東海大学大学院平成 28 年度博士論文

ニワトリ脂肪肝で特異的に 発現する NAD(P)H 依存性カルボニル 還元酵素の研究 -新規酵素の発見,機能と 構造の解析並びに応用-

指導 米 田 一 成 准教授

東海大学大学院生物科学研究科生物科学専攻

福 田 雄 大

ニワトリ脂肪肝で特異的に発現する NAD(P)H 依存性カルボニル

還元酵素の研究

-新規酵素の発見,機能と構造の 解析並びに応用-

2016

福田 雄大

緒論	Ħ		• •	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1
第 I	章		ニワ	トリ	リ脂	肪	肝	由	来	N .	A D) (P)H	依	存	性	力	ル	ボ	11	ル	還	元	酵	素	
(CR)の	酵	素化	学日	的性	上質	の	解	明			•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 5
緒	言			•••	•	•	•	•	•	•	•	•	•	•		•	•	•			•	•	•		•	• 5
第	¥ 1	節	実	験	方法	L.			•	•	•	•	•	•		•	•	•	•		•	•	•		•	• 5
	第	1	項	組	換 <i>え</i>	大	腸	菌	の	培	養	と	粗	酵	素	液	の	調	製				•	•	•	• 5
	1)		粗 酵	素衤	夜の)調	製																			
	2)		Talo	n ⊐	バ	ル	トフ	P -	7 /	1 -	ニラ	F,	イブ	りラ	7 L	、ク	, L	1 7	7 }	、ク	ブニ	ラフ	7 /	<u>-</u> ۲	-	
	第	2	項	タ	ンア	ミク	質	定	量	法			•	•	•	•	•	•	•	•	•	•	•	•	•	• 8
	第	3	項	CR	活	性礼	則気	主 注	去			•	•	•		•		•			•	•	•			• 8
	1)		CR ł	舌性	測	定厦	更理	ŧ																		
	2)		酵 素	活忄	生の	,定	義																			
	3)		ミカ	I	リス	定	数																			
	第	4	項	活	性に	二対	す	る	p	H	: ع	温	度	の見	影響	堅			•	•	•	•	•	•	•	12
	1)		最 適	pН																						
	2)		最 適	温月	度																					
	3)		pH 芗	を定	性																					
	4)		熱 安	定卜	生																					
	第	5	項	阻台	害 栒				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	第	6	項	酵	素の)結	晶	化			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	第	7	項	Хź	湶 叵] 折	デ	_	P	解	析			•	•	•	•	•	•	•	•	•	•	•	•	14
	1)		X 線	回扌	斤デ	<u> </u>	タ	の	収	集																
	2)		格子	定梦	数お	ょよ	び	空	間	群	の	決	定													
	3)		分子	置扌	奐 法	に	よ	る	初	期	位	相	の	決	定											
	4)		構 造	精卻	密 化																					
第	¥ 2	節	実	験	結果	まお	よ	び	考	察			•	•	•	•	•	•	•	•	•	•	•	•	•	15
	第	1	項	Ξ	ワト	、リ	脂	肪	肝	由	来	機	能	未	知	タ	ン	パ	ク	質	の	大	腸	菌	を	
	用	$\langle v \rangle$	た 発	現:	およ	こび	精	製			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16

第 2 項 CR 酵素活性測定 •••••17 1) 基質特異性 ミカエリス定数 (Reductase activity) 2) ミカエリス定数 (Dehydrogenase activity) 3) 補酵素特異性 4) 第3項 活性に対する pH と温度の影響 ••••••22 最 適 pH 1) 2) pH 安 定 性 3) 最適温度 4) 熱安定性 第 4 項 阻害様式 •••••••••••••••• 第 5 項 酵素の結晶化 ・・・・・・・・・・・・・・・27 第 6 項 X 線 結 晶 構 造 解 析 •••••• X線回折データの収集 1) 精 密 化 2) 3) 構造解析 4) 補酵素結合 5) 活性部位 第3節 小括 •••••38 第Ⅱ章 ニワトリ脂肪肝由来 CR の Tyr172 機能解析 ・・・・40 緒言 ••••••••••••••••••••••• 第 1 節 実験方法 ・・・・・・・・・・・・・・・・・・・・40 第 1 項 プライマー設計 ・・・・・・・・・・・・・40 第 2 項 目的遺伝子の増幅 ・・・・・・・・・・・・41 1) KODFX-PCR 2) Dpn I処理 第 3 項 DNA シークエンスによる塩基配列の解析 ・・・42 第 4 項 組 換 え 大 腸 菌 の 培 養 と 粗 酵 素 液 の 調 製 ・・・・43 1) 粗酵素液の調製

2) Talon コバルトアフィニティカラムクロマトグラフィー 3) SDS-PAGE による酵素の純度検定 第 5 項 タンパク質定量法 •••••• 第 6 項 変 異 CR 活 性 測 定 法 ••••• 第2節 実験結果および考察 ・・・・・・・・・・・・・45 第 1 項 DNA シークエンスによる 塩 基 配 列 の 確 認 結 果 ・46 第 2 項 ミカエリス定数 ・・・・・・・・・・・・・47 第 3 節 小 括 ・・・・・・・・・・・・・・・・・・・・・・・・47 第Ⅲ章 超好熱菌 Aeropyrum pernix 由来 CR の機能解析 ・・・50 緒言 第1節 実験方法 ・・・・・・・・・・・・・・・・53 第 1 項 プライマー設計 ・・・・・・・・・・・・53 第 2 項 目 的 遺 伝 子 の 増 幅 • • • • • • • • • • • • 55 第3項 オーバーハングの付加 ・・・・・・・・・56 第 4 項 pGEM-T Easy ベクターへのライゲーション ・・56 第 5 項 DNA シークエンス ・・・・・・・・・・・56 第 6 項 pET15b ベクターへのライゲーション ・・・・57 第7項 組換え大腸菌の培養と粗酵素液の調製 · · · · 57 1) 粗酵素液の調製 熱処理による目的酵素の精製 2) Talon コバルトアフィニティカラムクロマトグラフィー 3) SDS-PAGE による酵素の純度検定 4) 第 8 項 タンパク質定量法 ・・・・・・・・・・・58 第 9 項 N 末端アミノ酸解析 ・・・・・・・・・58 第 10 項 CR 活 性 測 定 法 ・・・・・・・・・・・・・・58 1) 基質特異性 2) 補酵素特異性 第 11 項 活性に対する pH と温度の影響 ・・・・・・59 第 12 項 酵素の結晶化 ・・・・・・・・・・・・・・・59

		第	1	3	項	2	X Å	泉	回扌	折	デ・	- /	9 f	解柞	斤			•	•	•			•	•	•	•	•	•	•	60
	第	2	節		実	験	結	果	お	よ	び	考	察			•	•	•	•				•	•	•	•	•	•	•	61
		第	1	項		目	的	遺	伝	子	の	増	幅			•	•	•	•				•	•	•	•	•	•	•	62
		第	2	項		ダ	イ	\mathcal{V}	ク	\mathbb{P}	Р	CR	e li	こよ	2	5 >	スク	ク	リ・	_	=	ン	グ	結	果			•	•	63
		第	3	項		SI) S	- P.	AG	Ε	に	よ	る	CI	R	の	発	現	お	よ	び	精	製	T)	百百	官記	2		•	64
		第	4	項		SI) S	- P.	AG	E	に	よ	る	サ	ブ	ユ	Ξ	ツ	ŀ	分	·子	量	: 決	と気	È		•	•	•	65
		第	5	項		N	末	端	P	(r)]	酸	配	列	確	認	結	果			•	•		•	•	•	•	•	•	66
		第	6	項		CI	R₫	庨 郹	泰氵	舌亻	生礼	則夠	É				•	•	•	•	•	•	•	•	•	•	•	•	•	67
		1)		基	質	特	異	性																						
		2)		111	力	I	IJ	ス	定	数																				
		3)		補	酵	素	特	異	性																					
		第	7	項		活	性	に	対	す	る	p	Η	と	温	度	の	影	響				•	•	•	•	•	•	•	70
		1)		最	適	рI	Η																							
		2)		рH	I岁	そ定	ミ性																							
		3)		最	適	温	度																							
		4)		熱	安	定	性																							
		第	8	項		酵	素	の	結	日田	化				•	•	•	•					•	•	•	•	•	•	•	72
		第	9	項		X	線	結	晶	構	造	解	析			•	•	•	•	•	•	•		•	•	•	•	•	•	73
		1)		X	線	口	折	デ	<u> </u>	タ	の	収	集																	
		2)		精	密	化																								
		3)		構	造	解	析																							
		4)		補	酵	素	結	合																						
	第	3	節		小	括			•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	77
第	IV	章		総	括			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	79
	第	1	節		総	合	考	察			•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	79
	第	2	節		要	約			•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	92
謝	辞			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	99

参	考	文	献			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	100
本	論	文	に	関	わ	る	報	告				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	106

略語一覧

- BIS : N,N'-ethyenbisacrylamide
- BPB: bromo phenol blue
- BSA : bovine serum albumin
- CBB: coomassie brilliant blue
- COBE : ethyl 4-chloroacetoacetate
- DNA: deoxyribonucleoic acid
- DTNB : 5,5'-dithiobis(2-nitrobenzoic acid)
- DTT : dithiothreitol
- EDTA : ethylenediaminetetraacetic acid
- IPTG : isopropyl-1-thio- β -D-galactoside
- NADPH : nicotinamide adenine dinucleotide phosphate
- NADH : reduced nicotinamide adenine dinucleotide
- OD : optimal density
- PAGE : polyacrylamide gel electrophoresis
- PCR : polymerase chain reaction
- PEG : polyethylene glycol
- PKB: potassium phosphate buffer
- SDR : short-chain dehydrogenase/reductase
- SDS : sodium dodecyl sulfate
- (S)-CHBE : ethyl S-4-chloro-3-hydroxybutyrate
- TEMED : N,N,N',N'-tetramethylenediamide
- Tris : tris(hydroxymethyl)aminomethane
- Tx : thyroidectomized
- WT : wild type

試薬

酵母エキス、トリプトン	ナカライテスク
アンピシリン	ナカライテスク
制限酵素	NEB
KOD DNA polymerase、Ligation high	東洋紡
アガロース	TaKaRa
QIAprep Spin Miniprep kit	キアゲン
Wizard® SV Gel and PCR Clean-Up System	Promega
IPTG	和光純薬工業
NADPH	オリエンタル酵母
結晶化試薬 Emerald BioSystems Cryo I & II	Emerald BioSystems
結晶化試薬 Crystal Screen1,2	HAMPTON RESEARCH
9,10-phenanthrenequinone	東京仁成工業
His-Detect In-Gel Stain	ナカライテスク
Protein assay kit	Bio Rad
その他の試薬	ナカライテスク、Wako

器具

分光光度計 U-2910、U-1500		HITACHI
遠心分離器 himacCF15RX		HITACHI
恒温振とう培養器 multisHAKER MMS		EYELA
オートクレーブ BS-305	TOMY	卓上遠心機
himacCT6D		HITACHI
PCR 装置 PC707		ASTEC
電子てんびん METTLER AT21		FACT
電気泳動装置		ATTO

ミニスラブゲル作成キット	АТТО
電気泳動装置 Mupid-2plus	ADVANCE
pH メーターF-21	HORIBA
超音波破砕機 UD-200	TOMY
高速冷却遠心器 hinacCR21E	HITACHI
多本架冷却遠心機 himacCF15RX	HITACHI
卓上微量高速遠心機 himacCT15RE	HITACHI
VORTEX MIXER	ScientificIndustries
結晶化プレート CompactClover Plates	Emerald BioSystems
電気泳動装置	ATTO
ブロッティング装置	ATTO
PVDF 膜	BIO-RAD
Talon コバルトアフィニティカラム	Clontech
MICROCON YM-30	Mllipore

甲状腺は、甲状腺ホルモンの分泌器官であり、甲状腺ホルモンにはT4(サイロ キシン)とT3(トリヨードサイロニン)の2種が存在する.これら甲状腺ホルモ ンは、エネルギーの代謝速度あるいは全細胞の酸化レベルの調整、身体の成長 と組織の分化あるいは成熟度,他の内分泌腺,特に下垂体や生殖腺・産卵の増進, 神経筋の機能化. 循環系動力学. 皮膚 (換羽・毛髪・毛皮・羽毛). ミネラルや水及 び食品栄養素の代謝といった機能に影響を及ぼしている.甲状腺機能が低下し た生物において血清中の低密度リポタンパク質とコレステロールの全体値が増 加することが報告されている[1]. 血清リン脂質濃度は甲状腺機能不全では減少 するが、マウス[2]とヒト[3]では上昇する、これら脂質濃度の変化は全身の代謝 エネルギーの上昇, 減少に反映される. ニワトリの成長に及ぼす甲状腺除去の 影響を検討し、甲状腺を摘出されたニワトリの場合、脂肪肝 [4]と腹腔 [5]で脂 肪の蓄積が報告されている. また甲状腺摘出ニワトリの脂肪肝ではピルビン酸 からエタノールへの代謝経路が助長されることがすでに Shibata らにより報告さ れている[6]. さらに、甲状腺機能低下によってこれらのニワトリで筋肉、骨およ び内臓の重量増加が抑制されるといった大きな変化が起きる[7-10]. したがって、 モデルとしての甲状腺摘出ニワトリの分析は、甲状腺機能低下症の分子機序に 対する更なる洞察を提供しうるものとなる.

