞれ q=0.02312E, q=0.02234E, q=0.01390E, q=0.00840E となり、我が国沿岸を想定した波浪条件では越波揚程 (R) が 0.8m, 1.5m, のとき α の値はそれぞれ q=0.02265E, q=0.00957E となった.

5.4 多段水槽を使った越波量特性

5.4.1 実験目的

本研究における越波式波力発電装置は図 5-43 に示したように、襲来した波を傾斜板によって遡上させ各水槽に流入させることにより位置エネルギーを持たせる. そして流入した水の送水エネルギーによってタービンを回転させ、トルクを得ることで発電を行っている. また我々が考案している越波式波力発電装置はどのような波の条件(波高・周期)に対しても効率良く波を越波させ、より多くの水を取り入れることが必須条件である.

本実験では、より多くの越波量を得ることと、躯体の縮小化による建設コストの削減を 目的として、水槽開口幅の検討、斜面板角度の変動による越波量の調査を行った.

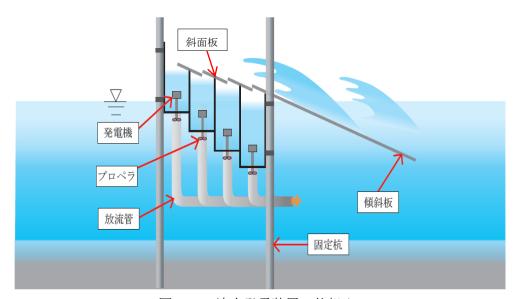


図 5-43 波力発電装置の仕組み

5.4.2 開口幅と流入に関する実験

多段水槽模型における開口部の幅は最大 10cm となっているが、この幅を狭めることでより多くの越波水が斜面板を遡上し高い水槽内に流入することが考えられ、エネルギーの高取得に寄与することが考えられる。また、躯体の縮小が可能となり建設コストの削減が可能となる。本実験ではこれらの目的の元、開口幅を決定する実験を行った。

5.4.2.1 実験施設および実験装置

(1) 実験水槽

実験は東海大学海洋学部臨海実験場第一水理実験棟平面水槽(縦:22.0m 横:23.0m 深さ:1.2m)を用いて行なった.この水槽には造波機が取り付けてあり.さまざまな波を造り.ブロックの安定実験や波の変形実験および海岸侵食実験を行うことができる.写真5-25に実験水槽全景を示す.

写真 5-25 平面水槽

(2) 造波機

東海大学海洋学部臨海実験場第一水理実験棟平面水槽に取り付けられている造波機は、一方向または多方向の規則波および不規則波を発生することができる. 写真 5-26 に示す造波制御コンピュータは第一水理実験棟平面水槽の 2 階部にあり平面水槽を見下ろすように設置してある. 写真 5-27 と写真 5-28 は造波機であり, 20 枚のパネルを制御して造波している.

造波機の仕様

型式:多方向不規則波造波方式 (スネーク式)

造波板長:80cm×20 台(全幅 16m) 周期:T=0.5~5.0s, T_{1/3}=0.8~3.0s

波高:規則波最大 20cm (周期 1.5~2.5s), H_{1/3}=10cm

波向:造波板に垂直方向を中心に±45度

写真 5-26 造波機制御コンピュータ

写真 5-27 造波機

写真 5-28 造波機(正面)

(3) 多段水槽

写真 5-29 は本実験で使用する多段水槽である. 水槽 1 段分の寸法は、幅: 2.0m、奥行: 0.1m、高さ: 1.0m であり全部で 4 段構成となっている. 後部の水槽が前部の水槽より高い位置に設置することで遡上した波がそれぞれの水槽に落ちる仕組みになっている.

水槽の開口部に可動のバーが取り付けられており斜面板の角度,長さに対応できる.脚 部に取り付けてあるコ型のアングルにより水槽自体の高さを調節することが可能である.

(4) 傾斜板

本実験の傾斜板は横幅 2.0m, 縦幅 2.0m のコンパネを使用し、高波浪時でも傾斜角度 20° を保っていられるように単管パイプで強固に固定した. (写真 5-30)

写真 5-29 多段水槽

写真 5-30 傾斜板

(5) その他の使用器具

今回の実験で使用した備品と装置を写真 5-31~5-33 に示す.

写真 5-31 クレーン

写真 5-32 消波ボックス

写真 5-33 消波材

5.4.2.2 実験方法および実験条件

本実験は写真 5-25 に示す平面水槽で行い,造波機から 9.0m の位置に多段水槽を設置した. 以下に実験方法と条件を示す.

図 5-44 に示す黄色部の斜面板①の角度を 20° で固定,水槽 $1\sim2$ 間の距離を変えずに斜面板①の長さを調節して水槽 1 の開口幅を 5cm にした.その状態を基本として斜面板を 1cm ずつ短くすることにより開口幅を 6, 7, 8, 9, 10cm と広げた.各幅に対し造波し,ハイスピードカメラによる撮影と目視によって越波した水を取りきれているか確認し幅を決定した.

実験条件は下記の通りである.

- ・模型縮尺を 1/10 とし、実験条件は Froude の相似則から決定した.
- ・傾斜板角度と斜面板①角度は20°,実験水深は70cmで固定した.
- ・波揚程は8cmで固定し,水槽2以降は16cm,24cm,32cmとする.
- ・実験波浪は、Bretschneider-光易型を目標スペクトルとする不規則波を用いた.
- ・実験条件は表 5-20 であり、全国の実海域の波の波高、周期を模型実験の縮尺にした値を 表に示す。
- ・ファイルネームを図 5-45 とする.
- i: Model, 越波量Q
- ii : 実験 No (case10~case12)
- iii: 開口幅 (0=5cm), (1=6cm), (2=7cm), (3=8cm), (4=9cm), (5=10cm)

iv:実験回数

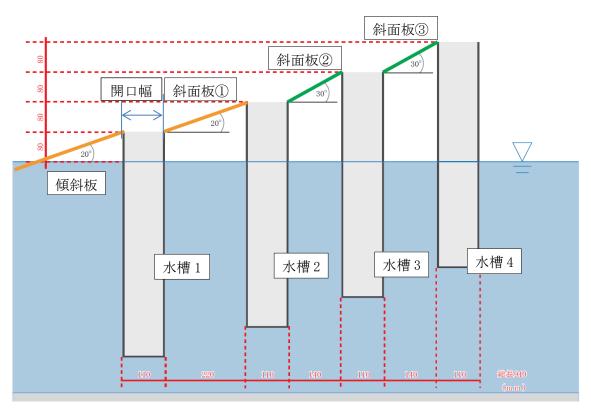


図 5-44 開口幅および斜面板角度による越波量特性実験概要図

表 5-20 実験条件

実験No.	実	毎域	模型実験(λ=1/10)			
	$H_{1/3}(m)$	T _{1/3} (s)	$H_{1/3}(cm)$	T _{1/3} (s)		
casel		4.00		1.26		
case2	0.50	6.00	5.0	1.9		
case3		8.00		2.53		
case4	1.00	4.00		1.26		
case5		6.00	10.0	1.9		
case6		8.00		2.53		
case7	1.50	4.00		1.26		
case8		6.00	15.0	1.9		
case9		8.00		2.53		
case10	,	4.00		1.26		
case11	2.00	6.00	20.0	1.9		
case12		8.00		2.53		

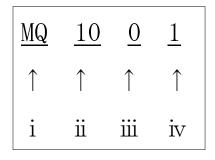


図 5-45 ファイルネーム

5.4.2.3 結果および考察

本実験では、斜面板の長さ、すなわち水槽開口部の幅を変更することで越波した水が水槽に流入する様をハイスピードカメラによる撮影と目視で確認した.

造波条件を同一の Case12 とし、開口幅を 5cm とした写真 5-34、開口幅を 10cm とした写真 5-35 を以下に示す. 赤丸で示す箇所に顕著な違いが見受けられる. 開口幅 5cm の場合、斜面板を一度遡上した水が最下段水槽に流入する際に、飲込みきることが出来ておらず、傾斜板上端部に乗り上げる形で盛り上がりが形成され、水面に戻ってしまっていることが

わかる. 逆に、開口幅 10cm の場合は同一造波条件にも関わらず開口幅 5cm 時の現象は確認されなかった. 開口幅 9cm の場合もほとんど開口幅 5cm 時の現象は確認されなかったが実海域における発生波条件は、本実験条件よりも幅広く存在しているため、広めの開口幅が適当であると判断し開口幅を 10cm とした. なお、原型の場合は 1m である.



写真 5-34 開口幅 5cm

写真 5-35 開口幅 10cm

5.4.3 斜面板角度による越波量特性実験

5.4.3.1 実験目的

本項以降では前項で行った実験から求めた開口幅で固定し、図 5-44 の斜面板②と斜面板③の角度を 20°, 30°, 40° に変動することによって得られる越波量にどの様な特性があるかを目的とした。また本実験における水槽間の高さの差はすべて8cmと固定しているため、斜面板角度が大きくなるほど、幾何学的に各水槽間距離を狭めることができるため建設コストの削減が期待される。

5.4.3.2 実験施設および実験装置

(1) 実験水槽

図 5-25 を参照

(2) 使用機器

造波機

図 5-27, 図 5-28 を参照

多段水槽

図 5-29 を参照

傾斜板

図 5-30 を参照

(3) 容量式波高計

写真 5-36 と写真 5-37 はそれぞれ容量式波高計のアンプと波高計測部である. 仕様を下記

に示す.

容量式波高計の仕様

型名: CH-401型

チャンネル数:1ch

測定モード:1,2,4倍(3点手動切り替え)

較正電圧:1, 1/2, 1/4, 0 (4点手動切り替え)

出力電圧: ± 2.5 V/FS (負荷 10k Ω 以上) 出力電流: ± 20 mA/FS (負荷 20\Omega 以下)

使用温度範囲:0~40℃

電源: AC100V±10% 50&60Hz

消費電力:約15VA

外形寸法 (mm): 66W×168H×215D

重量約:1.4kg

検出部

最大測定波高 : 10cm (CHT4-10), 20cm (CHT4-20), 40cm (CHT4-40), 50cm (CHT4-50),

60cm (CHT4-60), 80cm (CHT4-80), 100cm (CHT4-100)

直線性誤差:±0.5%/FS

応答性:5Hz(波高±5cm)

安定性:±1%/FS

相互干涉:±1%以下(容量線間隔 10cm 以上)

使用温度範囲:0~40℃

重量:約0.5kg

製造元:株式会社 ケネック

写真 5-36 波高計アンプ

写真 5-37 波高計

(4) データ収録器

写真 5-38 はデータ収録器である.この仕様を下記に示す.