一般的に脂肪肝に至る要因は、高産卵期、エネルギーの過剰摂取、アルコール の大量摂取や酸化ストレス、酸素ストレス、過酸化脂質、鉄、インスリン抵抗性、 サイトカインの放出といった要因により肝臓にストレスが加わるなどといった 様々な要因によるものであり、全ての個体が必ずしも脂肪肝になることはない ことが報告されている[11].また、高脂肪食(食事)のみで脂肪肝を作成しよう とすると個体差が大きすぎるため、研究材料としては適しておらず、脂肪肝の モデルとして未だ確立された方法ではない.そこで、本実験では全個体(個体差 無く)で脂肪肝の生成が可能なモデルである甲状腺除去ニワトリをモデルとし て用いた.本モデルニワトリは脂質代謝に関わるタンパク質・酵素研究,プロテ オーム研究のモデルとして有用なものである.ニワトリは 2004 年にゲノムの解 読が行われ,ドラフト配列が公表されている[12].ニワトリのゲノムは 10 億塩 基対[13]であり,ヒト[14]とマウス[15]のゲノムはともに約 30 億塩基対である. ニワトリのゲノムサイズは哺乳類の約3分の1である.そのニワトリゲノム中で 遺伝子であると予想されるものが,計2万3000 個ほど確認されている.この遺 伝子の数はヒトやマウスと同じということも現在では判明している.また,鳥 類では,明らかな高血糖や産卵期に脂質異常症を呈するにもかかわらず,動脈 硬化等の症状が見られないなど,他の生物と異なった脂質代謝メカニズムを有 することも示唆されている.

これらの状況を踏まえ、本学において 10 から 11 日齢のニワトリ(白色レグホン)10 羽に対して Marvinら[16]の方法に一部修正を加えた方法により外科的甲状腺除去を行うことで人工的に脂肪蓄積亢進させたニワトリを作製した(Fig. 1).

先にも述べた通りニワトリのゲノム解読が行われ、ドラフト配列が公表され ていることから、プロテオーム解析によりニワトリの代謝を検討することが可 能となった.そこで甲状腺除去処理により脂肪蓄積を亢進させたニワトリの脂 肪肝についてプロテオーム解析を行ったところ、特異的に発現が増強されてい るタンパク質が検出された (Fig. 2).本研究で用いたプロテオーム解析法は、二 次元電気泳動により分離した特異的なタンパク質をトリプシン処理後、質量分 析でペプチドマップを作成し、これをもとにデノボシークエンス法にてペプチ ド断片のアミノ酸配列を推定したものである.解析を行った目的タンパク質 (Fig.2) は、分子量約27 kDaのものであり、得られたアミノ酸配列からゲノム情 報により同定したところ、遺伝子構造をとっているものの機能未知タンパク質 であることが判明した[17].この際、甲状腺は完全に除去されてはおらず、甲状 腺ホルモンは減少しているが、完全に欠失していない[17].その結果、甲状腺機 能低下症に近い環境になり、甲状腺ホルモンの減少により代謝が低下し、過剰 な脂質が合成され脂肪肝が生じたと推測される.この状況より,機能未知タンパク質は、この脂肪酸蓄積に関わっている可能性が高いと考えられる.

ニワトリの脂肪肝において脂肪蓄積亢進に伴って発現が増強している機能未 知タンパク質をすでに立体構造が解けている酵素の配列を対象としてBLAST検 索を行ったところ,黄色ショウジョウバエ由来 NAD(P)H 依存性カルボニル還元 酵素 (CR, EC1.1.1.184) [18]とアミノ酸配列の相同性が 36%あるだけでなく,CR に共通する特徴的な2つのアミノ酸配列(NADPH 結合モチーフ;GxxxGxG、お よび触媒残基モチーフ;S-YxxxK)を見出すことに成功した.そこで,「ニワト リ脂肪肝由来の機能未知タンパク質は CR 活性を有する新規酵素ではない か?」との仮説のもとに,遺伝子クローニングおよび遺伝子発現産物の性質の 解明と酵素のX線結晶構造解析を行った.また本酵素の生理的意義についても 検討を加えた.このことは、甲状腺除去ニワトリにおける脂肪肝形成の分子メ カニズムの解明につながる可能性がある.

3

Normal liver

Fatty liver

Fig. 1: Normal and fatty liver of chicken.

Normal liver

Fatty liver

Fig. 2: Comparison of protein pattern among normal and

fatty chicken liver by 2D-PAGE.

第 I 章 ニワトリ脂肪肝由来 NAD(P)H 依存性カルボニル還元酵素(CR)の酵素化 学的性質の解明

緒言

ニワトリの脂肪肝で特異的に発現するタンパク質には3種類のベタイン-ホモ システインS-メチルトランスフェラーゼ (BHMT; 45 kDa),及び先に記述した機 能未知タンパク質 (27 kDa)の合計4種類のタンパク質が確認されている[17]. 本研究では、ニワトリの脂肪肝で特異的に発現しているタンパク質の中でも、 特に発現量が多く認められた(ゲノム解読後でもなお機能推定が困難であった) 機能未知タンパク質に着目し研究を行った.本実験では大腸菌を宿主細胞とし て酵素の大量発現系の構築することで、酵素の機能解析、および原子レベルに おける酵素の詳細を明らかにするためにX線結晶構造解析を行い、ニワトリ脂 肪肝中の本機能未知タンパク質がどのような役割を担っているのかを解明する ことを目的としている.

第1節 実験方法

第1項 組換え大腸菌の培養と粗酵素液の調製

1) 粗酵素液の調製

構築済みのニワトリ脂肪肝由来由来機能未知タンパク質発現ベクター
pET15b/CR[19, 20]を用いて大腸菌 BL-21 Codon Plus-RIPL (DE3)株 (遺伝子型: *E. coli* B F- *ompT hsdS*(r_B- m_B-) *dcm*+ Tet^r *gal* λ(DE3) *endA* Hte [*argU ileY leuW* Cam^r])
の形質転換を行った.発現ベクターの概略は Fig. 3 に示した.ニワトリ脂肪肝由
来由来機能未知タンパク質をコードする遺伝子を *Nde* I と *Eco* RI サイトに挿入
し T7 プロモーター下流に連結したものとなっている.形質転換した大腸菌を

50µg/mlのアンピシリンを含む LB 平板寒天培地に植え,37℃,16時間でインキュベートした.形成したコロニーを 50 µg/ml アンピシリンを含む LB (トリプトン 10 g、酵母エキス 5 g、NaCl 10 g (/L)) 培地 2 L (2×1 L)に植菌し,37℃で OD600 = 0.6 になるまで好気的に振とう培養した後,0.1 mM になるように IPTG を加え目的産物の発現を誘導し,さらに 37℃で 6 h 穏やかに振とう培養した.培養終了後遠心分離 (5,000×g,10 min) により集菌を行い,菌体湿重量(24 g)の 4 倍量の標準緩衝液 (10 mM Tris/HCl (pH8.0)) に懸濁した.菌体懸濁液は超音波破砕し,遠心分離 (7,000×g,20 min) により得られた上清を粗酵素液とした.

Fig. 3: Expression vector of thyroidectomized (Tx) chicken fatty liver unknown protein.

2) Talon コバルトアフィニティカラムクロマトグラフィー

Talon コバルトアフィニティカラム (Clontech) に 10 mM CoCl₂を結合させ, pH 7.0 になるまで蒸留水を流してカラムを洗浄し, Table 1 に示したバッファーを 50 ml流し平衡化を行った. その後, サンプルをカラムに流し, Abs280 が 0.01 以下に なるまでカラムを洗浄した後, Table 2 に示した溶出 buffer をカラムの 5 倍量を用 いて (ステップワイズ法; 50 mM, 100 mM, 200 mM, 300 mM, 400 mM, 500 mM イ ミダゾール) 溶出を行い, 活性画分を回収した. 精製を行った後, Table 3 に示し た組成の透析バッファーを使用し、18h透析を4℃で行った.

Table 1: Components of equitibration and was	n buffer.
10 mM Tris/HCl buffer (pH 8.0)	
0.5 M NaCl	
10 mM imidazole	

Table 2: Components of elution buffer.

10 mM Tris/HCl buffer (pH 8.0)

0.5 M NaCl

50-500 mM imidazole

Table 3: Components of dialysis buffer.

10 mM Tris/HCl buffer (pH 8.0)

0.2 M NaCl

5 mM 2-mercaptoetharnol

第2項 タンパク質定量法

タンパク質定量は Bradford 色素結合法により行った. タンパク質定量用 CBB 色素試薬 Protein assay kit (Bio Rad) を使用し,標準タンパク質として牛血清アル ブミン(BSA: 1.217 mg/ml) を用いた.

第3項 NADPH 依存性カルボニル還元酵素(CR)活性測定法

1) CR 活性測定原理

CR 活性は Fig. 4 に示した反応系を利用して, 波長 340 nm における NAD(P)H の レダクターゼ活性においては減少量, デヒドロゲナーゼ活性における上昇を分 光光度計で計測した. 酵素を除いた反応溶液を混合した後, 酵素を加え, 分光光 度計を用いて, 25℃における波長 340 nm の吸収のそれぞれの値を 3 分間測定し た. 酵素反応液組成は Table 4, 5 に示した.

Fig. 4: Enzymatic reaction of CR.

Table 4: Standard	l reaction	mixture	(reductase).
-------------------	------------	---------	--------------

Total	1 ml
H ₂ O	
enzyme	
0.02 mM NAD(P)H	
0.02 mM substrate	
100 mM PKB buffer (pH 6.5))

Table 5: Standard reaction mixture (dehydrogenase).

100 mM PKB buffer (pH 6.5)	
0.02 mM substrate	
0.02 mM NADP	
enzyme	
H ₂ O	
Total	1 ml

2) 酵素活性の定義

酵素活性の1単位(U)は,1 min あたり1 µmolのNAD(P)Hを減少させる酵素の 量と定義した.NADH の 340 nm におけるミリモル吸光係数 (cmM)は 6.22 mM⁻¹cm⁻¹とし,酵素の総活性・比活性は、下記の式より算出した.

ΔA340/min の減少×光路長(cm)×全酵素量(ml)

総活性(U)=

6.22¹⁾×反応溶液中の酵素液量(ml)

¹⁾6.22:340 nm におけるミリモル吸光係数

U

比活性(U/mg)=

タンパク質濃度(mg/ml)×全酵素量(ml)

3) 基質特異性

既知の CR は 9,10-phenanthorenequinone, 4-benzoylpyridine, menadion(vitaminK₃) の 3 つの脂溶性の基質がモデル基質となることが判明しているため, これらの 3 つを含む多様な脂溶性の基質(Table 6, 7)を使用し, Table 4, 5 の反応溶液組成で酵 素活性測定を行った.使用した基質及び濃度は Nishinaka ら[21]と Nakanishi ら [22]及び Suwa ら[23]の論文を参考にした.

4) ミカエリス定数

反応溶液(Table 4, 5)中の基質を各基質(Table 6, 7)に変更し各基質及び、補酵素 NADP(H)の濃度をそれぞれ 0.0025~0.16 mM, 0.005~0.16 mM まで変化させ、そ れぞれの基質・補酵素濃度における反応速度を測定した. Lineweaver-Burk のダブ ル逆数プロットに従い,各基質とNADPHに対する見かけの K_m 値, K_{cat} 値, K_{cat}/K_m 値を求めた.

······································
Pyridine-4-aldehyde
Ethyl 4-chloroacetoacetate (COBE)
Menadion(vitaminK ₃)
9,10-Phenanthorenequinone
4-Benzoylpyridine
Cyclohexanone
1H-Indole-2,3-dione (isatin)
Para-nitrobenzaldehyde
Para-toluquinone
Estrone
Para-nitroacetophenone
Testosterone
ProstaglandinE2
Acetone
Phenylglyoxal

Table 6: Substrates of reductase activity.

Table 7: Substrates of dehydrogenase activity.

2-Cyclohexen-1-ol

Cyclohexanol

17β-Estradiol

第4項 活性に対する pH と温度の影響

1) 最適 pH

Table 4 に示した反応溶液組成のバッファーを pH 6.0~pH 11.5 に変化させて酵素活性測定を行い、本酵素活性の pH 依存性について調べた.最も活性の高く認められた箇所を 100%とし、その他の pH における相対活性を求めた.

2) 最適温度

Table 4 に示した反応溶液組成で測定温度を 20, 30, 40, 50, 60, 70℃に変化させ て活性測定を行い,本酵素活性の温度依存性について調べた.最も活性の高か ったものを 100% とし,その他の温度における相対活性を求めた.

3) pH 安定性

pH 6.0~pH 11.5 の領域のバッファー (0.2 M) と酵素溶液 (0.26 mg/ml) を等量 混合し, 40℃で 10 分間インキュベートした後, 遠心分離により沈殿物を除去し, 上清を用いて活性測定を行った. 最も高い活性を 100% とし, その他の pH のバッ ファーで処理した酵素の相対活性を求めた. Table 4 に示した溶液組成で酵素活 性測定を行った.

4) 熱安定性

Table 3 で示した透析バッファーで透析を行った酵素溶液 (0.37 mg/ml)を 20, 30, 40, 50, 60, 70, 80℃で 10 min インキュベートし, 沈殿物を遠心分離で除いた後 に上清を用いて活性を測定した. 各温度で処理後の酵素活性が最も高く認めら れたものを 100% とし, それ以外の各温度で処理した酵素の相対活性を求めた. Table 4 に示した溶液組成で酵素活性測定を行った.

12

第5項 阻害様式

Nishinaka ら[21]と Nakanishi ら[22]の論文を参考にし、多様な阻害剤を用いて 阻害剤感受性の検証を行った結果、細胞質型 CR の阻害剤として用いられる不飽 和脂肪酸である arachidonic acid (1.49 μ M) により 83.6% CR の活性が阻害される という結果が得られた. そこで arachidonic acid の阻害様式と阻害定数 (K_i 値)を 求めるために arachidonic acid 1 μ M 存在下また非存在下を Table 4 で示した活性 溶液組成で活性を測定した. 基質 (9,10-phenanthorenequinone)の濃度を 0.0025 ~0.08 mM まで変化させ、Lineweaver-Burk のダブル逆数プロットに従いそれぞ れの K_m 値を求め阻害様式を決定し、Lineweaver-Burk プロットで得られたそれぞ れの傾きをプロットしたグラフから阻害定数 (K_i 値)を算出した. この算出には SIGMAPLOT を使用した.

第6項 酵素の結晶化

ニワトリ脂肪肝由来 CR の立体構造を分子レベルで明らかにするための実験 として, 蒸気拡散法による酵素の結晶化を行った. これまでに結晶化に成功し, X 線回折実験まで行っているものの立体構造解析にまでは至っていない[19]. そ こで本実験では立体構造解析に適したより良質な結晶の作成を行うことにした. CR は MICROCON YM-30 で 14.3 mg/ml に濃縮した。結晶化条件の検索はスクリ ーニングキット (Table 8) を使用し、シッティングドロップ蒸気拡散法によ り行った.96 穴プレートを使用し,精製酵素 1 µl とリザーバー溶液 1 µl を混合し たタンパク質溶液, リザーバー溶液 100 µl を共に密閉した後, 暗所 (20℃) で約 2 週間静置した. その後スクリーニング結果から得た Table 9 の条件でシッティ ングドロップ蒸気拡散法を用いた酵素の結晶を行い,約1月間,暗所 (20℃)で静 置した.

Table 9: Mother liquor.
0.1 M Bis-Tris buffer (pH6.5)
23% PEG5000
0.2 mM NADPH

第7項 X線回折データ解析

1) X線回折データの収集

第 I 章第 1 節第 6 項で得られた結晶を用い, BL-5A ビームライン (高エネル ギー加速器研究機構, 筑波) で ADSC CCD 検出システムを使用しX線回折実験 を行った. X 線照射直前に, ナイロン製クライオループを使用して結晶を抗凍 結剤含有バッファー中に移し1分程度浸した. 抗凍結剤を結晶にソーキングし た後, 結晶をループでピックアップした. ゴニオメータにマウントし, 気体窒素 中で急速に冷却した.

2) 格子定数および空間群の決定

ADSC CCD 検出器上に記録された回折像は,さまざまな結晶格子面 [指数 (*h k1*)] からの X 線の反射によって構成されている. これらの点を結ぶベクトルの うち,同一平面になく,また平行でもない 3 本の最も短いベクトルを選びだし, 格子定数および結晶系を決定した (ベクトルミニマム法). これをもとに各回折 点と格子面との対応付け (指数付け) を行った. さらに,指数付けされた全反射 から,特定の系列的な反射について反射強度が 0 となっている (消滅側) かチェ ックし空間群を決定した. これらの一連の回折データの処理は,プログラム HKL2000 [24] を使用して行った. 3) 分子置換法による初期位相の決定

初期位相の決定は分子置換法により行い, プログラムには MOLREP [25] を使用した.

4) 構造精密化

分子モデルの精密化は, エネルギー関数を利用した最小二乗法により行った. 分子構造に関して REFMAC5 [26]と CNS [27]での精密化を行い, さらに CCP4 [25]で計算された電子密度マップを COOT [28]上で確認しながら手動で主鎖およ び側鎖の再構築を行った. 補酵素 NADPH のモデル形状は MolProbity [29]で解析 した. また, 分子グラフィックスの作図には, PyMOL (http://www.pymol.rg/) を 使用した.

第2節 実験結果および考察

ニワトリ脂肪肝由来 CR の解析内容を Fig. 5 に示した. 既に構築済み発現ベク ターpET15b/CR を大腸菌による目的酵素の発現を行い, Talon コバルトアフィニ ティカラムを用いて精製した. その後, ミカエリス定数、阻害様式および立体 構造の解析を行った.

Fig. 5: Flowchart of experiments.

第1項 ニワトリ脂肪肝由来機能未知タンパク質の大腸菌を用いた発現および 精製

タンパク質発現ベクターpET15b/CR を用いて大腸菌 BL-21 Codon Plus-RIPL (DE3)株の形質転換を行い, IPTG により目的タンパク質の発現を誘導した.その後,培養時間の経過と共に菌体量とニワトリ脂肪肝由来機能未知タンパク質の発現量が増加していることを SDS-PAGE により確認した.

菌体を遠心分離して集菌後,破砕し,Talon コバルトアフィニティカラムを使 用し,大腸菌体内で大量発現した機能未知タンパク質を精製した.その結果,分 子量27,874 Daの目的機能未知タンパク質様のバンドがSDS-PAGEにより単一に 検出された.また,SDS-PAGE を用いた目的バンドの分子量算出においても,28 kDaとなりアミノ酸配列からの理論値とほぼ一致した.

Table 10 は粗酵素と精製を行った酵素の総タンパク質量,総活性,比活性,収率,精製倍率についてまとめたものである. 2.0 L の液体培養 (LB 培地) から菌体湿重量 14.73 g の菌体が得られ,約40 mg の精製した目的タンパク質が得られた. これらの結果から目的酵素を高収率に精製することに成功した.

S.4	Total protein	Total activity	Specific activity	Yield	Purified ratio
Step	(mg)	(U)	(U/mg)	(%)	
Crude	119.4	273.3	2.28	100	1
Talon	40.2	191.3	4.76	69.9	2.08

Table 10: Purified table of enzyme.

wet weight 14.73 g/ 2.0 L LB medium

第2項 CR酵素活性測定

1) 基質特異性

Table 11 は基質特異性の検証結果である.表中の fatty liver CR で示しているの がニワトリ脂肪肝由来酵素における結果となっている.各基質をそれぞれ表記 している終濃度で使用し, reductase activity においては 3 つのモデル基質である 9,10-phenanthrenequinone, 4-benzoylpyridine, menadion(vitaminK₃)を含む使用した 全基質で活性を検出することができた. 4-Benzoylpyridin を相対活性で 100% と した時に isatin との反応性が最も高く, isatin や para-toluquinone などジケトンを含 む基質に対し高い活性を有していた.また, 脂質代謝に関与する prostaglandin E₂, acetone などの基質に対しても反応性を有していた. dehydrogenase activity におい ては 2-cyclohexen-1-ol にのみ活性が検出された. これらの結果から機能未知タン パク質が CR 酵素活性を有していることを初めて明らかにし, そして低基質特異 性の酵素であることを見出した.またニワトリ肝臓由来の 3 種類の CR (CR1, CR2, CR3)の精製・酵素科学的性質[21]はすでに報告されており, これらの酵素 の基質特異性についても Table 11 に表記している.ニワトリ脂肪肝由来 CR とは それぞれの基質特異性が全く異なることから, ニワトリ脂肪肝由来 CR は既知の ニワトリ肝臓 CR とは異なることも明らかになった.

17

Substrate (mM)	fatty liver CR	CR1 ^[21]	CR2 ^[21]	CR3 ^[21]
Reductase activity				
4-Benzoylpyridin (2.0)	100	100	100	100
VitaminK ₃ (0.2)	57	63	76	83
9,10-Phenanthrenequinone (0.01)	415	196	436	303
Para-nitroacetophenone (0.1)	236	ND	9	ND
Cycloexanone (1.0)	508	104	ND	ND
Para-nitrobenzaldehydo (0.5)	486	81	7	ND
Testosterone (0.1)	135	53	11	13
Estrone (0.025)	193	ND	4	13
1H-Indole-2,3-dione (isatin) (0.2)	1609	ND	ND	ND
Para-toluquinone (0.2)	979	ND	ND	ND
Pyridin-4-aldehydo (1.0)	588	32	ND	ND
Ethyl 4-chloroacetoacetate(COBE) (0.125)	204	—	_	—
Phenylglyoxal (1.0)	300	—	_	_
Prostaglandin $E_2(0.14)$	258	—	_	—
Acetone (0.4)	100	—	_	_
Tropinon (1.0)	72.7	—	_	—
Dehydrogenase activity				
2-Cyclohexen-1-ol (1.0)	100	—	_	_
Cyclohexanol (1.0)	ND	_	_	_
17β-Estradiol (0.025)	ND	ND	_	_

 Table 11 : Comparison substrate specificity of fatty liver CR and known CRs.

ND: non-detection -: non assay

2) ミカエリス定数 (Reductase activity)

Table 12 は reductase activity における基質のミカエリス定数を求めた結果であ る. 基質特異性の検証結果から、本酵素は低基質特異性の酵素であることが明 らかになった. しかしこの基質特異性の広さから生理的意義の解明には至らな かった. そこで、生体内での本酵素の役割を明らかにするために、どの基質が最 も良好な基質なのかを確かめる手段として、各基質の K_m , K_{cat} , K_{cat}/K_m 値を算出 することにした. K_m は基質との親和性であり、 K_m 値が低いほど高い親和性であ ることを意味しており、 K_{cat} は1分間に基質1モルの反応を行う酵素量、 K_{cat}/K_m は 酵素の触媒効率の尺度を表すものであり、試験化合物が基質として最良である かを評価する単位となっている. 結果は K_{cat}/K_m 値が高い順に列挙した. 結果と して ethyl 4-chloroacetoacetate (COBE) 使用時には他の基質よりも、高い親和性 および触媒効率を示した. 最小値 (4-benzoylpyridine) と最大値 (ethyl 4-chloroacetoacetate) 間で比較したところ、ethyl 4-chloroacetoacetate (COBE) は K_m , K_{cat}/K_m 値がそれぞれ約8×10⁻⁷, 52×10⁴倍の値を示した.

Substrate	$K_{\rm m}(\mu{ m M})$	$K_{\rm cat}({\rm min}^{-1})$	$K_{\text{cat}}/K_{\text{m}}(\min^{-1}\mu M^{-1})$
Ethyl 4-chloroacetoacetate (COBE)	0.008	0.54×10^{2}	67.5×10^2
9,10-Phenanthrenequinone	2.0	1.4×10^{2}	0.56×10^{2}
Estrone	0.96	0.27×10^{2}	0.28×10^{2}
1H-Indole-2,3-dione (isatin)	40	1.53×10^{2}	0.038×10^{2}
Para-toluquinone	146	1.97×10^{2}	0.0135×10^{2}
Prostaglandin E ₂	34	0.41×10^{2}	0.012×10^{2}
Testosterone	37	0.36×10^{2}	0.0097×10^{2}
Para-nitrobenzaldehyde	443	2.09×10^{2}	0.0047×10^{2}
Para-nitroacetophenone	169	0.76×10^{2}	0.0045×10^{2}
VitaminK3	40	0.16×10^{2}	0.004×10^{2}
Cyclohexanone	335	0.8×10^{2}	0.0024×10^{2}
Acetone	46	0.11×10^{2}	0.0024×10^{2}
Phenylglyoxal	211	0.25×10^{2}	0.0012×10^{2}
Pyridine-4-carboxaldehyde	940	0.61×10^{2}	0.00065×10^{2}
Tropinon	1120	0.22×10^{2}	0.0002×10^{2}
4-Benzoylpyridine	9900	1.3×10^{2}	0.00013×10^{2}

 Table 12: Result of michaelis constant measurement (reductase activity).

3) ミカエリス定数 (Dehydrogenase activity)

Table 13 は dehydrogenase activity における基質の基質のミカエリス定数を求めた結果である. Table 12 と同様に K_m , K_{cat} , K_{cat}/K_m 値を求めている. Table 13 から2-cyclohexen-1-ol のみに活性が確認されたため、この1種においてのみ測定を行った.本基質の K_{cat}/K_m 値は 0.14×10^2 (min⁻¹mM⁻¹)を示し、reductase activity における測定で最も K_{cat}/K_m 値が低かった 4-benzoylpyridine と同程度の値であった.

Table 13: Result of michaelis constant measurement (dehydrogenase activity).

Substrate	$K_{\rm m}({ m mM})$	$K_{\rm cat}({\rm min}^{-1})$	$K_{\text{cat}}/K_{\text{m}}(\text{min}^{-1}\text{mM}^{-1})$
2-Cyclohexen-1-ol	1.08	0.15×10^{2}	0.14×10^{2}
Cyclohexanol	ND	—	_
17β-Estradiol	ND	_	_

ND: non-detection -: non assay

4) 補酵素特異性

Table 14 はニワトリ脂肪肝由来 CR の補酵素特異性の検証結果である. 基質特 異性の検証結果から dehydrogenase activity よりも reductase activity で高い反応性 が確認されたことより, reductase activity における補酵素特異性を求めた. 結果は NADPH 使用時を 100% とした相対活性と各補酵素の K_m 値を表記している. 結果 として本酵素は NADPH を良好な電子供与体(補酵素)とすることが明らかに なった.