データ収録器の仕様

PCD320A

測定対象:電圧

測定チャンネル数:4ユニット(最大4ユニット16チャンネルまで測定可能)

測定レンジ:1,2,5,10,20,50V および OFF の7段

精度:±0.2%FS 以内(23℃にて)

応答周波数範囲: DC カップリング DC~1kHz, AC カップリング 0.2~1kHz

分解能:12ビット 逐次比較型,出力2の補数

サンプリング周波数:1,2,5,10,20,50,100,200,500Hz,1,2,5kHzまで測定可能

4 チャンネル同時サンプリング

インターフェース:USB

測定入力端子:入力端子 BNC コネクタ

電源:AC100V~240V (標準付属 AC アダプタ

SA10A 使用)

製造元:株式会社 共和電業

写真 5-38 PCD320A

(5) 取水用機器等

写真 5-39~5-43 は本実験で使用した多段水槽自体に排出機能が無いため、水槽内に流入した水を水槽外に排出し、越波量を計測するために使用した機器である.以下に仕様を示す.

また,越波量が水槽 1 以降の水槽より比較的多いため,より吐出量の大きいポンプ,容量の大きい貯水タンクを使用した.

写真 5-39 コンプレッサー

企業名: AKTIO

商品コード: BA6 050A0

吐出空気量: 5.0(m³/min)

吐出圧力: 0.7{7.1} (MPa{kgf/cm²})

エアコックサイズ・数量:20A・3ケ

全長: 1850(mm)

全幅:950(mm)

全高:1060(mm)

乾燥時質量:800(kg)

写真 5-40 ダイアフラム式ポンプ

企業名: AKTIO

商品コード: C1A50600

使用エア圧: 0.2~0.7{2~7}

 $\left(MPa\{kgf/cm^2\}\right)$

最高吐出圧力: 0.7 (MPa{kgf/cm²})

最大吐出量:約 600(L/min)

質量:37(kg)

企業名: AKTIO

商品コード: C1A80800

使用エア圧: 0.2~0.7{2~7}

(MPa{kgf/cm²})

最高吐出圧力: 0.7 (MPa{kgf/cm²})

最大吐出量:約800(L/min)

質量:65(kg)

写真 5-41 貯水タンク

企業名: AKTIO

商品コード: ZZE 01000

種類:水タンク

容量:1(m³)

寸法:全長(内寸)1440 (1200) (mm)

全幅(内寸)1400 (1000) (mm) 全高(内寸)905 (900) (mm)

質量:203(kg)

企業名:AKTIO

商品コード: ZZE 02000

種類:水タンク

容量:2(m³)

寸法:全長(内寸)2240 (2000) (mm)

全幅(内寸)1000 (900) (mm)

全高(内寸)1205 (1200) (mm)

質量:273(kg)

写真 5-42 送水用ホース

写真 5-43 取水用ホース

(6) データ収録用パソコン

写真 5-44 データ収録用パソコン

5.4.3.3 実験方法および実験条件

本実験は写真 5-25 に示す平面水槽で行い,造波機から 9.0mの位置に設置した.以下に実験方法と実験条件を示す.

波データは、傾斜板前方に設置した沖波波高計 ch1、ch2 により得られたデータを、ゼロアップクロス法を用いて沖波波高および周期を求め入反射分離法より反射率を求めた。波長 L は式 (4.15) から算出した。また各水槽に流入する越波量 $(m^3/s/m)$ に関しては、図 5-46 に示すとおり、各水槽に接続されたダイヤフラムポンプを起動し水槽 1 に越波し流入した水を貯水タンク 1 へ、水槽 2 に越波し流入した水を貯水タンク 2 というように、それぞれ対応した貯水タンクへ送水し貯水した。また、貯水タンク内に設置した波高計により水位変化を求めその水位変化に水槽の底面積を乗じて越波量 $(m^3/s/m)$ とした。

なお、求めた越波量($m^3/s/m$)は縮尺 1/10 模型となっており、実機に縮尺を変更する必要があるため Froude の相似測を使って原型の越波量に変換した.

- ・図 5-44 の緑色部の斜面板②と斜面板③の角度を 20°, 30°, 40°に変化させるととも に水槽間の距離も変えた.
- ・多段水槽,取水用機器,波高計等を図5-46に示すように設置した.

- ・傾斜板角度、斜面板①の角度は20°で固定した.
- ・実験水深は 70cm で固定したが、越波揚程が 0cm の時に限り 78 cmとした.
- ・越波揚程が15cmの時、脚部のアングルを調節することにより水槽自体を高くした.
- ・水槽 2~3 間、水槽 3~4 間は斜面板②、斜面板③の角度変化に伴い距離を変えた。
- ・実験条件は前項の表 5-20 と同様とした.
- ・収録データ仕様を表 5-21 に示す.
- ・計測時間は2400データ取得か、貯水タンクが満タン状態になるまでとした.
- ファイルネームは図 5-47 とする.
 - i:Model, 越波量Q
 - ii : 造波 (case1~case12)
 - iii:斜面板角度 (2=20°), (3=30°), (4=40°)
 - iv:越波揚程 (0=8cm), (9=0cm), (5=15cm)

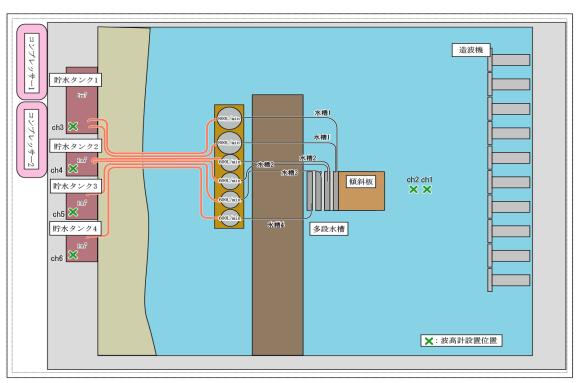


図 5-46 斜面板角度による越波量特性実験概要図

表 5-21 収録データ数

収録項目	仕様
収録データ数	2400
サンプリング周波数	20Hz

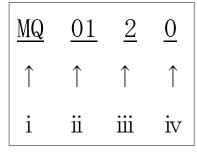


図 5-47 ファイルネーム

5.4.3.4 結果および考察

表 5-22 と表 5-23 は本実験より求めた解析データである. 越波量は全て模型縮尺となっており、実験時に取得した基データとなる. 表 5-23 は表 5-22 の模型サイズのデータを原型に直したものである. 越波揚程が 0 cm の場合は水槽 1 が水没していることから計測は出来なかった. 大きな波条件の場合、 $0.4 \text{m}^3 \text{/s/m}$ もの水が越波・流入してくることが実験から分かった. 予定装置幅 20 m と考えると越波・流入量は $8 \text{m}^3 \text{/s/m}$ となり、多くの越波量を装置に取得できると考えられる.

(1) タンクを用いた単水槽実験との比較(波パワーを用いて)

5.3.5 項において全国の波浪条件を考慮した実験を行った. 5.3.5 項における実験では, 多段水槽ではなく単水槽を用いて襲来する波の越波量を計測した. 単水槽の容量以上の越波量を考慮しポンプと貯水タンクを準備した結果, 越波した水はほぼ計測できた.

多段水槽を使った実験精度を確認するために、越波した水をほぼ計測できた単水槽を使った実験結果と比較することとした.

懸念される点が2点ある.1点目は多段水槽であるため水槽間の斜面板脇から水が流出して越波量が大きく減少することである.2点目もほぼ同様であるが,囲うように側壁があった単水槽と違い,多段水槽における各水槽の側壁は同一レベルの高さであるため大きな波であればあるほど脇から水が流出してしまい越波量が大きく減少することである.

そこで、多段水槽の実験結果と単水槽の実験結果を比較し、多段水槽の実験自体の精度を確認するためにそれぞれの波パワーと越波量の関係を示したものが図 5-48 となる. 越波 揚程は R=8cm と 15cm である.

このグラフから、単水槽の越波量と比較すると多段水槽の越波量の方がわずかに少ないが、波浪条件が異なるにもかかわらずほぼ一致していることが分かる.したがって、多段水槽を用いて行った本実験の越波量は、単水槽を用いて行った実験と同様の精度が確認された.また 5.4.2 項においてスーパースローカメラの映像から判断し求めた開口幅は、越波した波をほぼ取りきれていることが示唆された.

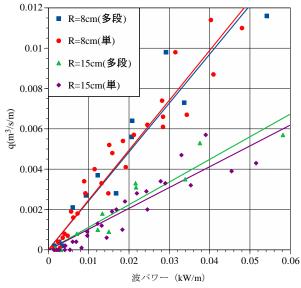


図 5-48 貯水槽および多段水槽の越波量の比較

表 5-22 多段水槽越波量(水槽 1~4:模型)