Coenzyme	Relative activity (%)	K _m (mM)
NADPH	100	0.017
NADH	7.9	0.25

Table 14: Result of coenzyme specificity.

第3項 活性に対するpHと温度の影響

1) 最適 pH

Fig. 6 は表記している各バッファーに対しての活性を相対活性として表記しているもので,最適 pH は pH6.5 であった.

Fig. 6: Optimum pH.

The enzyme activity was assayed at room temperature, 25° C : (\diamond), Potassium phosphate; (\Box), Tris/HCl; (\triangle), Glycine/NaOH.

2) pH 安定性

Fig. 7 は各バッファーに対しての活性を相対活性として表記しているもので, pH 6~pH 9 までは安定であったが, pH 9 以上で安定性が著しく低下した.

Fig. 7: pH stability.

The enzyme activity was assayed at room temperature, 25° C : (\diamond), Potassium phosphate; (\Box), Tris/HCl; (\triangle), Glycine/NaOH.

3) 最適温度

Fig. 8 は各温度に対しての活性を相対活性として表記しているもので、 最適温度は40℃であり,60℃で完全に失活した.

Fig. 8: Optimum temperature.

4) 熱安定性

Fig. 9 は各温度に対しての活性を相対活性として表記しているもので, 20℃~50℃までは 50%以上の活性を有していたが, 60℃以上で完全に失活した.

Fig. 9: Thermal stability.

第4項 阻害様式

Arachidonic acid の阻害様式と阻害定数(K_i 値)を求めるために arachidonic acid を 1 μ M 存在下また非存在下において Table 4 で示した活性溶液組成で活性を測定した. 基質 (9,10-phenanthorenequinone) の濃度を 0.0025~0.08 mM まで変化させ, Lineweaver-Burk のダブル逆数プロットに従いそれぞれの K_m 値を求め阻害様 式を決定し, Lineweaver-Burk プロットで得られたそれぞれの傾きをプロットしたグラフから阻害定数 (K_i 値) を算出した (SIGMAPLOT 使用).

Fig. 10 は阻害剤を入れたものと入れてないものにおいて、横軸に 9,10-phenanthrenequinone の濃度,縦軸を各濃度に対する比活性をとった, Michaelis-Menten kinetics である. Fig. 11 は、この Michaelis-Menten kinetics を用い 得られた横軸に 9,10-phenanthrenequinone の濃度の逆数,縦軸を各濃度に対する 比活性の逆数をとった Lineweaver-Burk ダブル逆数プロットである. このグラフ

で得られた式からそれぞれのKm値およびVmax値を算出した.結果として阻害剤 を添加した酵素の Km 値および Vmax 値は 0.0025 mM, 3.16 U/mg, 通常の酵素の Km 値および V_{max}値は0.0025 mM, 5.01 U/mgと算出された. 阻害作用には競合的阻害 と非競合的阻害があり, 競合的阻害は基質と酵素の活性部位をめぐって競い合 う(基質との競合)ことで、酵素基質複合体の生成を妨げる、このため、競争阻 害剤と基質の比により,反応速度論としては、Km が大きくなるが、Vmax は変わ らない. 非競合的阻害は酵素の活性部位ではない部分に作用する. 競合的阻害 剤とは違い, 基質濃度を高めても反応速度論としては, Kmは変わらず, Vmaxが小 さくなる. 今回の得られたデータを比較してみると Km 値 0.0025 mM (阻害剤あ り) =0.0025 mM (阻害剤無し), V_{max}値 3.16 U/mg (阻害剤あり)<5.01 U/mg という関 係性になっており, Km 値は変わらず, Vmax が小さくなっていることから arachidonic acid の阻害様式は非競合的阻害であることが判明した. また Fig. 12 は阻害定数(Ki値)を算出するために Lineweaver-Burk プロットで得られた各式の 傾きをプロットしたグラフであり, 横軸は arachidonic acid の濃度, 縦軸は傾きと なっている. 直線の X 切片が-Ki 値であり, グラフから得られた計算式から Ki 値 1.7 uM という結果が得られた. Ki値が小さいほど阻害作用が高いということ であり、このことから arachidonic acid の阻害作用は高いものと考えられる.

Fig. 10: Michaelis-Menten kinetics.

Fig. 11: Lineweaver-Burk plot.

The enzyme activity was assayed at room temperature, 25° C : (\diamond), Normal; (\Box), Inhibitor addition

Fig. 12: Calculation of Ki value.
第5項 酵素の結晶

各種スクリーニングキット (Table 8) を用い蒸気拡散法で最適結晶化条件の探 索を行い, Table 9の条件で得られたニワトリ脂肪肝由来 CR の結晶を Fig. 13 に示 す. この結晶を用い回折実験を行った. これまでに複数種類の結晶が析出した ものの,低分子結晶であったり,解析に適さない結晶であったが,本結晶が形状, 分解能が良い高品質な結晶であった.

Fig. 13: Crystal of chicken fatty liver CR.

第6項 X線結晶構造解析

1) X線回折データの収集

得られた結晶について低温 X 線回折実験を行い,分解能 1.98 Åの回折データ を収集した (Fig. 14). これら回折データの処理 (格子定数・空間群の決定,指数 付けおよびデータの積分・スケーリング) は HKL2000 [24]を用いて行った.

Fig. 14: Diffraction image.

2) 精密化

得られたデータを基に構造精密化を行い, ニワトリ脂肪肝由来 CR のアミノ酸 残基,水分子,補酵素 NADPH およびクライオプロテクタントである ethylene glycol の位置を PDB entry: 1YO6 (相同性 39%)に対する分子置換法で同定した. その結果, CR の構造決定に成功した. 回折データ,精密化などのデータは Table 15 に記載した. また, Protein data bank へ座標データの登録を行った (3WXB).

Data collection	
Unit cell parameters	<i>P</i> 3 ₂ 21
Space group	a = 74.6 Å, $b = 74.6$ Å, $c = 190.9$ Å
	$\alpha = 90^{\circ}, \beta = 90^{\circ}, \gamma = 120^{\circ}$
Wavelength (Å)	1.0
X-ray source	BL-5A
Maximum resolution (Å)	1.98
No. unique reflections	43916
Redundancy ^a	13.3 (12.3)
Completeness ^a (%)	99.9 (100.0)
$\operatorname{Rsym}^{a,b}(\%)$	6.2 (33.7)
$\langle I/\sigma(I) \rangle^{a}$	21.3 (6.6)
Refinement	
Resolution range (Å)	36.6-1.98
R_{cryst}^{c} (%)	20.2
Rfree ^d (%)	21.2
No. protein atoms	3929
No. water molecules	229
No. ligands	NADPH, 2
	ethylene glycol, 1
RMSD bond lengths (Å)	0.025
RMSD bond angles (°)	2.2
Average B-factors (Å ²)	
Protein atoms	35.0
Water molecules	44.2
NADPH molecules	28.1
Ethylene glycol molecule	38.1
Ramachandran quality ^e	
Favored regions (%)	97.9
Outliers (%)	0.0
PDB accession code	3WXB

Table 15: Statistics on data collection, phase determination and refinement.

^a Values in parentheses are for the last resolution shell.

^b $R_{sym} = \Sigma h \Sigma i | Ii (h) - \langle I (h) \rangle | / \Sigma h \Sigma i | Ii (h) |$, where Ii (h) is the intensity measurement for a

reflection h and $\langle I(h) \rangle$ is the mean intensity for this reflection.

^c $\mathbf{R}_{cryst} = \Sigma h \mid |Fobs| \mid Fcalc \mid |\Sigma h|Fobs|$.

 d R_{free} was calculated using randomly selected reflections (5%).

^e MolProbity [28] was used to monitor and validate the structural model.

3) 構造解析

精密化した結晶構造を Fig. 15 に示した. 結晶構造はダイマー構造であり, 補 酵素 NADPH が両方のサブユニットで確認され, クライオプロテクタントとし て用いた ethylene glycol が A サブユニットのみに見られ, 7 つのヘリックスと 7 つのストランドから構成される β シートから構成されていた.

Fig. 15: Overall structure of thyroidectomized (Tx) chicken fatty liver CR.

Ribbon representation of the Tx chicken fatty liver CR dimer is shown. The NADPH-binding and catalytic domains are shown in green and yellow, respectively. The adjacent subunit is shown in gray. The region involved in dimer formation is indicated. NADPH (magenta) and ethylene glycol (cyan) molecules are shown as stick models. The oxygen and nitrogen atoms are shown in red and blue colors, respectively.

また、DALI サーバー [30]を用いてニワトリ脂肪肝由来 CR のモノマーと類似 する構造をとるタンパク質を検索したところ、D. melanogaster CR (RMSD = 1.5 _A for the Ca atoms of 247 residues; 1SNY-A; Z-score = 38.2) (Fig. 16A) および *Caenorhabditis elegans* putative CR (RMSD = 1.5 _A for the Ca atoms of 237 residues; 1YO6-C; Z-score = 34.9) (Fig. 16A) と高い類似性を示した. また、ニワトリ脂肪 肝由来 CR はゲルろ過の結果からモノマー構造であると報告していたが [19], PISA sever [31]を用いた oligomerization-state analysis により *D. melanogaster* CR と 同様にダイマー構造を形成している可能性が示唆された. *D. melanogaster* CR に おける, 2 つのヘリックス (αE と αF) および αF ヘリックスと βE ストランド間に 位置する 3_{10} ヘリックス, ダイマー形成に関与する C 末端残基 Trp248, はニワト リ脂肪肝由来 CR においても, 2 つのヘリックス (α5 と α6), α5 ヘリックスと β4 ストランド間の Dimerization loop, ダイマー形成に関与している C 末端残基 Trp259 として保存されていた.

これまでに明らかになっている CR と構造比較を行うことにより,本酵素の特 徴を解析した.哺乳類由来 CR とニワトリ脂肪肝由来 CR を比較したところ,部 分的に構造が類似しているものとして pig heart peroxisomal CR (RMSD = 2.3 _A for the Ca atoms of 225 residues; 2ZAT-A; Z-score = 26.0) (Fig. 16B), mouse CR (RMSD = 2.3 _A for the Ca atoms of 219 residues; 1CYD-A; Z-score = 25.0) (Fig. 16B), human CR (RMSD = 2.7 _A for the Ca atoms of 221 residues; 1WMA-A; Z-score = 24.5) (Fig. 16B), pig testicular CR (RMSD = 2.7 _Afor the Ca atoms of 220 residues; 1N5D-A; Z-score = 24.1) (Fig. 16B) が挙げられる. これら CR の全てに 触媒において重要な役割を担うチロシン残基が保存されているアミノ酸モチー フ(S-Y_{xxx}K) [32]と酸化還元酵素活性に必須な補酵素 NAD(P)H の結合アミノ酸モ チーフ(G_{xxx}G_xG) [33]が完全に保存されていた (Fig. 17). しかし,基質結合部位 周辺は既知の CR とは全く異なっており,またこれら酵素の4次構造とは大きく 異なっていた. pig heart peroxisomal CR と mouse CR ではテトラマー, pig testicular CR と human CR ではモノマーであり,ニワトリ脂肪肝由来 CR と D. melanogaster CR のダイマー構造は哺乳類由来の CR と全く異なっていた.

また興味深いことに DALI サーバー [30] の結果から, ニワトリ脂肪肝由来 CR は, SDR ファミリーに属する *Datura stramonium* 由来 tropinone 還元酵素 (RMSD = 2.0 _A for the Ca atoms of 224 residues; 1AE1-B; Z-score = 27.3)とも構造 類似性を示していた. Tropinone は、アルカロイドではあるが、構造中にカルボニ ル基を有する化合物でもある. これらのことを踏まえ NADPH 依存的 tropinone 還元酵素活性を確認したところ、 ニワトリ脂肪肝由来 CR は tropinone に対する 還元活性も有していることを確認した(Table 11, 12). これはtropinone 還元酵素活 性を持つ CR の最初の報告となる.

Fig. 16: Comparison of CRs structure.

(A) The structures of Tx chicken fatty liver CR (green) was superimposed on those of

D. melanogaster (blue) and *C. elegans* (pink) CRs. (B) The structures of Tx chicken fatty liver CR (green) was superimposed on those of human (white), mouse (yellow), pig heart peroxisomal (orange), and pig testicular (pale_cyan) CRs. NADPH or NADP+ (magenta) and ethylene glycol

(cyan) molecules are shown as stick models. The oxygen and nitrogen atoms are colored as described in Fig. 15.

		α1	β1	α2	β2	α3	
Chi	CR	-9:SSGLVPRGSHM	-GELRVRSVLVTGAI	NRG I GLGF VQHLLAI	LSNPP-EWVFATCRDPK	QRAQELQKLASK: 57	
Fly	CR	1:	HMNSILIT <mark>G</mark> CI	NRGLG <mark>L</mark> GLVKALLNI	LPQPP-QHLFTTCRNRE-	QAKELEDLAKN:51	
Ele	CR	1:M	SPGSVVVT <mark>G</mark> AI	NRG I G <mark>LGLVQQLVKI</mark>	DKN-I-RHIIATARDVE-	KATELKSIK:49	
Hum	CR	2:SG-I	HVALVT <mark>G</mark> GI	NKGIG <mark>L</mark> AIVRDLCRI	LFSGDVVLTARDVT-	RGQAAVQQLQA:51	
Mou	CR	3:	LN-FSGLRALVT <mark>G</mark> A	GKG I G <mark>R</mark> DTVKALHA	SGAKVVAVTRTN	ISDLVSLAKECP-: 52	
Per	CR	10:	-KPLENKVALVT <mark>A</mark> S	TDG I G <mark>L</mark> A I ARRLAQI	DGA-HVVVSSRKG	ENVDRTVATLQG: 60	
Tes	CR	1:SSNT	RVALVTGAI		QFAGDVVLTARDVA-	RGQAAVKQLQA:51	
		β3	α4	β4	*	α5	
Chi	CR	58: HPNLVIVPLEVTD	PASIKAAAASVGERI	LKGSGLNLLINNAG	IARA-N-TI-DNETLKDN	ISEVYTTNTIAPL: 125	ĺ
Fly	CR	52: HSNIHILEIDLRN	FDAYDKLVADIEGV	TKDQGLNVLFNNAG	IAPKSA-RI-TAVRSQEL	LDTLQTNTVVPI : 120	I
Ele	CR	50: DSRVHVLPLTVTC	DKSLDTFVSKVGEI	GSDGLSLLINNAG	VLLSYGTNT-EP-NRAVI	AEQLDVNTTSVV:118	l
Hum	CR	52: EGL-SPRFHQLDIDD	LQSIRALRDFLRKE	YGGLDVLVNNAG	IAFKVA-DPTPFHIQA	EVTMKTNFFGTR: 118	i.
Mou	CR	53:GIEPVCVDLGD	WDATEKALGGIG	PVDLLVNNAAI	LVIM-QPFLEVTKEAF	DRSFS VNLRSVF: 112	
Per	CR	61: EG-LSVTGTVCHVGK	AEDRERLVAMAVNLI	HGGVDILVSNAA	VNPF-F-GNIIDATEEVW	DKILHVNVKATV:128	l.
Tes	CR	52: EGL-SPRFHQLDIID	LQSIRALCDFLRKE	YGGLDVLVNNAA ***	IAFQLD-NPTPFHIQA	ELTMKTNFMGTR:118	
			u	5			
Chi	CR	126: LLSQAFLPMLKKAAQ	E-NPGSGLSCSKAA	IINISSTAGSIQI	DLYL	:169	ļ,
Fly	CR	121: MLAKACLPLLKKAAK	A-NESQPMGVGRAA	IINMSSILGSIQ	GN-T	:163	1
Ele	CR	119: LLTQKLLPLLKNAAS	K-ESGDQLSVSRAA	/ITISSGLGSITI	DN-T	:161	
Hum	CR	119: DVCTELLPLIK	PQGR	VNVSSIMSVRALK	SC-SPELQQKFRSETITE	.EELVGLMNKFVE:176	
Mou	CR	113: QVSQMVARDMINR	-GVPGS	[VNVSSMVAH	/T-F	: 143	
Per	CR	129: LMTKAVVPEMEKR	GGGS	VLIVSSVGAY	1P-F	: 158	
les	CR	119: NVCTELLPLIK	PQGR1	VVNVSSTEGVRALN	EC-SPELQQKFKSETITE	EELVGLMNKFVE:176	i.
				αθ	β6		5
Chi	CR	1/0:WQYG	QALSYRCSKA	ALNML I RCQSMGYR-	-EHGIFCVALHPGW	/KIDMGGI:218	
Fly	CR	164:DG	GMYAYRTSKS		-PQRIMCVSLHPGW	/KIDMGGS:210	Ę.
Ele	UR	162:Su	SAUFPVLAYRMSKA			·: 204	
Hum	UR	1//. DIKKGVHQKEGWP	SS-ATGVINI			KIDMAGP 237	i.
Nou		144P					
Ter	CR	177: DTKNGVHPKEGWS				RTNPSGVLWMDR:209	
169	UN	TTT: DTRNGVTRREGUS	**		87	1(1Dmdd1237	
Chi	CR	210I FDKSR	VTVDESVGGMLKVL			· 250	
Flv	CR	211:SAP		S-KIGEKONGGI	EVNYDG-TPL AW	:248 (41%	0
Ele	CR	218:	-V-EQSTAEL ISSE	V-KLDNSHNGRI	FFMRNL-KPYEF	:250 (39%)
Hum	CR	238:KAT	KSPEEGAETPVYLA	LPPDAEGPHGQI	FVS-EK-RVEQW	:276 (27%	5)
Mou	CR	195: EFARKLKERHPLRKF	AEVEDVVNSILFLL	SDRSA-STSGG	GILVDAGY-LA	S:244 (26%	5)
Per	CR	210: ARKEYMKESLRIRRL	GNPEDCAGIVSFLC	SEDAS-YITGE	TVVVGGGTASR	L:260 (27%)
Tes	CR	238:KAP	KSPEVGAETPVYLAI	LLPSDAEGPHGQI	FVT-DK-KVVEWGVPPES	YPWVNA-:288 (26%)

Fig. 17: Structure-based amino acid sequence alignment of CRs.

Chi CR, Tx chicken fatty liver CR (3WXB); Fly CR, *D. melanogaster* CR (1SNY); Ele CR, *C. elegans* putative CR (1YO6); Hum CR, human CR (1WMA); Mou CR, mouse CR (1CYD); Per CR,

pig heart peroxisomal CR (2ZAT); Tes CR, pig testicular CR (1N5D). The different CR sequences were aligned using MATRAS (http://strcomp.protein.osakau.ac.jp/matras/) [33]. The red boxes represent the GXXXGXG and S-YXXXK motifs. The sequence for the active-site lid of the Tx chicken fatty liver CR is underlined. Asterisks indicate conserved residues. The amino acid residues in the Tx chicken fatty liver CR involved in the formation of a helices (a1–a8) and b strands (b1–b7) are indicated by green bars and solid orange arrows, respectively, placed above the aligned sequences.

4) 補酵素結合

ニワトリ脂肪肝由来 CR の立体構造において,活性中心に結合している NADPHは、電子密度が明瞭であったため、NADPHをアサインすることができた (Fig. 18). 一般的に、NAD(P)H 依存的デヒドロゲナーゼは、NAD(P)H のニコチン アミド部分のC4位置からの水素移動のために、svn構造に対する pro-S 特異的酵 素, anti 構造に対する pro-R 特異的酵素のどちらかに属する[35]. ニワトリ脂肪肝 由来 CR は、D. melanogaster CR [36]と同様に、pro-S 特異的酵素 (Type-B) である ことが判明した. プラスの電荷をもったアルギニン残基 (Arg16, Arg41, Arg47)と Asn15 の側鎖は, マイナスの電荷を持っている NADPH のアデノシンの 2`-リン 酸基と相互作用をとっていることが観察された (Fig. 17). 補酵素特異性の検証 結果から、本酵素は NADPH を特異的に認識していると考えられた (Table 14). これはNADPHのアデノシンの2-リン酸基を認識する機構によるものと考えら れた. Escherichia coli 由来の 7α-ヒドロキシステロイドデヒドロゲナーゼ [37] や Streptomyces hydrogenans 由来の 3a,20β-ヒドロキシステロイドデヒドロゲナーゼ [38] などの NADH 依存性 SDR ファミリーでは、アスパラギン酸残基がニコチン アミドリボースのヒドロキシル基と水素結合を形成することが報告されている が、ニワトリ脂肪肝由来 CR ではこのアミノ酸残基は D. melanogaster CR (Cys36) のように Cvs40 残基に置換されていた.

Fig. 18: Stereo-representation of the NADPH molecule bound to Tx chicken fatty liver CR.

Residues that interact with NADPH are labeled. The network of hydrogen bonds is shown as dotted lines. The final σ_A -weighted 2Fo - Fc electron density map for the NADPH is shown at the 1σ level. The atoms are colored as described in Fig. 15.

5) 活性部位

サブユニット A の活性中心に存在する空洞の電子密度マップに焦点をあて、 ペプチド鎖のリファイメントを行った後に, ethylene glycol 分子がこの電子密度 に一致することが明らかになった(Fig.19A). ethylene glycol の 2 つの酸素原子に は水分子 (WAT 474)と Ser159, Tyr178 残基の側鎖が水素結合を形成していた. し かしサブユニット B の活性部位において ethylene glycol 分子は確認されなかった. この二つのサブユニット A, B の構造を比較したところ, サブユニット A の Tyr172 残基の側鎖がサブユニット B の Tyr172 の側鎖に対し 103.7°回転しており, これはサブユニット A における活性部位の閉鎖を示唆している (Fig.19B). さら にこの Tyr172 残基を含む活性部位に"フタ"の役割をするアクティブサイトリッ ド (Ile164—Gln174)がこれまで立体構造が明らかにされている全ての既知の CR (Fig. 17, 20A)では確認されないということを明らかにした. Tyr172 残基の側鎖の 動きは活性部位でのethylene glycol分子の結合により影響を受けている可能性が 考えられた.また,ニワトリ脂肪肝由来 CR の基質結合ループ構造 (Pro208-Thr226) は最も類似性の高い CR である D. melanogaster CR の基質結合 ループ構造 (Pro200-Asp215) と比較してみても全く異なっていた (Fig. 20B). 以上のことから,ニワトリ脂肪肝由来 CR の基質結合ループ構造は、従来の CR では報告されていない非常にユニークな構造をとっている事を明らかにした.

Fig. 19: Stereoview of the active site of Tx chicken fatty liver CR.

(A) The NADPH/ethylene glycol-bound active site of Tx chicken fatty liver CR is shown. (B) The differences between the active site lid structures of the two subunits of Tx chicken fatty liver CR are shown. NADPH (magenta) and ethylene glycol (cyan) molecules are shown as stick models.

Different CRs are colored as described in Fig. 16, and the atoms are colored as described in Fig. 15. The C4 atom of the pyridine ring (a hydride acceptor site) and the *si*- and *re*-faces are labeled. Water molecule is labeled as WAT. The final σ_A -weighted Fo - Fc omit electron density maps for ethylene glycol and Tyr172 are shown at the 1σ level. The networks of hydrogen bonds are shown as dotted lines.

Fig. 20: Comparative analysis of the active site lid and

substrate-binding loop.

(A) The structural comparison of the active site lid for different CRs is shown. (B) The structural comparison of the substrate-binding loop between different CRs is shown. NADPH (magenta) and ethylene glycol (cyan) molecules are shown as stick models. The ¹⁵⁹S-Y¹⁷⁸XXX K¹⁸² motif and Y¹⁷² residue are labeled. Different CRs are colored as described in Fig. 16, and atoms are colored as described in Fig. 15.

第3節 小括

ニワトリ脂肪肝由来機能未知タンパク質を,大腸菌を宿主細胞として大量発 現させ、精製後、様々な基質を用いて酵素活性測定を行うことにより、本タンパ ク質が NADPH 依存性カルボニル還元酵素であり、基質特異性の低い低基質特 異性酵素であることが明らかとなった. また, 使用した各基質 (Table6, 7)のKm, K_{cat}, K_{cat}/K_m値の測定を行い、その結果 ethyl 4-chloroacetoacetate (COBE)において 非常に低い Km 値 (0.008 µM) と高い Kcat/Km 値 (6750000min⁻¹mM⁻¹) を見出した. この値は他の基質よりも圧倒的に反応性が高いことから、 ニワトリ脂肪肝由来 CR の生理的意義を考察する上で重要な発見であると考えられた. また. 配列解 析のみでは機能推定には限界があることより、"立体構造が類似している酵素は 機能も類似している"ため、類似構造情報を用いて CR の基質になりうる化合物 の検索を行った. DALI サーバーの結果から, tropinone 還元酵素と立体構造が類 似していたため、tropinone 還元酵素活性を測定したところアルカロイドである tropinone に対しても反応性があるという知見を見出した、これは報告されてい るCRでは初めてのものであるが、生体内の基質とは考えにくい化合物であった。 立体構造を解明するために行った結晶化においては、補酵素である NADPH と クライオプロテクタントである ethylene glycol(基質アナログ)の三者複合体で の結晶化に成功し、その結晶を用いての立体構造を決定した. 立体構造解析か ら補酵素 NADPH の結合様式と ethylene glycol の結合様式について明らかにし、 ethylene glycol が結合していた部位が実際の基質が結合する部位であるというこ

とが予測された. また, サブユニットA,B間の比較からTyr172の側鎖が ethylene glycol 分子の結合に重要であり,サブユニット A ではサブユニット B に比べ 103.7°回転していることが判明し,このことにより Tyr172 の側鎖が活性部位を "フタ"することで基質との結合をより強固なものにするという役割を担ってい るのではないかと考えられた. また,この Tyr172 を含む"フタ"の役割をするア クティブサイトリッドは他の生物種由来 CR では確認されていない本酵素にお ける新規な知見である.この Tyr172 の機能を明らかにするためには部位特異的 変異実験が必要であるため,次章ではチロシンから側鎖のフェノール基を無く したアラニンにアミノ酸を変異させたニワトリ脂肪肝由来 CR の作製および酵 素の機能解析実験を行うこととした. 第Ⅱ章 ニワトリ脂肪肝由来 CR の Tyr172 機能解析

緒言

第 I 章でも述べたように、アクティブサイトリッドに存在する Tyr172 の側鎖 は、基質が結合すると側鎖が回転し活性部位を閉じることで基質との結合を強 固なものにするという役割を担っていると考えられた.そこで本章では、すで に解析されている CR に共通するアミノ酸配列の Ser159、Tyr178、Lys182 の部位 特異的変異体の解析実験手法 [39] で用いられた Dpn I 法を同様に使用し、 Tyr172 を Ala に部位特異的変異を行い、Y172A 変異体を作製し機能解析を行うこ とで Tyr172 の機能を明らかにすることを目的としている.