	斜面板角度	越波揚程	波高H1/3	周期T1/3	波長L	波形勾配	反射率	水深	法先水深	使用	1段目流量q1	2段目流量q2	3段目流量q3	4段目流量q4	トータル流量
ケース名	(deg)	(m)	(m)	(s)	(m)	H/L		(cm)	(cm)	データ数	(m ³ /s/m)	(m³/s/m)	(m ³ /s/m)	(m ³ /s/m)	(m ³ /s/m)
MQ0129	20°	0	4.96	1.22	2.233	0.0222	0.299	78	68.4	2400	(/ /	0.00010	0.00000	0.00000	0.00011
MQ0229	20°	0	5.78	2.27	5.404	0.0107	0.365	78	68.4	2400	<u> </u>	0.00057	0.00000	0.00000	0.00057
MQ0329	20°	0	5.64	2.84	7.007	0.0080	0.411	78	68.4	2400	. !	0.00049	0.00001	0.00000	0.00050
MQ0429 MQ0529	20° 20°	0	10.79 10.33	1.29 2.01	2.454 4.652	0.0440	0.232	78 78	68.4 68.4	2400 2400	· !	0.00166 0.00312	0.00030 0.00057	0.00000 0.00014	0.00196 0.00382
MQ0529 MQ0629	20°	0	11.41	2.94	7.284	0.0222	0.303	78	68.4	2400	R=0のため水没	0.00312	0.00037	0.00014	0.00521
MQ0729	20°	0	15.94	1.26	2.359	0.0676	0.202	78	68.4	2400	し計測なし	0.00277	0.00062	0.00015	0.00355
MQ0829	20°	0	15.78	2.10	4.909	0.0321	0.226	78	68.4	2400	ļ !	0.00534	0.00198	0.00091	0.00823
MQ0929	20°	0	17.85	2.87	7.083	0.0252	0.26	78	68.4	2400	ļ !	0.00715 0.00409	0.00258	0.00116	0.01089
MQ1029 MQ1129	20° 20°	0	20.24	1.34	2.614 4.058	0.0774	0.226	78 78	68.4 68.4	2400 2400	†	0.00409	0.00138 0.00312	0.00033 0.00195	0.00580 0.01201
MQ1229	20°	0	23.20	2.77	6.813	0.0341	0.249	78	68.4	2400	† !	0.00869	0.00419	0.00298	0.01586
MQ0120	20°	8	5.17	1.27	2.391	0.0216	0.525	70	60.4	2400	0.00024	0.00000	0.00000	0.00000	0.00025
MQ0220	20°	8	5.34	2.20	5.197	0.0103	0.512	70	60.4	2400	0.00035	0.00000	0.00000	0.00000	0.00036
MQ0320	20°	8	5.30	2.87	7.083	0.0075	0.494	70	60.4	2400 2400	0.00024	0.00000	0.00000	0.00000	0.00024
MQ0420 MQ0520	20° 20°	8	10.52 10.15	1.27 2.11	2.391 4.937	0.0440	0.328	70 70	60.4 60.4	2400	0.00174 0.00231	0.00033 0.00037	0.00003 0.00006	0.00000	0.00210 0.00274
MQ0520 MQ0620	20°	8	11.78	2.82	6.951	0.0200	0.37	70	60.4	2400	0.00231	0.00037	0.00005	0.00000	0.00274
MQ0720	20°	8	15.10	1.25	2.328	0.0649	0.272	70	60.4	2400	0.00286	0.00074	0.00013	0.00000	0.00373
MQ0820	20°	8	15.52	2.01	4.652	0.0334	0.314	70	60.4	2400	0.00459	0.00132	0.00039	0.00008	0.00638
MQ0920	20°	8	16.90	2.75	6.757	0.0250	0.324	70	60.4	2400	0.00541	0.00147	0.00035	0.00012	0.00735
MQ1020	20°	8	19.10	1.32	2.551	0.0749	0.246	70	60.4	2400	0.00393	0.00131	0.00031	0.00001	0.00556
MQ1120 MQ1220	20° 20°	8	19.17 22.00	1.85 2.61	4.176 6.359	0.0459	0.307	70 70	60.4 60.4	2400 2400	0.00622 0.00711	0.00226 0.00284	0.00089	0.00042	0.00978 0.01158
MQ1220 MQ0130	30°	8	5.16	1.24	2.296	0.0346	0.558	70	60.4	2400	0.00711	0.00284	0.00113	0.00000	0.001158
MQ0230	30°	8	5.51	2.15	5.059	0.0109	0.53	70	60.4	2400	0.00039	0.00001	0.00000	0.00000	0.00040
MQ0330	30°	8	5.31	2.74	6.729	0.0079	0.492	70	60.4	2400	0.00025	0.00000	0.00000	0.00000	0.00025
MQ0430	30°	8	10.28	1.28	2.422	0.0424	0.352	70	60.4	2400	0.00177	0.00038	0.00001	0.00000	0.00216
MQ0530 MQ0630	30° 30°	8	10.43 12.10	2.14	5.030 7.035	0.0207 0.0172	0.38	70 70	60.4 60.4	2400 2400	0.00267 0.00301	0.00045 0.00045	0.00006 0.00005	0.00002	0.00320 0.00351
MQ0730	30°	8	14.92	1.27	2.391	0.0624	0.314	70	60.4	2400	0.00297	0.00076	0.00011	0.00002	0.00384
MQ0830	30°	8	15.49	2.15	5.059	0.0306	0.342	70	60.4	2400	0.00497	0.00156	0.00039	0.00008	0.00700
MQ0930	30°	8	17.60	2.87	7.083	0.0248	0.342	70	60.4	2400	0.00557	0.00180	0.00038	0.00014	0.00788
MQ1030 MQ1130	30° 30°	8	18.76 19.94	1.30 1.95	2.486 4.472	0.0755 0.0446	0.278	70 70	60.4 60.4	2400 2400	0.00443 0.00677	0.00153 0.00273	0.00028 0.00080	0.00002 0.00044	0.00626 0.01073
MQ1130 MQ1230	30°	8	21.98	2.72	6.666	0.0330	0.326	70	60.4	2400	0.0077	0.00273	0.00080	0.00044	0.01073
MQ0140	40°	8	4.93	1.20	2.169	0.0227	0.502	70	60.4	2400	0.00028	0.00003	0.00002	0.00000	0.00033
MQ0240	40°	8	5.39	2.27	5.404	0.0100	0.513	70	60.4	2400	0.00032	0.00000	0.00000	0.00000	0.00032
MQ0340	40°	8	5.39	2.76	6.785	0.0079	0.486	70	60.4	2400	0.00022	0.00000	0.00000	0.00000	0.00022
MQ0440 MQ0540	40° 40°	8	10.28 10.43	1.27 2.11	2.391 4.937	0.0430	0.313	70 70	60.4 60.4	2400 2400	0.00174 0.00243	0.00030 0.00040	0.00001 0.00004	0.00000	0.00205 0.00287
MQ0540 MQ0640	40°	8	11.10	2.72	6.666	0.0211	0.303	70	60.4	2400	0.00243	0.00043	0.00004	0.00000	0.00237
MQ0740	40°	8	14.69	1.25	2.328	0.0631	0.234	70	60.4	2400	0.00295	0.00070	0.00009	0.00000	0.00375
MQ0840	40°	8	15.34	2.11	4.937	0.0311	0.295	70	60.4	2400	0.00480	0.00153	0.00035	0.00003	0.00671
MQ0940	40°	8	16.43	2.69	6.583	0.0250	0.304	70	60.4	2400	0.00572	0.00166	0.00037	0.00014	0.00789
MQ1040 MQ1140	40° 40°	8	19.28 19.58	1.30	2.486 4.530	0.0776 0.0432	0.207	70 70	60.4 60.4	2400 2400	0.00421 0.00650	0.00161 0.00253	0.00034	0.00000 0.00034	0.00616 0.01025
MQ1240	40°	8	21.29	2.66	6.506	0.0327	0.279	70	60.4	2400	0.00761	0.00311	0.00108	0.00048	0.01228
MQ0125	20°	15	5.54	1.24	2.296	0.0241	0.645	70	52.4	2400	0.00002	0.00000	0.00003	0.00001	0.00007
MQ0225	20°	15	5.73	2.20	5.197	0.0110	0.638	70	52.4	2400	0.00002	0.00000	0.00000	0.00000	0.00002
MQ0325	20° 20°	15 15	5.30 11.21	2.61	6.359 2.517	0.0083	0.588	70 70	52.4 52.4	2400 2400	0.00002 0.00078	0.00000	0.00000	0.00000	0.00002 0.00082
MQ0425 MQ0525	20°	15	11.55	2.14	5.030	0.0445	0.382	70	52.4	2400	0.00078	0.00008	0.00003	0.00000	0.00082
MQ0625	20°	15	11.55	2.62	6.387	0.0181	0.466	70	52.4	2400	0.00081	0.00008	0.00001	0.00000	0.00090
MQ0725	20°	15	15.67	1.27	2.391	0.0655	0.288	70	52.4	2400	0.00149	0.00031	0.00004	0.00001	0.00184
MQ0825	20°	15	15.88	2.01	4.652	0.0341	1.416	70	52.4	2400	0.00236	0.00060	0.00009	0.00003	0.00307
MQ0925 MQ1025	20° 20°	15 15	16.96 19.69	2.75 1.30	6.757 2.486	0.0251	0.397	70 70	52.4 52.4	2400 2400	0.00267 0.00253	0.00063 0.00066	0.00015 0.00010	0.00006 0.00001	0.00351
MQ1023 MQ1125	20°	15	20.62	2.06	4.793	0.0430	0.362	70	52.4	2400	0.00233	0.00000	0.00010	0.00017	0.00527
MQ1225	20°	15	22.33	2.72	6.666	0.0335	1.309	70	52.4	2400	0.00370	0.00125	0.00045	0.00027	0.00567
MQ0135	30°	15	5.56	1.25	2.328	0.0239	0.704	70	52.4	2400	0.00003	0.00000	0.00001	0.00000	0.00004
MQ0235	30° 30°	15 15	5.54 5.25	1.87 2.18	4.240 5.140	0.0131	0.69	70 70	52.4 52.4	2400 2400	0.00003 0.00000	0.00000	0.00000	0.00000	0.00003
MQ0335 MQ0435	30°	15	5.25 11.35	1.28	2.422	0.0102	0.643	70	52.4 52.4	2400	0.00000	0.00000	0.00000	0.00000	0.00001
MQ0535	30°	15	11.26	2.05	4.770	0.0236	0.564	70	52.4	2400	0.00007	0.00008	0.00001	0.00000	0.00036
MQ0635	30°	15	10.73	2.43	5.852	0.0183	0.543	70	52.4	2400	0.00107	0.00010	0.00001	0.00000	0.00118
MQ0735	30°	15	16.29	1.30	2.486	0.0655	0.321	70	52.4	2400	0.00166	0.00037	0.00011	0.00001	0.00215
MQ0835 MQ0935	30° 30°	15 15	16.45 15.94	2.14	5.030 6.162	0.0327	0.478	70 70	52.4 52.4	2400 2400	0.00279 0.00294	0.00072 0.00066	0.00021 0.00021	0.00005 0.00007	0.00377 0.00388
MQ1035	30°	15	19.83	1.32	2.551	0.0239	0.453	70	52.4	2400	0.00294	0.00085	0.00021	0.00007	0.00388
MQ1035	30°	15	20.87	1.99	4.593	0.0454	0.43	70	52.4	2400	0.00449	0.00136	0.00063	0.00033	0.00681
MQ1235	30°	15	20.97	2.51	6.079	0.0345	0.401	70	52.4	2400	0.00428	0.00140	0.00063	0.00032	0.00663
MQ0145	40°	15	5.51	1.26	2.359	0.0234	0.699	70	52.4	2400	0.00001	0.00000	0.00000	0.00000	0.00002
MQ0245	40°	15	5.77	2.00	4.623	0.0125	0.662	70	52.4	2400	0.00003	0.00000	0.00000	0.00000	0.00003
MQ0345 MQ0445	40° 40°	15 15	5.12 11.13	2.30 1.27	5.484 2.391	0.0093	0.603	70 70	52.4 52.4	2400 2400	0.00000 0.00087	0.00000	0.00000	0.00000	0.00000
MQ0445 MQ0545	40°	15	11.13	2.08	4.851	0.0466	0.537	70	52.4	2400	0.00087	0.00009	0.00000	0.00000	0.00095
MQ0645	40°	15	11.03	2.66	6.506	0.0170	0.515	70	52.4	2400	0.00115	0.00014	0.00000	0.00000	0.00129
MQ0745	40°	15	16.22	1.31	2.517	0.0644	0.315	70	52.4	2400	0.00152	0.00032	0.00001	0.00001	0.00186
MQ0845	40°	15	16.07	2.08	4.851	0.0331	0.465	70	52.4	2400	0.00275	0.00074	0.00010	0.00003	0.00363
MQ0945	40°	15	16.30	2.67	6.534	0.0249	0.437	70 70	52.4 52.4	2400 2400	0.00319 0.00281	0.00077 0.00074	0.00024 0.00024	0.00007	0.00428 0.00382
	AU0	15	20.20	1 22	2 502										
MQ1045 MQ1145	40° 40°	15 15	20.39	1.33 2.01	2.582 4.652	0.0790	0.316	70	52.4	2400	0.00281	0.00074	0.00024	0.0003	0.00646