第1節 実験方法

第1項 プライマー設計

ニワトリ脂肪肝由来 CR (NCBI-XP_414028) を鋳型として用い, アクティブサ イトリッドに存在する Tyr172 に着目し部位特異的変異を行うことした. 変異の 方法として Dpn I 法を用いることとした. その際,目的アミノ酸残基である Tyr172 を Ala へと変異させ,部位特異的変異を行った. 実験に用いた変異プライ マー (Y172A-F, -R) は変異導入部分を中心として作成を行った(Table 16). プラ イマー作成は株式会社ファスマックに合成を依頼した.

40

Table 16: Mutation primers.

primers	Oligonucleotide sequence
Y172A-F	5' ctacctgtggcaggctggacaagcgctc 3'
Y172A-R	5' gagcgcttgtccagcctgccacaggtag 3'
 *7	

第2項 目的遺伝子の増幅

1) KODFX-PCR

変異プライマー(Y172A-F, -R)と KOD FX ポリメラーゼ (TOYOBO)を用いて PCR を行った. なお, テンプレート DNA は第 I 章で使用した pET15b/CR (wild-type)プラスミドを使用した. 変異体の PCR 反応溶液組成及び増幅サイクル 条件は Table 17 および Table 18 に示す.

Table 17:	Components	of reaction.
-----------	------------	--------------

mixture	
KOD FX polymerase	1 µl
2×Buffer	25 µl
Primer F	5 µl
Primer R	5 µl
Templet DNA	1 µl
2 mM dNTPs	10 µl
dH ₂ O	1 µl
Total	50 µl

Table 18: PCR cycling condition.

94℃	2 min	
	1 cycle	
98°C	10sec	
68°C	6 min 30 sec	
	25 cycles	

2) Dpn I 処理

PCR 産物を制限酵素 *Dpn* I 用いて, 鋳型として用いた wild-type の DNA の制限 酵素処理による分解を行った.反応溶液組成及び温度条件は以下に示した(Table 19, 20).反応終了後,大腸菌 JM109 株 (遺伝子型: *recA1*, *endA1*, *gyrA96*, *thi-1*, *hsdR17* (r_{K} ⁻ m_{K} ⁺), *e14*⁻(*mcrA*⁻), *supE44*, *relA1*, Δ (*lac-proAB*)/F⁻[*traD36*, *proAB*⁺, *lac I*⁴, *lacZ* Δ M15])を用いて形質転換を行った.形質転換した大腸菌を 50 µg/ml のアン ピシリンを含む LB 平板寒天培地に植え, 37℃でインキュベートした.形成した コロニー内から選択した菌を 50 µg/ml アンピシリンを含む LB (トリプトン1 g, 酵母エキス 0.5g, NaCl 1 g (/100 ml)) 培地 100 ml に植菌し, 37℃で OD₆₀₀=0.6 になるまで好気的に振とう培養した.培養した菌体からプラスミド抽出を行っ た.

Table 19: Components of reaction.		Table 20:	Femperature condition.
mixture		37°C	1 h
Dpn I	1 µl		
DNA after PCR	40 µl		
Total	41 µl		

第3項 DNA シークエンスによる塩基配列の確認

変異 DNA の変異導入を確認するため, インサート配列をシークエンシングした. 塩基配列確認用のプライマーとして T7 プロモータープライマー (5'-TAATACGACTCACTATAGGG-3') を 6.4 pmol を使用した. また, プラスミド DNA は QIAGEN で精製後, 濃度を 0.3~0.6 μg になるように調製した. 各塩基配 列のシーケンスは株式会社ファスマックに依頼し, 変異導入が正しく行われて いることを確認した. 第4項 組換え大腸菌の培養と粗酵素液の調製

1) 粗酵素液の調製

第Ⅱ章第1節第2項で構築したニワトリ脂肪肝由来変異 CR 発現ベクター pET15b/CR を用いて大腸菌 BL-21 Codon Plus-RIPL(DE3)株(遺伝子型: *E. coli* B F- *ompT hsdS*(r_B - m_B -) *dcm*+ Tet^r gal λ (DE3) *endA* Hte [*argU ileY leuW* Cam^r])の形 質転換を行った.実験の手法としては第I章第1節第1項と同様である.

2) Talon コバルトアフィニティカラムクロマトグラフィー

発現させた変異 CR の精製方法としては第 I 章第1節第1項で用いた方法と同様の手法である.

3) SDS-PAGE による酵素の純度検定

2)で得られた試料を SDS 処理し, 12.5%ポリアクリルアミドゲルを用いて分子 量既知のマーカーと共に泳動した後, CBB-R250 を用いてタンパク質染色し, 目 的産物の純度検定を行った. ポリアクリルアミドゲルの組成は Table 21, 22 に示 した. 染色には CBB 染色を用いた. また, 使用した SDS-PAGE 用の泳動バッフ ァーの組成を Table 23 に, 使用した SDS-PAGE 用のマーカーの構成タンパク質を Table 24 に示した.

Table 21: Components of se	paration gel.	
1.5 M Tris/HCl (pH 8.8)+0.4% SDS	1.5 ml	
30% (w/v) acrylamide $\pm 0.8\%$ Bis	2.5 ml	
TEMED	3 µl	
10% ammonium persulphate	40 µl	
H ₂ O	2.0 ml	
Total	6 ml	

 Table 22: Components of concentration gel.

0.5 M Tris/HCl (pH 6.8)+0.4% SDS	0.75 ml	
30% (w/v) acrylamide $\pm 0.8\%$ Bis	0.3 ml	
TEMED	2 µl	
10% ammonium persulphate	30 µl	
H ₂ O	1.95 ml	
Total	2 ml	

Table 23: Components of electrophoresis buffer.

25 mM Tris 192 mM Glycine 0.1% SDS

PROTEIN	M.W. (Da)
MBP-6-galactosidase	175,000
MBP-paramyosin	83,000
Glutamic dehydrogenase	62,000
Aldolase	47,500
Triosephosphate isomerase	32,500
β-Lactoglobulin A	25,000
Lysozyme	16,500
Aprotinin	6,500

Table 24: Protein molecular weight marker.

第5項 タンパク質定量法

タンパク質定量は, Bradford 色素結合法により行った. タンパク質定量用 CBB 色素試薬 Protein assay kit (Bio Rad) を使用し,標準タンパク質として牛血清アル ブミン(BSA: 1.217 mg/ml) を用いた.

第6項 変異 CR 活性測定法

Tyr172 が予測される機能を有しているかを確認するための実験として,分光 光度計を用いた変異 CR 酵素活性測定を行った.実験の手法,反応溶液組成,原 理,酵素活性の定義などは第 I 章第 1 節第 3 項と同様である.

第2節 実験結果および考察

変異 CR の解析内容を Fig. 21 に示した. 目的遺伝子部位の変異を行い, 正しく 変異が行われているのを確認した後に, 構築した発現ベクター pET15b/CR(Y172A)を大腸菌による目的酵素の発現を行い, Talon コバルトアフ

ィニティカラムを用いて精製した.その後, Tyr172 は基質との結合に関わると推測されていたので,モデル基質である 9,10-phenanthorenequinoneの Km 値を求めるために酵素活性測定を行い Tyr172 の詳細な機能の確認を行った.

Fig. 21: Flowchart of experiments.

第1項 DNA シークエンスによる塩基配列の確認結果

Fig. 22 は DNA シークエンスによる WT と Y172A の変異箇所付近の配列を確認した結果である. Y172A は,塩基番号 513 -515 の TAT が GCT に置換されることで Tyr から Ala へと変異していた.この結果から変異体 Y172A 発現ベクターの構築に成功したと考えられた.

Fig. 22: Amino acid sequence comparison of CRs from Tx chicken fatty liver

and mutatants.

第2項 ミカエリス定数の測定

第 I 章における実験結果から Tyr172 の側鎖が活性部位に"フタ"をすることで 基質との結合を強固なものにすると予測されていたので,側鎖をなくした Ala に変異させた Y172A 変異体 CR における基質に対するミカエリス定数を求めた. Table 25 は, reductase activity におけるモデル基質 9,10-phenanthorenequinone のミ カエリス定数を求め, WT および既に報告済みの基質との結合に関与する役割 を有する Ser159 の変異体 S159A における値 [39]と比較した結果となっている. 第 I 章でも述べた通り, Km は基質との親和性を表す単位であり,今回の Y172A 変異体では先にも述べた推測から, Km 値は上昇すると考えられた.結果として Y172A 変異体はモデル基質 9,10-phenanthorenequinone の Km 値が WT と比較して 10 倍に上昇していた. WT と S159A を比較した際の値の上昇は 4.5 倍となってお り, Y172A の Km 値の上昇は S159A よりも高かった(Table25). このことから Tyr172 は立体構造情報からの推測通り,活性部位に"フタ"をすることで基質と の結合を強固なものにする役割を有しており,また, Ser159 よりも基質との結合 に強く関与していることが判明した.

CR	$K_{\rm m}^{9,10\text{-phenanthorenequinone}}({ m mM})$
WT	0.0025
S159A	4.5 times
Y172A	0.025

Table 25: Comparison of K_m value.

第3節 小括

作製した Y172A 変異体で基質 9,10-phenanthorenequinone の K_m 値を測定した結果, WT と比較して 10 倍に上昇していた.これは CR のコンセンサス配列である,

基質の結合に関与する Ser159 の変異体である S159A と WT を比較した際の値の 上昇値 4.5 倍よりも高い. このことから Tyr172 は立体構造情報からの推測通り, 活性部位に"フタ"をすることで基質との結合を強固なものにする役割を有して いた. また, Ser159 よりも基質との結合に強く関与していることが判明した. こ の結果より、ニワトリ脂肪肝由来CRの触媒反応には既に報告されている触媒に 関わる3つのアミノ酸残基 (Ser159, Tyr178, Lys182) だけでなく, Tyr172 を加え た4つのアミノ酸が重要であることを明らかにした. すでに報告されている CR では、触媒には触媒3残基のみが関わっていることからも、 ニワトリ脂肪肝由来 CR は今までの報告されている CR と全く異なる特徴を有する酵素であると考え られた. 今回明らかにした Tyr172 と触媒 3 残基 Ser159, Tyr178, Lys182 を加えた 4 つのアミノ酸の機能と構造相関を Fig. 23 に示した. 即ち Ser159 は基質との結 合、Tyr172 は活性部位を閉鎖することで基質との結合をより強固なものにする という基質結合で最も重要な役割をにない、Tyr178 は基質及び補酵素と結合す ることでプロトン授受として働き, Lys182 は補酵素との二股の水素結合および 最適pHに関与するということである.今回Tyr172の機能を明らかにしたことで ニワトリ脂肪肝由来CRの詳細な機能を解明することはできたものの、得られた 基質特異性のデータのみでは本酵素の生体内での天然の基質を推定することが 難しく, 生理的意義は不明なままであった. また, 酵素不安定性の問題から基質 との複合体の結晶構造や酵素の応用展開も難しい状況であったため、次章以降 にて CR ホモログ酵素に着目することで、これらの問題の解決を図ることとし た.

Fig. 23: The structure function relationship of CR.

Atoms are colored as described in Fig. 15.

緒言

第Ⅱ章でも述べたようにニワトリ脂肪肝由来 CR の触媒に関与する Tyr172 と 触媒に関わる3残基 (Ser159, Tyr178, Lys182) すべての機能を明らかにすること はできたものの. 基質特異性などのデータからでは本酵素の生体内の基質 (天然 の基質)を明らかにすることが困難であり、生理的意義の解明を行うまでは至っ ていない. そこで本章ではこのニワトリ脂肪肝由来CRとアミノ酸配列の相同性 を持つホモログ酵素を見つけ、ホモログ酵素の機能を解明することでニワトリ 脂肪肝由来CRの機能を推定することを目的とした実験を行うことにした.また、 ニワトリ脂肪肝由来 CR は、第 I 章における pH, 熱安定性の実験結果, および精 製から3日で活性が50%にまで低下することも認められていることなどから、 安定性が極めて低い酵素であるということが判明している.しかしニワトリ脂 肪肝由来 CR は基質特異性の結果から極めて幅広いカルボニル化合物を基質と し (Table 11), 高い触媒効率を示した COBE は立体選択的に還元されると ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) となる. この(S)-CHBE はコレステロー ル合成酵素阻害剤の原料になることから高脂血症の治療薬などの分野で用いら れる有用な化合物であるが [23]. (S)-CHBE の化学合成は立体選択性が乏しく光 学分割が必要となる. CR は報告されているほとんどが S 体選択的に還元するこ とから、ニワトリ脂肪肝由来 CR を用いた COBE を基質とする酵素合成系の構築 に利用できる可能性があるが、安定性の低さからそのまま工業的に利用するの は未だ困難である. これらの状況を踏まえ高い安定性を有する酵素が多く存在 する超好熱菌由来の酵素から, 脂質代謝に関する機能を持つニワトリ脂肪肝由 来 CR のホモログ酵素を探索した. 超好熱菌とは 80℃以上に最適生育温度を持 ち.90℃以上でも生育可能な菌であり海底火山や地獄と温泉地帯などの熱水噴

射物などに分布し, 約 30 属 235 種存在している. 分子系統的に生物は 3 つのド メイン Bacteria (真正細菌), Archaea (古細菌), Eucarya (真核生物) に分かれてい る. 超好熱菌の多くはArchaeaに属する. 超好熱菌の酵素は100℃を越える温度 で機能するものがあり, Eucaryaとは異なる新規な代謝系・酵素を持っている.こ の超好熱菌由来酵素は高い耐熱性や変性剤耐性等を持ち,長期間の常温保存可 能で、新規酵素の宝庫である. これらのことより化学、食品、医薬品など産業分 野への応用が期待されている他、代謝経路の解明を行うことによって今後の環 境分野への盛んな利用が期待される分野である. 今回検索した結果, 当研究室 でゲノム DNA を保有していた超好熱菌 Aeropyrum pernix 由来の酵素 3-オキソア シル(アシル輸送タンパク質)レダクターゼ (APE 2503.1) がヒットした. ニワト リ脂肪肝由来CRとのアミノ酸の相同性は約28%と低く、この酵素は分類として は3-オキソアシル(アシル輸送タンパク質)レダクターゼ (OAR. EC1.1.1.100) [40] に分類されている. OAR が触媒する反応模式図は Fig. 24 に示した. 3-oxoacyl-[acyl-carrier protein]を基質とする可逆的な反応を触媒する酵素である. しかしCR活性に必要な、触媒に重要な役割を担うチロシン残基が保存されてい るアミノ酸モチーフ(S-YxxxK) [31]と酸化還元酵素活性に必須な補酵素 NAD(P)H の結合アミノ酸モチーフ(GxxxGxG) [32]が完全に保存されていた (Fig. 25). この ことより, CR 活性を有している酵素ではないかと予測し実験を行った.