表 5-23 多段水槽越波量(水槽 1~4:原型)

			. オ	₹ 5-23	多特		越	皮重 (水	:槽 1~4	: 原型)			
L 7.0	斜面板角度	越波揚程	波高H1/3	周期T1/3	波長L	波形勾配	Б	波power	1段目流量q1	2段目流量q2	3段目流量q3	4段目流量q4	トータル流量
ケース名	(deg)	(m)	(m)	(s)	(m)	H/L	D	(kW/m)	$(m^3/s/m)$	$(m^3/s/m)$	(m ³ /s/m)	(m ³ /s/m)	$(m^3/s/m)$
MQ0129	20°	0	0.50	3.9	22.3	0.0222	1.08	0.440		0.00329	0.00008	0.00004	0.00341
MQ0229	20°	0	0.58	7.2	54.0	0.0107	1.16	1.190		0.01802	0.00013	0.00001	0.01817
MQ0329	20°	0	0.56	9.0	70.1	0.0080	1.05	1.284		0.01556	0.00019	0.00005	0.01579
MQ0429	20°	0	1.08	4.1	24.5	0.0440	1.11	2.253		0.05243	0.00958	0.00002	0.06203
MQ0529	20°	0	1.03	6.4	46.5	0.0222	1.19	3.464		0.09854	0.01795	0.00439	0.12088
MQ0629	20°	0	1.14	9.3	72.8	0.0157	1.03	5.336	R=0のため水没	0.13041	0.02663	0.00756	0.16460
MQ0729	20°	0	1.59	4.0	23.6	0.0676	1.10	4.758	し計測なし	0.08772	0.01974	0.00480	0.11225
MQ0829	20°	0	1.58	6.6	49.1	0.0321	1.18	8.379		0.16893	0.06246	0.02874	0.26013
MQ0929	20°	0	1.79	9.1	70.8	0.0252	1.04	12.932		0.22604	0.08172	0.03657	0.34433
MQ1029	20°	0	2.02	4.2	26.1	0.0774	1.12	8.360		0.12940	0.04357	0.01053	0.18350
MQ1129	20°	0	2.08	5.7	40.6	0.0512	1.20	12.720		0.21940	0.09857	0.06173	0.37970
MQ1229	20°	0	2.32	8.8	68.1	0.0341	1.06	21.485	0.00750	0.27480	0.13246	0.09428	0.50154
MQ0120	20°	0.8	0.52	4.0	23.9	0.0216	1.13	0.519	0.00759	0.00000	0.00007	0.00009	0.00775
MQ0220	20°	0.8	0.53	7.0	52.0	0.0103	1.13	0.965	0.01113	0.00007	0.00008	0.00004	0.01132
MQ0320	20°	0.8	0.53	9.1	70.8	0.0075	0.98	1.076	0.00746	0.00000	0.00006	0.00003	0.00756
MQ0420	20°	0.8	1.05	4.0	23.9	0.0440	1.13	2.150	0.05496	0.01058	0.00088	0.00005	0.06647
MQ0520	20°	0.8	1.02	6.7	49.4	0.0206	1.15	3.395	0.07305	0.01163	0.00194	0.00007	0.08669
MQ0620	20°	0.8	1.18	8.9	69.5	0.0169	0.99	5.277	0.07621	0.01125	0.00173	0.00002	0.08921
MQ0720	20°	0.8	1.51	4.0	23.3	0.0649	1.12	4.332	0.09050	0.02335	0.00401	0.00005	0.11791
MQ0820	20°	0.8	1.55	6.4	46.5	0.0334	1.17	7.675	0.14528	0.04172	0.01241	0.00249	0.20190
MQ0920	20°	0.8	1.69	8.7	67.6	0.0250	1.01	10.759	0.17102	0.04634	0.01113	0.00381	0.23230
MQ1020	20°	0.8	1.91	4.2	25.5	0.0749	1.14	7.477	0.12434	0.04138	0.00973	0.00024	0.17569
MQ1120	20°	0.8	1.92	5.9	41.8	0.0459	1.19	10.979	0.19657	0.07147	0.02822	0.01316	0.30942
MQ1220	20°	0.8	2.20	8.3	63.6	0.0346	1.04	17.861	0.22471	0.08981	0.03582	0.01579	0.36612
MQ0130	30°	0.8	0.52	3.9	23.0	0.0225	1.12	0.500	0.00645	0.00011	0.00019	0.00002	0.00677
MQ0230	30°	0.8	0.55	6.8	50.6	0.0109	1.14	1.012	0.01240	0.00017	0.00002	0.00000	0.01258
MQ0330 MQ0430	30° 30°	0.8	0.53 1.03	8.7 4.0	67.3 24.2	0.0079	1.01	1.061 2.076	0.00784 0.05597	0.00002 0.01200	0.00010 0.00026	0.00004	0.00799
MQ0430 MQ0530	30°	0.8	1.03	6.8	50.3	0.0424	1.13	3.616	0.05597	0.01200	0.00026	0.00000	0.06823
MQ0530 MQ0630	30°	0.8	1.04	9.0	70.3	0.0207	0.99	5.589	0.08443	0.01412	0.00202	0.00058	0.10115
MQ0630 MQ0730	30°	0.8	1.49	4.0	23.9	0.0172	1.13	4.325	0.09306	0.01433	0.00148	0.00012	0.11099
MQ0730 MQ0830	30°	0.8	1.55	6.8	50.6	0.0306	1.13	7.999	0.09380	0.04922	0.00334	0.00240	0.12137
MQ0930	30°	0.8	1.76	9.1	70.8	0.0248	0.98	11.860	0.17620	0.05678	0.01240	0.00240	0.24932
MQ1030	30°	0.8	1.88	4.1	24.9	0.0755	1.14	7.062	0.14022	0.04836	0.00891	0.00050	0.19799
MQ1130	30°	0.8	1.99	6.2	44.7	0.0446	1.18	12.390	0.21396	0.08621	0.02515	0.01393	0.33926
MQ1230	30°	0.8	2.20	8.6	66.7	0.0330	1.02	18.133	0.23148	0.11005	0.03397	0.01719	0.39270
MQ0140	40°	0.8	0.49	3.8	21.7	0.0227	1.10	0.436	0.00879	0.00086	0.00053	0.00013	0.01032
MQ0240	40°	0.8	0.54	7.2	54.0	0.0100	1.12	1.000	0.01006	-0.00002	0.00005	0.00000	0.01008
MQ0340	40°	0.8	0.54	8.7	67.8	0.0079	1.01	1.096	0.00689	-0.00001	0.00005	0.00007	0.00701
MQ0440	40°	0.8	1.03	4.0	23.9	0.0430	1.13	2.053	0.05509	0.00948	0.00019	0.00000	0.06476
MQ0540	40°	0.8	1.04	6.7	49.4	0.0211	1.15	3.584	0.07697	0.01255	0.00133	0.00000	0.09086
MQ0640	40°	0.8	1.11	8.6	66.7	0.0167	1.02	4.624	0.09164	0.01374	0.00132	0.00001	0.10671
MQ0740	40°	0.8	1.47	4.0	23.3	0.0631	1.12	4.100	0.09335	0.02224	0.00290	0.00000	0.11849
MQ0840	40°	0.8	1.53	6.7	49.4	0.0311	1.15	7.754	0.15179	0.04834	0.01100	0.00092	0.21205
MQ0940	40°	0.8	1.64	8.5	65.8	0.0250	1.02	10.087	0.18088	0.05245	0.01157	0.00450	0.24940
MQ1040	40°	0.8	1.93	4.1	24.9	0.0776	1.14	7.459	0.13313	0.05079	0.01061	0.00014	0.19467
MQ1140	40°	0.8	1.96	6.2	45.3	0.0432	1.18	12.040	0.20567	0.07993	0.02792	0.01072	0.32425
MQ1240	40°	0.8	2.13	8.4	65.1	0.0327	1.03	16.851	0.24065	0.09842	0.03411	0.01504	0.38822
MQ0125	20°	1.5	0.55	3.9	23.0	0.0241	1.12	0.577	0.00063	0.00008	0.00107	0.00030	0.00208
MQ0225	20°	1.5	0.57	7.0	52.0	0.0110	1.13	1.111	0.00070	0.00005	0.00003	0.00001	0.00078
MQ0325	20°	1.5	0.53	8.3	63.6	0.0083	1.04	1.037	0.00063	0.00002	0.00006	0.00000	0.00072
MQ0425	20°	1.5	1.12	4.1	25.2	0.0445	1.14	2.548	0.02454	0.00148	0.00003	0.00000	0.02605
MQ0525	20°	1.5	1.16	6.8	50.3	0.0230	1.14	4.434	0.02637	0.00265	0.00103	0.00003	0.03009
MQ0625 MQ0725	20° 20°	1.5 1.5	1.16 1.57	8.3 4.0	63.9 23.9	0.0181	1.04	4.931 4.770	0.02568 0.04699	0.00255 0.00978	0.00025 0.00117	0.00003 0.00027	0.02851 0.05821
MQ0725 MQ0825	20°	1.5	1.59	6.4	46.5	0.0655	1.13	8.035	0.04699	0.00978	0.00117	0.00027	0.05821
MQ0825 MQ0925	20°	1.5	1.70	8.7	67.6	0.0341	1.01	10.836	0.07457	0.01897	0.00274	0.00086	0.09713
MQ1025	20°	1.5	1.97	4.1	24.9	0.0231	1.14	7.780	0.07988	0.01977	0.00480	0.00193	0.11108
MQ1025	20°	1.5	2.06	6.5	47.9	0.0430	1.16	13.786	0.11688	0.03265	0.01177	0.00547	0.16677
MQ1225	20°	1.5	2.23	8.6	66.7	0.0335	1.02	18.715	0.11707	0.03943	0.01429	0.00860	0.17939
MQ0135	30°	1.5	0.56	4.0	23.3	0.0239	1.12	0.587	0.00095	0.00014	0.00023	0.00004	0.00136
MQ0235	30°	1.5	0.55	5.9	42.4	0.0131	1.19	0.925	0.00089	0.00001	0.00004	0.00000	0.00094
MQ0335	30°	1.5	0.53	6.9	51.4	0.0102	1.14	0.927	0.00004	0.00009	0.00003	0.00000	0.00017
MQ0435	30°	1.5	1.14	4.0	24.2	0.0469	1.13	2.530	0.02739	0.00268	0.00017	0.00000	0.03024
MQ0535	30°	1.5	1.13	6.5	47.7	0.0236	1.16	4.096	0.03238	0.00343	0.00089	0.00006	0.03676
MQ0635	30°	1.5	1.07	7.7	58.5	0.0183	1.08	4.112	0.03371	0.00316	0.00027	0.00016	0.03730
MQ0735	30°	1.5	1.63	4.1	24.9	0.0655	1.14	5.325	0.05256	0.01161	0.00333	0.00036	0.06785
MQ0835	30°	1.5	1.65	6.8	50.3	0.0327	1.14	8.995	0.08823	0.02292	0.00658	0.00164	0.11937
MQ0935	30°	1.5	1.59	8.0	61.6	0.0259	1.06	9.266	0.09291	0.02089	0.00654	0.00237	0.12271
MQ1035	30°	1.5	1.98	4.2	25.5	0.0777	1.14	8.059	0.09114	0.02685	0.00922	0.00200	0.12921
MQ1135	30°	1.5	2.09	6.3	45.9	0.0454	1.17	13.778	0.14205	0.04304	0.02003	0.01036	0.21549
MQ1235	30°	1.5	2.10	7.9	60.8	0.0345	1.07	15.948	0.13522	0.04441	0.01984	0.01022	0.20969
MQ0145	40°	1.5	0.55	4.0	23.6	0.0234	1.12	0.583	0.00044	0.00009	0.00015	0.00004	0.00072
MQ0245	40°	1.5	0.58	6.3	46.2	0.0125	1.17	1.057	0.00089	0.00000	0.00005	0.00004	0.00098
MQ0345	40°	1.5	0.51	7.3	54.8	0.0093	1.11	0.910	0.00000	0.00000	0.00005	0.00004	0.00009
MQ0445	40°	1.5	1.11	4.0	23.9	0.0466	1.13	2.407	0.02739	0.00272	0.00008	0.00000	0.03019
MQ0545	40°	1.5	1.12	6.6	48.5	0.0231	1.16	4.116	0.03270	0.00374	0.00005	0.00006	0.03654
MQ0645 MQ0745	40°	1.5	1.10	8.4	65.1	0.0170	1.03	4.523	0.03624	0.00448	0.00006	0.00001	0.04079
MQ0745	40° 40°	1.5 1.5	1.62	4.1	25.2 48.5	0.0644	1.14	5.335	0.04813 0.08703	0.01021 0.02346	0.00018 0.00332	0.00021	0.05873 0.11482
MQ0845 MQ0945	40°	1.5	1.61	6.6 8.4	48.5 65.3	0.0331	1.16	8.428 9.893	0.08/03	0.02346	0.00332	0.00101	0.11482
_	40°	1.5	2.04	4.2		0.0249			0.10098	0.02430	0.00772		
MQ1045 MQ1145	40°	1.5	2.04	6.4	25.8 46.5	0.0790	1.15	8.609 12.796	0.08899	0.02334	0.00745	0.00102 0.00713	0.12080 0.20416
MQ1145 MQ1245	40°	1.5	2.00	7.7	58.5	0.0431	1.17	15.629	0.13572	0.04339	0.01792	0.00713	0.20416
V1243		1.0	2.07	· ···	20.2	5.0551	1.00	13.047	U.17/1J	5.05074	5.017/0	5.00710	0.220/3

(2) 斜面板角度の変動による越波量の変化(波パワーを用いて)

図 $5-49\sim5-58$ は R=8cm および R=15cm の各槽における斜面板角度ごとの波パワーと単位時間・単位幅当たりの越波量の関係である.

どの水槽においても R=15cm より R=8cm の方が越波量は多いことが分かる. また,全体の傾向として,角度による越波量の変化は確認出来なかった. このことから,一度遡上した水は,水槽で確実に取りきることが出来てさえいれば斜面板角度は $20^\circ\sim40^\circ$ の範囲では越波量に大きく影響を与える要因ではないことが分かった. (居波ら, 2014)

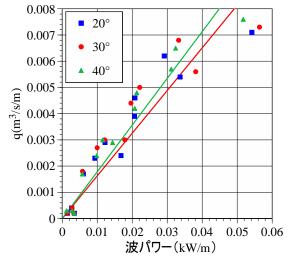


図 5-49 波パワーと越波量の関係 (R=8cm, 水槽 1)

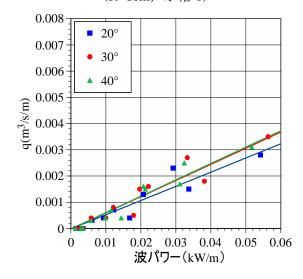


図 5-51 波パワーと越波量の関係 (R=8cm, 水槽 2)

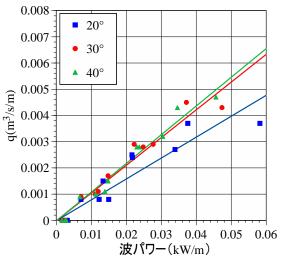


図 5-50 波パワーと越波量の関係 (R=15cm, 水槽 1)

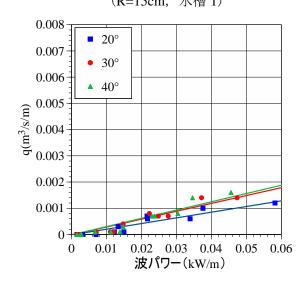
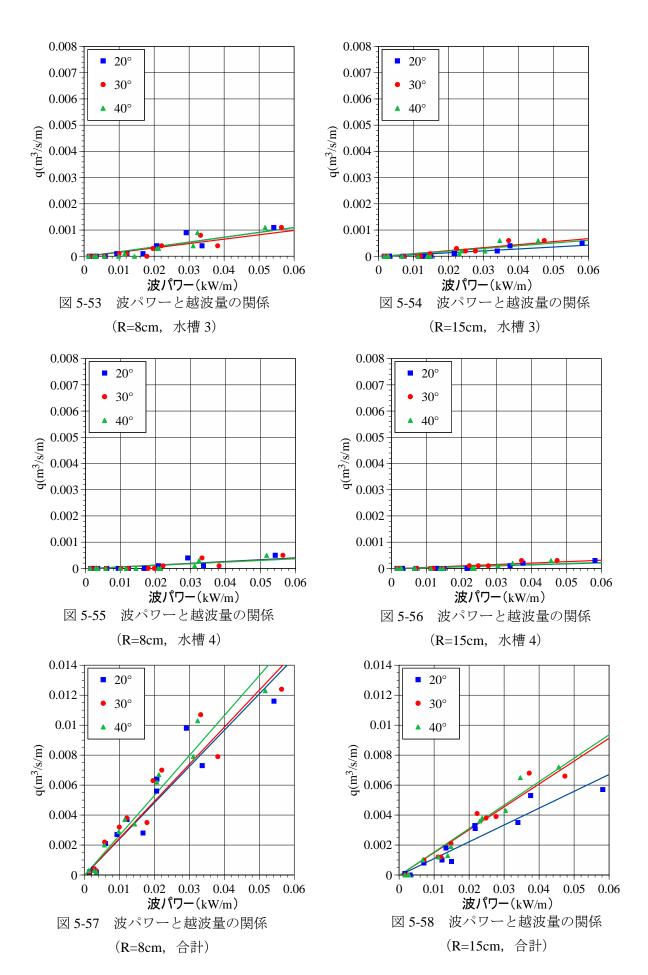
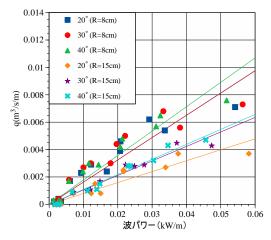
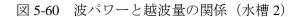
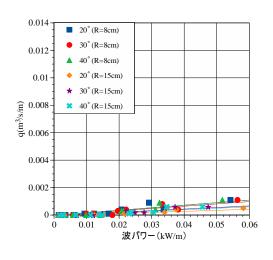


図 5-52 波パワーと越波量の関係 (R=15cm, 水槽 2)


図 5-59~5-63 は各水槽における波パワーと越波量をまとめた結果となる. 既出の結果と同様に、斜面板の違いはほとんど見受けられず、越波揚程が高くなるにつれ越波量は減っていることがわかる. また、水槽 3 および水槽 4 の越波量は水槽 1,2 と比べ微量であることがわかる. 水槽 3,4 は、潮位変動や高波浪時に活躍する水槽という設定であるためこのような結果となったと考えられる.