Fig. 24: Catalytic style of OAR.

Fig. 25 は、ニワトリ脂肪肝由来 CR と A. pernix 由来 CR のアミノ酸配列を比較 したものである.上の配列がニワトリ脂肪肝由来 CR、下の配列が A. pernix 由来 CR のアミノ酸配列である.青色の矢印で示しているのは酸化還元酵素活性に必 須な補酵素 NAD(P)H の結合アミノ酸モチーフ(GxxxGxG) [32]、赤色の矢印で示し ているのは触媒に重要な役割を担うチロシン残基が保存されているアミノ酸モ チーフ(S-YxxxK) [31]である.

Fig. 25: Comparison of amino acid sequences.

XP_414028, Tx chicken fatty liver CR; APE_2503.1, *A. pernix* CR. The red arrow is S-YXXXK motifs, blue arrow is GXXXGXG motifs.

第1節 実験方法

第1項 プライマー設計

A. pernix 由来 CR (APE_2503.1: Table 26) のクローニングは、プライマー
(APE-F, APE-R) を Aeropyrum pernix 由来 CR の両端の配列をもとに制限酵素 Nde
I 及び Bam HI の切断部位を持つように、また 1 番目の塩基をチミンからアデニンに置換させ開始コドン ATG になるように、以下の表のように設計した (Table 27).

Table	26:	Nucleotide	sequence of the	gene encoding	CR
Iunic		1 (ucicolluc	bequence of the	Some encounts	~

from A. pernix.

Gene sequence

(APE_2503.1)

1	ttg	gag	aca	act	tat	gct	cta	gtg	aca	ggt	ggg	agc	agg	ggt	att
46	ggt	agg	gct	acg	gtt	ctc	cgt	ttc	gcc	cgt	gaa	gga	tgg	agt	gtc
91	gtg	atc	gcc	tac	aag	tcg	agg	gct	gat	ctg	gct	gag	aag	act	gct
136	gag	gag	gct	aga	agg	ctg	ggg	tct	сса	gag	gct	tac	act	gtt	aga
181	gta	gat	gtt	ggc	gat	cct	gat	agt	gtc	act	gag	atg	tct	agt	agg
226	gtt	gga	gag	ctc	att	ссс	cat	ctc	aac	gtg	ctt	gta	aat	gcc	gca
271	ggc	gtt	cta	cag	cta	ggc	ggg	ata	gaa	gag	acc	tct	ata	agc	gag
316	tgg	gag	gag	acc	ctg	agg	gtt	aat	cta	acg	gga	gtg	tac	ctt	gtg
361	aca	aaa	ctg	ctg	cta	ссс	ctt	cta	agg	aag	gcc	aaa	tgg	gct	tcc
406	att	gtt	aac	gtt	gca	agt	att	gca	ggg	gag	aca	gga	aac	gtt	gtg
451	gct	ggt	gta	gcg	tac	tcc	gcc	agc	aaa	gca	ggg	gtc	atc	ggt	ctt
496	acg	aag	agg	ctg	gca	gtc	cag	ctt	gca	ggc	tac	ggt	atc	agg	gtg
541	aac	gct	gtt	gca	ссс	agc	ttc	gtc	gag	acc	gac	atg	acc	agg	agt
586	ttc	ctc	gac	act	cct	gag	aag	agg	gag	agg	ata	gca	agt	ctc	cac
631	ccg	cta	aaa	ata	ata	ctc	aag	cct	gag	gac	gtt	gcg	gag	gcc	ata
676	ctc	ttc	ctt	gca	gac	сса	cgt	agg	agc	agg	ggg	atc	act	ggc	cat
721	gtg	ctg	tcg	ata	aac	gca	ggg	aga	cgc	acc	taa	ì			

54

primers	Oligonucleotide sequence	
APE-F	5' cat <mark>atg</mark> gagacaacttatgctctggtgacaggt 3'	
APE-R	5' ggatcettaggtgegtetecetgegtttatega 3'	
	※赤文字は開始コドンを示す	

 Table 27: Primers for amplification of CR from A. pernix.

第2項 目的遺伝子の増幅

当研究室で保有していた A. pernix 由来 CR のゲノム DNA (APE_2503.1)を鋳型 として、プライマー (APE-F, APE-R)、KOD ポリメラーゼを用いて PCR を行っ た. 反応溶液組成及びサイクル条件は以下に示した(Table 28, 29). 反応終了後、 0.8% アガロースゲル電気泳動を行い目的の断片を切り出し、抽出、精製し、少量 の TE (10 mM Tris/HCl (pH 8.0)、1 mM EDTA) に溶解した. DNA 断片の精製には Wizard® SV Gel and PCR Clean-Up System (Promega)を使用した.

Table 28: Components of reaction.				
mixture				
KOD polymerase	1 µl			
KOD buffer I	5 µl			
APE-F	5 µl			
APE-R	5 µl			
DNA (APE_2503.1)	1 µl			
2 mM dNTPs	5 µl			
25 mM MgCl ₂	2 µl			
dH ₂ O	26 µl			
Total	50 µl			

Table 29: PCR cycling condition.

98°C	15 sec	
65℃	2 sec	
74°C	30 sec	
	25 cycles	

第3項 オーバーハングの付加

下記の組成の反応溶液(Table 30)を 72℃で 10 min インキュベートした後, ただちに氷上に静置し, PCR 産物にオーバーハングを付加した.

Taq polymerase	0.5 µl	
PCR product	5 µl	
25mM dNTP	5 µl	
10×buffer	5 µl	
dH ₂ O	29.5 µl	
Total	50 µl	

 Table 30: Components of reaction mixture.

第4項 pGEM-T Easy ベクターへのライゲーション

オーバーハングを付加した PCR 産物を pGEM-T ベクターにライゲーションし, このベクターを用いて大腸菌 JM109 株 (遺伝子型: recA1, endA1, gyrA96, thi-1, hsdR17 (r_K⁻ m_K⁺), e14 (mcrA⁻), supE44, relA1, Δ (lac-proAB)/F⁻[traD36, proAB⁺, lac I⁴, lacZ Δ M15])を形質転換した. この大腸菌を LB 平板寒天培地 (50 µg/ml アンピシ リンを含む) に植え,形成したコロニーをダイレクト PCR によってスクリーニ ングし,ポジティブコロニーより組換えプラスミド pGEM-T/CR の調製を行っ た.

第5項 DNA シークエンス

PCR 産物の塩基配列を確認する為, pGEM-T/CR のインサート配列をシークエ ンシングした.また,塩基配列のシーケンスは株式会社ファスマックに依頼し, インサート配列が正しいことを確認した. 第6項 pET15bベクターへのライゲーション

pGEM-T/CR を Nde I, Bam HI で処理し, アガロースゲル電気泳動した後, 目的 の配列のバンドを切り出して抽出, 精製し, 少量の TE に溶解した. pET 15b を同 制限酵素で処理し, 以下の反応溶液組成(Table 31)で 16°C, 16 時間 (O/N) インキ ュベートし目的配列とライゲーションした. 反応には DNA Ligation Kit-Ligation high (TOYOBO) を使用した.

Table 31: Components of reaction mixtureLigation high $10 \ \mu l$ pGEM-T/CR \checkmark Nde I - Bam HI $6 \ \mu l$ pET15b \checkmark Nde I - Bam HI $1 \ \mu l$ dH₂O $3 \ \mu l$ Total $20 \ \mu l$

第7項 組換え大腸菌の培養と粗酵素液の調製

1) 粗酵素液の調製

第Ⅲ章第1節第6項で構築した Aeropyrum pernix 由来 CR 発現ベクター pET15b/CR を用いて大腸菌 BL-21 Codon Plus-RIPL(DE3)株(遺伝子型: E. coli B F- ompT hsdS(r_B- m_B-) dcm+ Tet^r gal λ (DE3) endA Hte [argU ileY leuW Cam^r])の形 質転換を行った.実験の手法としては第I章第1節第1項と同様である.

2) 熱処理による目的酵素の精製

A. pernix 由来 CR は,高い熱安定性を持つと予測されることから,熱による目 的酵素の精製を行った.0.2 M Na₂SO₄ を酵素溶液に加え,70℃,20 min 熱処理を行 った. 3) Talon コバルトアフィニティカラムクロマトグラフィー

発現させた A. pernix 由来 CR の精製方法としては第 I 章第 1 節第 1 項で用いた方法と同様の手法である.

4) SDS-PAGE による酵素の純度検定

SDS-PAGE による純度検定の方法は, 第Ⅱ章第1節第4項と同様である. また マーカーは Table 24 を使用した.

第8項 タンパク質定量法

タンパク質定量は、第Ⅱ章第1節第5項と同様にBradford色素結合法により行った.

第9項 N末端アミノ酸解析

精製した CR を SDS-PAGE した後, エレクトロブロッティングにより PVDF 膜 に転写し, CBB 染色液で染色した.切り出したバンドを用いてプロテインシーク エンサー(PPSQ-21 島津製作所)により N 末端アミノ酸配列の解析を行った.

第10項 CR 活性測定法

1) 基質特異性

今回 A. pernix 由来 CR が推測通り CR 酵素活性を有しているかを確認するための実験として、分光光度計を用いた CR 酵素活性測定を行った.実験の手法、反応溶液組成、原理、酵素活性の定義などは第 I 章第 1 節第 3 項と同様である.基質としてはニワトリ脂肪肝由来 CR の基質特異性の実験で使用した各脂溶性の基質(Table 6)を用いた.

58

2) 補酵素特異性

Table 4 に示した反応溶液組成の補酵素を NADH(終濃度 0.02 mM)に変化させ て活性測定を行い、本酵素活性の補酵素特異性について調べた. NADPH を補酵 素として使用した活性を 100% とし、NADH の相対活性を求めた.

第11項 活性に対する pH と温度の影響

仮説通り超好熱菌である A. pernix 由来 CR が高い安定性を有するかを確認す るための実験として, 第 I 章第 1 節第 4 項と同様に, 最適 pH, 最適温度, pH 安定 性, 熱安定性を検証した. それぞれの実験方法は, 最適 pH および pH 安定性のみ 測定条件温度を 50℃に変更し, また pH 安定性においては, 処理を行うバッファ ーの pH を pH 3~pH 11.5 の範囲に変更した. それ以外は第 I 章第 1 節第 4 項と同 様に行った.

第12項 酵素の結晶化

本章で使用している A. pernix 由来 CR の立体構造を分子レベルで明らかにす るための実験として、蒸気拡散法による酵素の結晶化を行った.これは立体構 造を解明することで、本酵素の高い安定性に関与する構造を明らかにすること を目的としている. A. pernix 由来 CR は MICROCON YM-30 で 11.2 mg/ml に濃縮 した.結晶化条件の検索はスクリーニングキット (Table 8) を使用し、シッテ ィングドロップ蒸気拡散法により行った.96 穴プレートを使用し、精製酵素 1 µl とリザーバー溶液 1 µlを混合したタンパク質溶液、リザーバー溶液 100 µlを共に 密閉した後、暗所 (20°C) で約 2 週間静置した.その後、スクリーニング結果か ら得た Table 32 の条件でシッティングドロップ蒸気拡散法を用いた酵素の結晶 を行い、約 1 月間、暗所 (20°C)で静置した.

59

Table 32: Mother liquor.