20° (R=8cm) 30° (R=8cm) 0.012 40° (R=8cm) 20° (R=15cm) 0.01 30° (R=15cm) (m₃/s/_m) 0.006 40° (R=15cm) 0.004 0.002 $0 - \frac{1}{2}$ 0.02 0.03 0.05 0.06 0.01 0.04 波パワー(kW/m)

図 5-59 波パワーと越波量の関係(水槽1)

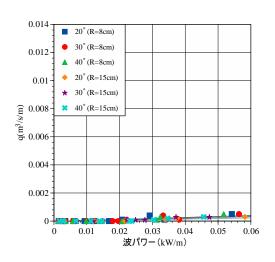


図 5-61 波パワーと越波量の関係(水槽3)

図 5-62 波パワーと越波量の関係(水槽 4)

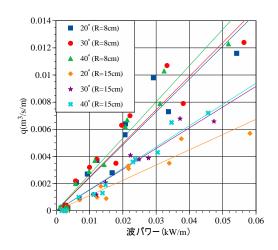


図 5-63 波パワーと越波量の関係(合計)

ここで、図 5-64~5-66 に示す各水槽に流入する越波量と波パワーの関係(R=0.8m)を、前述した単水槽の越波量を測定した際にも用いた関係式(5.6)で表す.

$$q = \alpha E \tag{5.6}$$

斜面板角度 20°では, α の値はそれぞれ 1 段目 0.0153, 2 段目 0.0050, 3 段目 0.0017, 4 段目 0.0007 となり,斜面板角度 30°では,1 段目 0.0156,2 段目 0.0059,3 段目 0.0016,4 段目 0.0007 となり,斜面板角度 40°では,1 段目 0.0167,2 段目 0.0059,3 段目 0.0017,4 段目 0.0006 となる.この結果から斜面板の角度による違いはほぼないことが確認された.

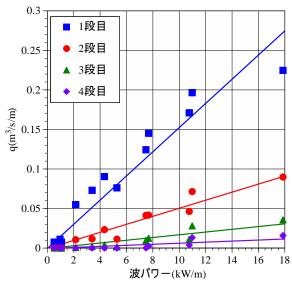


図 5-64 各段における波パワーと越波量の関係 (斜面板角度 20°)

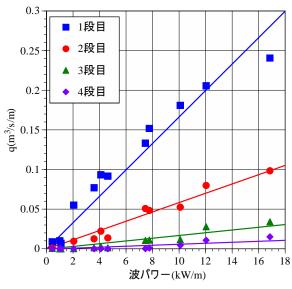


図 5-66 各段における波パワーと越波量の関係 (斜面板角度 40°)

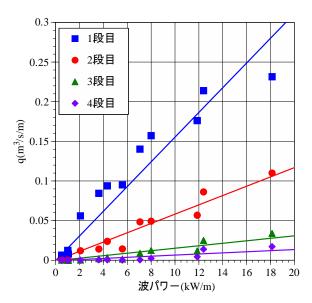


図 5-65 各段における波パワーと越波量の関係 (斜面板角度 30°)

図 5-67 は、斜面板角度ごとの全越波量を各越波揚程に分けてまとめた結果となる. この結果を式 5.6 でまとめた. その結果、斜面板角度 20°では、越波揚程 (R) が 0m, 0.8m, 1.5m のとき α の値はそれぞれ 0.0257, 0.0228, 0.0106, となり、斜面板角度 30°では、越波揚程 (R) が 0.8m, 1.5m のとき α の値はそれぞれ 0.0237, 0.0138, 斜面板角度 40°では、越波揚程 (R) が 0.8m, 1.5m のとき α の値はそれぞれ 0.0249, 0.0142 となる. この結果から、 α の値は越波揚程に強く関係しており斜面板角度にほとんど関係していないことがわかった。また、単水槽を使った越波量特性の結果と比較して、越波揚程 0.8m ではほぼ同じ値となり越波揚程 1.5m ではわずかに高い値となったもののほぼ同様な値となった.

水槽の各段でまとめた結果と全越波量をまとめた結果から、越波量は斜面板の角度にはほぼ関係ないことが確認された。また、多段水槽を使ったαの値は単水槽を使った実験と同様の値となったことから波パワーを用いた手法の正確性と有効性が認められた。

図 5-67 各斜面板角度,各Rにおける 波パワーと越波量の関係(合計)

5.4.4 まとめ

(1) タンクを用いた単水槽実験との比較

5.3.5.2 項において行った単水槽による越波量計測実験と多段水槽による越波量計測実験の結果を波パワーと越波量の関係性で比較すると、単水槽の越波量よりも多段水槽の越波量の方がわずかに少ないがほぼ一致していることが分かる。したがって、多段水槽を用いて行った本実験の越波量は、単水槽を用いて行った実験と同様の精度であったことが確認された。また 5.4.2 項においてスーパースローカメラの映像から判断し求めた開口幅は、越波した波を取りきることが可能であることが示唆された。

(2) 斜面板角度の変動による越波量の変化

R=8cm および R=15cm の各槽における斜面板角度ごとの波パワーと越波量の関係は、どの水槽においても R=15cm より R=8cm の方が越波量は多いこと如実に示した。また、全体の傾向として斜面板の角度による越波量の変化は確認出来なかった。5.4.2 項で得たスロー動画を確認すると、各水槽に水が入る瞬間は襲来した波がそのままの勢いで各水槽に入るのではなく、多くが勢いそのままに開口部を飛び越え斜面板を遡上したのちに重力に従い下方へ向けて戻る際に各水槽に落ちるという仕組みであることがわかった。このような装置の特性も踏まえると、越波した水は水槽で確実に取りきることが出来れば斜面板角度は $20^{\circ}\sim40^{\circ}$ の範囲では越波量に大きく影響を与える要因ではないことが分かった。

水槽3 および水槽4 の越波量は水槽1,2 と比べ微量であり,水槽3,4 は潮位変動や高波浪時に受水する水槽という設定であるためこのような結果となったと考えられる.

斜面板角度ごとの全越波量を各越波揚程に分けてまとめた結果から、越波量と波エネルギーの関係式で表すと斜面板角度 20° では、越波揚程 (R) が 0m, 0.8m, 1.5m のときそれぞれ q=0.0257E, q=0.0228E, q=0.0106E, となり、斜面板角度 30° では、越波揚程 (R) が 0.8m, 1.5m のときそれぞれ q=0.0237E, q=0.0138E, 斜面板角度 40° では、越波揚程 (R) が 0.8m, 1.5m のときそれぞれ q=0.0249E, q=0.0142E となる。この結果から、越波量は越波揚程に関係しており斜面板角度にほとんど関係していないことが示唆された。また、単水槽を使った越波量特性の結果と比較して、越波揚程 0.8m ではほぼ同じ値となり越波揚程 1.5m ではわずかに高い値となったもののほぼ同様な値となった.

打上げ高と波パワーの関係と同様に、越波量と波パワーとの関係も同様にまとめることができた. 越波量の推定は越波式波力発電装置を開発するうえで重要な部分となる(居波ら,2014) ため、多段水槽でも確実に越波水を取水したことを確認できた本実験は有意義であるとともに、波パワーという従来越波量を推定する際に用いられなかった手法の有効性も確認できた.

第6章 結論

本論文は、波が持つ膨大なエネルギーを有効利用すべく研究開発を進めている越波式波力発電装置を 用いた波力発電システムのための実験的研究として、波の打上げ高と越波量の基礎的な研究を行い新た な推定方法として波パワーを用いた手法を提案したものであり、主要な結論を以下に示す.

1. 打上げ高特性

(1) 規則波

傾斜板角度と波形勾配でまとめた結果, H/L=0.019 は既存の理論とよく合っており(S) surging waves 領域と(B) breaking waves 領域に分けた Sainflou の重複波の水面波形を考慮した式を適用した場合が顕著で完全に傾向と一致している.

H/L=0.032 は,高田(海底勾配 0)の結果,田中ら(海底勾配 1/30),田中らの実験値(高田(B) Sainflou) と,田中らの実験値(高田(B) Miche)の結果は傾向が完全に一致し Saville, Savage,田中ら実験値(高田(S) Sainflou),田中ら実験値(高田(S) Miche)の傾向が完全に一致していることから,実験値や実験値を基に既存の理論を考慮した結果は既存の理論とよく合っているが(S) surging waves 領域と(B) breaking waves 領域による差異が確認された.

H/L=0.051 の結果は、すべてのデータの傾向が完全に一致している.

打上げ高と Iribarren 数でまとめた結果, surging waves 領域, breaking waves 領域に関わらず Iribarren 数が増加すると打上げ高は減少した. また,傾斜板角度 θ = 20° を超えると打上げ高が低くなることが示唆された. なお,傾斜板角度に関わらず Iribarren 数が小さくなる条件は (B) breaking waves 領域である.

波パワーと打上げ高の関係は比例関係にあることがわかる. surging waves 領域では, 15°の場合に打上げ高が最も高くなることがわかる. 一方, breaking waves 領域では 20°の breaking waves 領域, surging waves 領域と, 30°の breaking waves 領域はほぼ同じ傾向を示す結果となった. なお, 20°は breaking waves 領域と surging waves 領域に関わらず波は打上げられるとわかった.

角度ごとに波パワーW(kw/m), Iribarren 数 (ξ) , 打上げ高 R_m (m)をまとめた結果,傾斜板角度 15° では波パワーは 54.8kw/m で最大となりその際の打上げ高が 6.1m となり最大となる.傾斜板角度 20° では波パワーは 57.2kw/m で最大となりその際の打上げ高は 6.3m となり最大となる.傾斜板角度 25° ではほかの角度と違い,波パワーが最大のとき(50.8kw/m)打上げ高は最大(2.8m)ではない.最大打上げ高は 3.6m でありその際の波パワーは 3.6m である.この原因は,傾斜板角度 3.6m でありその際の波パワーは 3.6m である.この原因は,傾斜板角度 3.6m ではない.具体的には,波パワーが最大の時,傾斜板角度 3.6m では約 3.6m でありたなり傾斜板角度 3.6m では約 3.6m では約 3.6m である.この原因は,傾斜板角度 3.6m ではない.表すでは、3.6m ではない.表すでは、3.6m ではない.表すでは、3.6m では、3.6m ではない.表すでは、3.6m ではない.また,波パワーと反射率の関係よりも明瞭な従来表している波形勾配と反射率の関係から,傾斜板角度が大きくなるにしたがって反射が大きくなっていることがわかった.

以上より、傾斜板角度による違いはあるものの、波パワーが小さい領域では、打上げ高は Iribarren 数に関係しないことがわかる.

(2) 不規則波

既往の研究として,間瀬(Mase, 1989)がまとめた Iribarren 数(ξ)と相対打上げ高($\mathbf{R}_{ave}/\mathbf{H}_{1/3}$)の関係と本研究結果を比較した.実験で得られた Iribarren 数の範囲は,既往の研究よりも広範囲となっている.規則波同様,波の打上げ高は Iribarren 数だけでなく傾斜板角度によって傾向が異なり,傾斜板角度 $\mathbf{20}^\circ$ までは増加しその後減少する傾向となった. breaking waves と surging waves の区分も傾斜板角度で異なった. 波高と波形勾配が増加するにしたがい沖で砕波することになり,傾斜板の位置における波の現象のみで打上げ高を評価することは限界がある.

また、打上げ高と Iribarren 数の関係は規則波と同様な傾向となり、Iribarren 数が増加すると打上げ高は減少した. 20°の場合が最も打上げ高は高くなった. 25°の場合も最高打上げ高は 20°の場合と大差ないが、breaking waves 領域で確認すると、波浪条件による打上げ高のバラつきを確認できる. このことから、20°が最も打上げ高が高い条件であることを確認できた.

打上げ高と波パワーの関係は、波パワーが増加すると打上げ高は増加する比例関係を確認した. 傾斜板角度との関係では、角度が 20°までは打上げ高も増加するがそれよりも大きな角度となると打上げ高は減少する結果となった. この結果から越波式波力発電装置に採用すべき傾斜板角度は最も打上げ高が高くなる 20°と決定した.

打上げ高を波パワーと Iribarren 数で表した結果から、規則波と同様に打上げ高は Iribarren 数が小さく波パワーが大きいほど高くなる結果が得られた。また、傾斜板角度が増加するにしたがって、反射の影響により打上げ高は波パワーよりも Iribarren 数に関係することがわかった。なお、波形勾配と反射率の関係から、傾斜板角度が大きくなるにしたがって反射が大きくなっていることが明瞭に示唆された。

以上より,不規則波の実験結果からも既存の理論よりも波パワーを用いて波の打上げ高さを想定する手法の有効性が確認できた.

2. 越波量特性

(1) 各種傾斜板長さによる越波量特性

波高と越波量,越波揚程の関係から,越波揚程が低いほど越波量が多く波高が大きいほど越波量も 増加する傾向がある.

波形勾配と越波量,越波揚程の関係から,越波揚程 8 cm のときの越波量は傾斜板の長さによる差異はほとんど見受けられないが,SQ (1.25 m) だけ越波量が減少する傾向を得た。また,越波揚程 10.0 cm,15.0 cm の場合,SQ (1.25 m) のみ越波量が減少した。これは SQ (1.25 m) の法先水深が浅く,他の傾斜板に比べ波のエネルギーを得られなかったと考えられる。MQ (1.50 m) の傾斜板がどの越波揚程においてもほぼ最大越波量を得られることが分かる。したがって傾斜板長 1.50 m 以上あれば効率良く越波量が得られることが分かった。また,周期が短く波形勾配が大きくなるにしたがって越波量は減少する。これは,波形勾配が大きくなる (H/L=0.06 を超える) と砕波が発生しやすくなりエネルギーが散逸したためだと考えられる。

波パワーと越波量, 越波揚程を考慮すると, 越波揚程に関わらず傾斜板の長さは 12.5m (模型: 1.25m) では越波量が少ない. また, 20.0m (模型スケール: 2.0m) が最も効率良く越波量を得られることが分かった. しかしながら, 17.5m (模型スケール: 1.75m) と 15.0m (模型スケール: 1.5m) であっても

越波量に大きな差がないことから、設置場所の水深や、日本近海の潮位変動を鑑み、現実的な発電装置の越波揚程を考慮すると十分に機能を果たす長さであると考えられる.これらの結果から、15m(模型スケール:1.5m)以上必要であることが判明した.

(2) 単水槽を使った越波量特性

波高 $H_{1/3}$ (cm) と越波量 q ($m^3/s/m$) の関係は、波浪条件に関わらず波高を高くすると越波量が増え、越波揚程が高くなるにつれて越波量が減少し、越波揚程は 15cm よりも 8cm が適当であることがわかった。本実験で越波量が最大となった R=8.0cm, $H_{1/3}=22.91$ cm, $T_{1/3}=2.46$ s(御前崎)のとき q=0.0132m $^3/s/m$ の値から模型縮尺 1/10 として実際の越波量を算定すると, $H_{1/3}=2.29$ m, $T_{1/3}=7.78$ s のときに q=0.4m $^3/s/m$ となる。装置 1m 幅当たりでこの越波量が得られるのであれば、仮に 100m 幅の越波式波力発電装置を設置すると Q=40m $^3/s$ となり、膨大な越波量が見込めることから、越波式波力発電による出力に期待が持てる。

波形勾配 $H_{1/3}/L$ と越波量 q $(m^3/s/m)$ の関係は、波形勾配 $H_{1/3}/L=0.04$ 付近に越波量のピークがあることがわかる。また、それを超えると越波量は大きく減少する。波形勾配は波の峰の鋭さを表すが、波高や周期の大小を表してはいないことから、波形勾配のみで越波量を推定することには限界がある。

既往の研究との比較では、実験値の方が合田の越波量よりも総じて桁違いに大きい値を示した.この要因として考えられることは、合田の場合護岸を想定して消波ブロックを前面に設置し越波量を算定しているのに対し、著者は越波量を増やすことを目的に傾斜板を用い越波量を計測しているからである.これが差異の主な原因といえる.また、玉田ら(玉田ら,2010)が得た算定図と比較して、著者らの結果は、玉田らよりも低い波高にも関わらず同等の打上げ高が得られた、もしくは、同等の波高にも関わらず打上げ高が高い結果が得られた.この結果は、玉田ら(玉田ら,2010)の実験と著者らの実験では設定された海底勾配、適応した波浪の周期に違いがあるためと考えられる.同じ波高の場合、周期の差と波パワーの差は比例するためこのような結果が得られたと考えられる.

波パワー (kW/m) と越波量 q ($m^3/s/m$) の関係は、波浪条件に関わらず越波揚程 R=8cm と 10cm の場合は 8cm の方がわずかに上回るがどちらも近い傾向を示している。一方、R=15cm, 20cm の場合は、こちらも波浪条件に関わらず明らかに越波量が減少していることがわかる結果となった。この結果から、本研究における越波揚程 R は 8cm, 10cm が 15cm, 20cm よりも越波量を得られるといえる。また、波パワーと越波量の関係は比例関係にあり、現地の波条件から波パワーで越波量を容易にことができる。さらに越波量は波パワーと線形な関係、すなわち $q=\alpha E$ となり、単位幅当たりの越波量を q ($m^3/s/m$)、入射する波パワーE (kW/m) とすると、御前崎周辺の波浪条件では、越波揚程 (R) が 0.8m, 1.0m, 1.5m, 2.0m のときの関係式はそれぞれ q=0.02312E, q=0.02234E, q=0.01390E, q=0.00840E となり、我が国沿岸を想定した波浪条件では越波揚程 (R) が 0.8m, 1.5m, のときそれぞれ q=0.02265E, q=0.00957E となった。

(3) 多段水槽を使った越波量特性

5.3.5.2 項で行った単水槽を使った越波量計測実験と多段水槽を使った越波量計測実験の結果を越波量と波パワーの関係で比較すると、多段水槽を用いて行った実験は、単水槽を用いた実験と同様の精度が認められた。また 5.4.2 項においてスーパースローカメラの映像から判断し求めた開口幅は、越波

した波を取りきることが可能であると示唆された.

斜面板角度の変動による越波量の変化は前述の実験と同様に、R=8cm および R=15cm の各槽における斜面板角度ごとの波パワーと越波量の関係は、どの水槽においても R=15cm より R=8cm の方が越波量は多いことがわかった。また、全体の傾向として斜面板の角度による越波量の変化は確認出来なかった。斜面板角度ごとの全越波量を各越波揚程に分けてまとめた結果から、越波量と波エネルギーの関係式で表すと斜面板角度 20° では越波揚程 (R) が 0m, 0.8m, 1.5m のときそれぞれ q=0.0257E, q=0.0228E, q=0.0106E, となり、斜面板角度 30° では越波揚程 (R) が 0.8m, 1.5m のときそれぞれ q=0.0237E, q=0.0138E, 斜面板角度 40° では越波揚程 (R) が 0.8m, 1.5m のときそれぞれ q=0.0249E, q=0.0142E となる。この結果から、越波量は越波揚程に関係しており斜面板角度にほとんど関係していないことが示唆された。また、単水槽を使った越波量特性の結果と比較して、越波揚程 0.8m ではほぼ同じ値となり越波揚程 1.5m ではわずかに高い値となったものの同様な値となった。

水槽の各段でまとめた結果と全越波量をまとめた結果から、越波量は斜面板の角度には影響を受けないことが確認された。また、多段水槽を使ったαの値は単水槽を使った実験と同様の値となったことから、実験の正確性はもちろんのこと、波パワーを用いた手法の正確性と有効性が認められたといえる。

以上,本研究では,越波式波力発電装置の開発に非常に重要な要素である波の打上げ高と越波量の 算定に,これまでなかった波パワーを基に算定するという極めて有効な手法を明らかにした.その結 果,襲来する波から得られる越波量が波パワーで容易に算定でき,越波式波力発電装置の設計やシミ ュレーションへ適応することが考えられ,越波式波力発電装置開発の扉が開いたといえる.

参考文献

ATOMICA ホームページ, http://www.rist.or.jp/atomica/data/dat_detail.php?Title No=01-05-01-08.

EMEC, http://www.emec.org.uk/marine-energy/wave-devices/.

一般財団法人 沿岸技術研究センター 機関誌 CDIT, http://www.cdit.or.jp/o_magazine/vol2/p2.html

合田 良実, 岸良 安治, 神山 豊 (1975): 不規則波による防波護岸の越波流量に関する実験的研究, 港湾技術研究所報告, 第14巻, 第4号, pp.3-44.

合田良実(1984): 沿岸波浪の統計的性質,第 1 回波浪エネルギー利用シンポジウム,海洋科学技術センター,pp.19-31.

Hiroi,I (1919): An experimental determination and utilization of wave power, 東京帝国大学工学部紀要, 第十冊, 第一号, pp.22-37

Hunt, I. A., Jr. (1959): Design of Seawalls and Breakwaters, Proceedings, ASCE, Vol.85, No.WW3, Sep.

堀川 清司, 海洋工学, 東京大学出版, p.52-64, p.114-115.

居波 智也, 山梨 温, 田中 博通 (2013): 越波式波力発電装置開発に向けたわが国の波エネルギー賦存量 と地域特性, 日本エネルギー学会大会講演要旨集, Vol. 22, 154-155.

居波 智也, 田中 博通, 櫻田 哲生 (2014): 越波式波力発電装置の一次変換特性, 日本エネルギー学会大会講演要旨集, Vol. 23, 168-169

Inami, T., H. Tanaka and T. Sakurada (2016): Study on Wave Reflection Coefficient and Wave Runup Height on a Slope, ISOPE, pp.629-635.

Japan Marine Affairs & Comprehensive Ocean Dictionary ホームページ,

http://www.oceandictionary.net/subject_1/wpg-je.html.

環境省 HP IPCC 第 4 次評価報告書について 政策決定者向け要約 文部科学省・経済産業省・気象庁・環境省確定訳 http://www.env.go.jp/earth/ipcc/4th/syr_spm.pdf.

港湾技術研究所 (2001): 港湾技術研究所のあゆみ, p.42-43.

港湾技術研究所報告, Vol.12, No.3, pp.31-70.

Miche, M. (1944): Mouvements Ondulatoires de La Mer en Profondeur Constante ou Decrissante (I -IV), Annales des Ponte et Chaussees, pp.25~406.

Miche, M. (1951): Le Pouvoir Reflechissant des Ouvrages Mariti-mes, Annales des Ponts et Chausees, May-June.

益田 善雄, 宮崎 武晃 (1979): 消波発電装置 "海明"の実験, 海洋科学技術センター試験研究報告, 第 3 号, pp. 75-81

益田 善雄 (1987): 日本の波力発電-波に憑かれて四十余年, 霞出版社.

Mase, H. (1989): Random Wave Runup Height on Gentle Slope, J.Waterway, Port, Coastal, and Ocean Eng., Vol.115, No.5, pp.649-661.

間瀬 肇, 宮平 彰, 桜井 秀忠, 井上 雅夫 (2003a): 汀線近傍の護岸への不規則波の打上げに関する研究 - 算定打上げ高と不規則波の代表打上げ高の関係-, 土木学会論文集 No. 726/Ⅱ-62, pp. 99-107.

三井造船技報 No. 210 (2013-11): 日本海域に適した波力発電技術の開発.

中村 充, 佐々木 康雄, 山田 穣二 (1972): 複断面における波の打上げ高に関する研究, 第 19 回海岸工学 講演会論文集, pp. 309-312.

日本の閉鎖性海域(88 海域)環境ガイドブック (2001): 財団法人国際エメックスセンター, pp.2-177.

Nature 427 (08 January 2004): doi:10.1038/nature02121, pp. - 148.

NEDO 海外レポート (2007), No.1001, p.1-11.

NEDO 再生可能エネルギー技術白書, 6章, p. 330-331

Naturedigest 2008年1月:波力発電に挑む, p.12-17.

NET: 東北復興次世代エネルギー研究開発プロジェクト http://net-tohoku.sakura.ne.jp/wp/activityreport.

永田 修一 (2009): 波力発電の動向について,海洋エネルギー資源国際フォーラム講演資料,海洋エネルギー資源利用推進機構(OEA-J)波力分科会報告.

Sainflou. (1928): essai sur les dignes maritimes verticals.

Saville, T., Jr. (1958): Wave Run-up Shore Structures, Transactions, ASCE, Vol. 123.

スマートジャパン, http://www.itmedia.co.jp/smartjapan/articles/1603/29/news039.html.

高田 彰 (1970a): 波の遡上, 越波および反射の関連性について, 土木学会論文報告集, 第182号, pp19-30.

高田 彰 (1970b): 波の遡上, 越波および反射の関連性について(第2報), 土木学会論文報告集, 第183号, pp113-123.

高橋 重雄 (1993): 波エネルギー変換装置の現状について, 第 29 回水工学に関する夏季研修会講義集, 土木学会海岸工学委員会・水理委員会, pp.B-1-1~B-1-20.

高橋 重雄, 滝野義和 (2009): 波エネルギー変換装置 (Wave Energy Converter),

http://www.pari.go.jp/bsh/syukan/base/jp/jp_project/namienerugi.htm

玉田 崇, 間瀬 肇, 安田 誠宏 (2009): 複合断面に対する波の不規則性を考慮した打上げ高算定法に関する研究, 土木学会論文集 B2(海岸工学), Vol. B2-65, No.1, pp.936-940.

玉田 崇, 間瀬 肇, 安田 誠宏 (2010): 波の打上げを考慮した越波流量算定法の提案, 土木学会論文集 B2(海岸工学), Vol. 66, No.1, pp.926-930.

田中 博通, 住田 哲章, 鈴木 厚志, 真鍋 安弘 (2008): 円錐形状浮体の送水特性に関する実験的研究, 海 岸工学論文集, 第55巻, pp.1316-1320.

田中 博通, 鈴木 厚志, 淀川 已之助 (2009): 波力発電の現状と重力式(越波型)波力発電装置の開発, 海洋 開発論文集, 社会法人土木学会, pp.360.

田中 博通, 鈴木 厚志 (2010): 越波型波力発電装置開発に向けた波の打ち上げ特性に関する研究, 土木 学会論文集 B2(海岸工学), Vol. 66, No. 1, pp.1271-1275.

田中 博通,太田 誠 (2010): わが国のエネルギー分布と越波型波力発電装置の開発に関する基礎的研究, 東海大学大学院平成 22 年度修士論文, pp.60-72.

Tanaka, H., M. Yodokawa, N. Nikawadori and On Yamanashi (2012): Development of Wave Overtopping Type Wave Power Generation Devices, The Proceedings of Isope-2012 Conference.

田中 博通, 山梨 温, 居波 智也 (2013): わが国沿岸の波エネルギー賦存量と平均波高, 平均周期の頻度 分布, 土木学会論文集 B2(海岸工学), Vol. 69, No. 2, pp.I_1291-I_1295

田中 博通, 居波 智也, 櫻田 哲生 (2014): 越波式波力発電装置開発のための越波量と送水量の特性, 土土木学会論文集 B2(海岸工学), Vol.70, No.2, pp.I_1301-I_1305.

田中 博通, 居波 智也, 櫻田 哲生 (2015): 越波式波力発電装置開発に向けた波の反射率と打上げ特性に関する研究, 土木学会論文集 B2(海岸工学), Vol. 71, No. 2, pp.I_1561-I_1566.

Tanaka, H., T. Inami and T. Sakurada (2015): Characteristics of Volume of Overtopping and Water Supply Quantity

for Developing Wave Overtopping Type Wave power Generation Equipment, ISOPE, pp.913-917

Tanaka, H., M. Minami, T. Inami and T. Sakurada (2016): Researches and Developments of Wave Overtopping Type Wave power Generation, ISOPE, pp.642-648.

株式会社竹中工務店ホームページ,

http://www.takenaka.co.jp/solution_manage/needs/recyclable/service05/index.html

東北電力株式会社, https://www.tohoku-epco.co.jp/enviro/tea3/chapter3/sec1/12.htm

鷲尾 幸久,大沢 弘敬,永田 良典,藤井 文則,古山 裕喜,藤田 俊助(2000): 沖合浮体式波力装置「マイティーホエール」実海域実験 その 1 実験システム概要及び係留設置工事,海洋科学技術センター試験研究報告,第40号,JSMSTECR,40.

渡部 富治, 近藤 俶郎, 谷野 賢二(1986), 沿岸固定型振り子式波力発電装置の研究(室蘭港外実験プラントの第1次運転), 日本機械学会論文集(B編), 52巻, 477号, pp. 2267-2274

Wave dragon 社ホームページ, http://wavedragon.net/.

(財)電力中央研究所有識者会議促進室ホームページ, 波力発電の現状.

http://www.pa.thr.mlit.go.jp/sakata/haryoku.html.

謝辞

本研究を進めるにあたり、終始丁寧なるご指導を賜り、常日頃から様々な気配りをして頂きました、 東海大学大学院総合理工学研究科 田中博通 教授に心より感謝の意を表します.

博士論文の校閲の際には、東海大学大学院総合理工学研究科 榊原繁樹 教授,清水賀之 教授,福田紘大 准教授,琉球大学工学部環境建設工学科 藍檀オメル 教授に貴重なご意見を頂き本稿は改善されました。心より感謝の意を表します。

打上げ高の実験に際し、多大な御協力を賜りました西日本旅客鉄道株式会社 鈴木厚志 様、越波量特性の実験に際し多大な協力を賜りました東亜建設工業株式会社 荷川取将史 様、波エネルギー賦存量の試算に際し多大な協力を賜りました東亜商事株式会社 山梨温 様に心より感謝の意を表します.

国立研究開発法人新エネルギー・産業技術総合開発機構の「風力等自然エネルギー技術研究開発 海洋エネルギー技術研究開発 海洋エネルギー技術研究開発 海洋エネルギー発電システム実証研究」の助成事業に採択され、越波式波力発電装置の研究開発を行う中で、多段水槽を使った越波量特性研究において、実験装置の製作に御尽力賜りました市川土木株式会社の皆様に心より感謝の意を表します。

本論文作成に当たり、実験準備、収録、データ解析にて助言、御協力を賜りました東海大学海洋学部 臨時職員 櫻田哲生 氏に感謝致します.

これほどの有益で膨大な実験データ取得のために御協力を賜りました, 東海大学海洋学部環境社会学科 田中研究室ゼミ生全員に感謝致します.