0.1 M Acetate buffer (pH 4.5)

1.8 ~ 2.0 M NaCl

0.2 mM NADPH

第13項 X線回折データ解析

1) X線回折データの収集

第Ⅲ章第1節第12項で得られた結晶を用い, BL-AR-NE3A ビームライン (高 エネルギー加速器研究機構, 筑波) で ADSC CCD 検出システムを使用し, X線 回折実験を行った. X線照射直前に, ナイロン製クライオループを使用して結晶 を抗凍結剤含有バッファー中に移し1分程度浸した. 抗凍結剤を結晶にソーキ ングした後, 結晶をループでピックアップした. ゴニオメータにマウントし, 気 体窒素中で急速に冷却した

2) 格子定数および空間群の決定

ADSC CCD 検出器上に記録された回折像は、さまざまな結晶格子面 [指数 (*h k1*)] からの X 線の反射によって構成されている. これらの点を結ぶベクトルの うち,同一平面になく,また平行でもない3本の最も短いベクトルを選びだし, 格子定数および結晶系を決定した (ベクトルミニマム法). これをもとに各回折 点と格子面との対応付け (指数付け)を行った. さらに,指数付けされた全反射 から,特定の系列的な反射について反射強度が0となっている (消滅側)かチェ ックし空間群を決定した. これらの一連の回折データの処理は,プログラム HKL2000 [24] を使用して行った. 3) 分子置換法による初期位相の決定

初期位相の決定は分子置換法により行い, プログラムには MOLREP [25] を使用した.

4) 構造精密化

分子モデルの精密化は, エネルギー関数を利用した最小二乗法により行った. 分子構造に関して REFMAC5 [26]と CNS[27]での精密化を行い, さらに CCP4 [25]で計算された電子密度マップを COOT [28]上で確認しながら手動で主鎖およ び側鎖の再構築を行った. 補酵素 NADPH のモデル形状は MolProbity [29]で解析 した. また, 分子グラフィックスの作図には, PyMOL (http://www.pymol.rg/) を 使用した.

第2節 実験結果および考察

A. pernix 由来 CR の解析内容は Fig. 26 に示した. 制限酵素を付加させるプラ イマーの設計を行い, そのプライマーを用い目的遺伝子 (APE_2503.1)を増幅 し, タンパク質発現ベクターpET15b にライゲーションし, 大腸菌による目的酵 素の発現を行った. 発現させた酵素を精製し, 酵素活性測定, 酵素の結晶化, 立 体構造解析により A. pernix 由来 CR の機能, 構造を解明した.

61

Fig. 26: Flowchart of experiments.

第1項 目的遺伝子の増幅

Fig. 27は, KOD ポリメラーゼによる目的遺伝子の増幅を行い, 0.8%アガロース ゲル電気泳動により確認をした結果である.使用したプライマーは,フォワー ドとリバース共に目的遺伝子に切断配列のない Nde I と BamH I 配列を用いて設 計した.赤色の矢印は増幅された目的遺伝子であり,今回の目的遺伝子は753 bp であり,マーカー500 bp と 1000 bp の間に目的遺伝子と思われるバンドを確認で きた.

Fig. 27: Result of amplification gene.

Agarose gel electrophoresis of gene A. pernix CR. M, marker DNA; Sample, APE_2503.1.

第2項 ダイレクト PCR によるスクリーニング結果

Fig. 28 は、ポジティブコロニーより組換えプラスミドpGEM-T/CR の調製のた めに、ダイレクト PCR によるスクリーニングを行った結果であり、図中の M 及 び赤矢印は Fig. 27 と同様である. pGEM-Tベクターとのライゲーションの際に目 的遺伝子が組み込まれず、ベクターが自分自身とライゲーションしてしまうセ ルフライゲーションの可能性がある. セルフライゲーションしたプラスミドを 選別するために IPTG, X-gal を使用するブルーホワイトセレクションを行う. pGEM-Tベクターには *lacZ* 遺伝子があり, *lacZ* 遺伝子は IPTG と X-gal の存在下 で *lacZ* タンパク質を発現し、大腸菌コロニーを青くする(ネガティブ). しかし、 *lacZ* 遺伝子の中に増幅したい DNA がライゲーションされると、転写が抑制され 正常な *lacZ* タンパク質が発現しないために、大腸菌コロニーは白いままとなる (ポジティブ). 培地に IPTG と X-gal を添加し、形質転換を行うと DNA が組み込 まれたプラスミドを持つ大腸菌は白いコロニーになり、セルフライゲーション したプラスミドを持つ大腸菌は青いコロニーとなり、選別が可能となる. 今回 ポジティブと思われるコロニーを10個選別しダイレクトPCRにより目的遺伝子の増幅を行った結果,5,6,7番を除くコロニーで目的遺伝子の存在を確認できた. 最も目的バンドを濃く確認できた 1 番のコロニーから組換えプラスミド pGEM-T/CR の調製を行った.

Fig. 28: Result of screening by direct PCR.

Agarose gel electrophoresis of gene A. pernix CR. M, marker DNA; Lane 1-10, APE_2503.1.

第3項 SDS-PAGE による CR の発現および精製の確認

Fig. 29 は、SDS-PAGE により A. pernix 由来 CR の発現, 各ステップの精製のチ ェックを行った結果で, 各レーンの説明を上記のとおりである. A. pernix 由来 CR の分子量は26875 Da であり, 各レーンにこの目的酵素のバンドと思われる約 27 kDa のバンドが確認できた. また, 熱処理により不要なタンパク質のバンド の減少も確認でき, アフィニティクロマトグラフィーによる精製で目的酵素の バンドをほぼ単一化することに成功した.

Fig. 29: Result of expression and purification by SDS-PAGE.

SDS-PAGE of recombinant *A. pernix* CR. Lane 1, marker proteins; lane 2, crude extract; lane 3, enzyme preparation after heat treatment; lane 4, purified *A. pernix* CR after passingthrough a Co²⁺ affinity column.

第4項 SDS-PAGE によるサブユニット分子量決定

Fig. 30は, Fig. 29の SDS-PAGE を用い目的酵素のサブユニット分子量の決定を 行った結果で, 横軸はバンドの移動距離を Rf 値にしたもの, 縦軸は各分子量の Log10の値でとったものである. SDS-PAGE より算出した分子量は, 約 26,900 Da となりアミノ酸配列からの理論値である 26,875 Da とほぼ一致した.

Fig. 30: Determination of molecular mass of subunit.

第5項 N末端アミノ酸配列確認結果

N 末端アミノ酸配列解析の結果と予測される配列の比較は以下のような結果 (Table 33)となった.N末端アミノ酸配列を解析したところ,予測される配列で は最初のアミノ酸は Met であるが実際には Gly であった.それ以降の配列は,予 測される His-tag のアミノ酸配列と一致していた.Met の切断は,大腸菌由来のメ チオニンアミノペプチターゼにより切断が起こったと考えられる.

Table 33: Result of N-terminal amino acid sequence analysis.

The N-terminal amino acid sequence that is predicted	-19 M	G	S	S	н	н	н	н	н	н	S	•	•	•	
N-terminal amino acid sequence analysis result		-18 G	S	S	Н	Н	Н	Н	Н	S	S	•	•	•	

第6項 CR 酵素活性測定

1) 基質特異性

Table 34 は、ニワトリ脂肪肝由来 CR の実験でも使用した三つのモデル基質 (9,10-phenanthrenequinone、4-benzoylpyridine、vitaminK3)を含む表記している各基 質を、それぞれの終濃度で用い活性を測定した基質特異性の検証結果である. 最も活性が高かった para-toluquinone 使用時の値を 100%とした相対活性で結果 を表記した.結果として 1H-indole-2,3-dione (isatin)だけ活性が確認されなかった が、それ以外の基質では広範囲に異なるレベルで CR 酵素活性が確認された.こ のことから、推測通り *A. pernix* 由来 CR は CR 酵素活性を有していた.

Substrate	Final concentration (mM)	Relative activity (%)	
Para-toluquinone	0.2	100	
Ethyl4-chloroacetoacetate(COBE)	1.0	54.9	
Pyridine-4-carboxaldehyde	1.0	47.6	
Cyclohexanone	1.0	40.4	
Estrone	0.0025	36.9	
Phenylglyoxal	1.0	28.3	
Para-nitrobenzaldehyde	0.5	27.6	
9,10-Phenanthrenequinone	0.01	23.8	
Tropinon	2.5	15.3	
VitaminK3	0.2	15.1	
Para-nitroacetophenone	0.1	13.4	
4-Benzoylpyridine	2.0	13	
Acetone	0.4	10.6	
Prostaglandin E ₂	0.14	8.1	
Testosterone	0.1	6.8	
1H-Indole-2,3-dione (isatin)	0.2	0	

Table 34: Substrate specificity of A. pernix CR.

2) ミカエリス定数

相対活性が高かった para-toluquinone, ethyl4-chloroacetoacetate(COBE), 9,10-phenanthrenequinoneの3つの基質におけるミカエリス定数を求めた結果を Table 35 に示す. K_m , K_{cat} , K_{cat}/K_m の定義は,第I章第2節第2項と同様である.結 果は K_{cat}/K_m 値が高い順に列挙した.結果として ethyl 4-chloroacetoacetate (COBE) 使用時には他の基質よりも,高い親和性および触媒効率を示した.最小値 (para-toluquinone) と最大値 (ethyl 4-chloroacetoacetate) 間で比較したところ, ethyl 4-chloroacetoacetate (COBE) は, K_m , K_{cat}/K_m 値がそれぞれ約 4×10⁻³, 106 倍の 値を示した. COBE の還元物質である(*S*)-CHBE はコレステロール合成酵素阻害 剤の原料になることから高脂血症の治療薬などの分野で用いられる有用な化合 物である[23]. この結果から, *A. pernix* 由来 CR は有用な化合物である(*S*)-CHBE の立体選択的に合成することが可能な有用な酵素であることを明らかにした.

Table 35: Michaelis constant of A. pernix CR.

Substrate	$K_{\rm m}({ m mM})$	$K_{\text{cat}}(\min^{-1})$	$K_{\text{cat}}/K_{\text{m}}(\min^{-1}\mathrm{mM}^{-1})$
Ethyl4-chloroacetoacetate(COBE)	0.0007	0.63×10 ²	900×10 ²
9,10-Phenanthrenequinone	0.0145	0.76×10 ²	52.4×10 ²
Para-toluquinone	0.176	1.49×10^{2}	8.46×10^2

3) 補酵素特異性

Table 36 は reductase activity における補酵素特異性を求めた結果である. NADPH が最も活性が高くこれを 100%とした相対活性で表記している. Table 4 の補酵素の濃度を 0.01 mM から 0.44 mM まで変化させ,相対活性が高かった NADPH の K_m , K_{cat} , K_{cat}/K_m を求めた.結果として本酵素は NADPH を良好な電子 供与体 (補酵素) とすることが明らかになった.

Table 36: Result of coenzyme specificity.

Coenzyme	Relative activity (%)	K _m (mM)	$K_{\rm cat}({\rm min}^{-1})$	$K_{\text{cat}}/K_{\text{m}}(\text{min}^{-1}\mu\text{M}^{-1})$
NADPH	100	0.116	0.55×10^{2}	4.74×10^{2}
NADH	34.4	_	_	_

- : non assay

第7項 活性に対する pH と温度の影響

1) 最適 pH

Fig. 31 は,表記している各バッファーに対しての活性を相対活性として表記しているもので,最適 pH は pH6 であった.

Fig. 31: Optimum pH.

The enzyme activity was assayed at room temperature, 50°C $: (\diamondsuit)$, Potassium phosphate; (\Box), Tris/HCl; (\triangle), Glycine/NaOH.

2) pH 安定性

Fig. 32 は, 各バッファーに対しての活性を相対活性として表記しているもので, pH 3~pH 11.5 までは安定であり, *A. pernix* 由来 CR は pH に対する安定性が非常に高いことが判明した.

Fig. 32: pH stability.

The enzyme activity was assayed at room temperature, 50° C : (\diamond), Citric acid; (\Box), Potassium phosphatel; (\triangle), Tris/HCl; (\times), Glycine/NaOH

3) 最適反応温度

Fig. 33 は,各温度に対しての活性を相対活性として表記している.最適反応 温度は,70℃であるが,A. pernixの生育最適温度が90~95℃とSakoら [41] により 報告されており,実際にはその温度付近がこの酵素の最適温度になると考えら れる.

Fig. 33: Optimum temperature.

4) 熱安定性

Fig. 34 は、各温度に対しての活性を相対活性として表記しているもので、20℃ ~100℃までは 80%以上の活性を有しており、非常に高い熱安定性を有していた.

Fig. 34: Thermal stability.

スクリーニングキットを用い蒸気拡散法で最適結晶化条件の探索を行い, Table 32の条件で得られた A. pernix 由来 CR の結晶を Fig. 35 に示す. この結晶を 用い回折実験を行った.

第8項 酵素の結晶

Fig. 35: Crystal of A. pernix CR.

第9項 X線結晶構造解析

1) X線回折データの収集

得られた結晶について低温 X 線回折実験を行い,分解能 2.09 Åの回折データ を収集した(Fig. 36). これら回折データの処理 (格子定数・空間群の決定,指数 付けおよびデータの積分・スケーリング) は HKL2000[24]を用いて行った.

Fig. 36: Diffraction image.

2) 精密化

得られたデータを基に構造精密化を行い, *A. pernix* 由来 CR のアミノ酸残基, 水分子,補酵素 NADPH の位置を PDB entry: 2UVD (相同性 39%)に対する分子置 換法で同定した. その結果, CR の構造決定に成功した. 回折データ,精密化な どのデータは Table 37 に記載した. また, Protein data bank へ座標データの登録を 行った (5B1Y).

Data collection	
Wavelength (\mathring{A})	1,0000
Temperature (K)	100
Space group	$P\Delta_2 \gamma_1 \gamma_2$
Unit cell parameters (Å)	a - b - 916 c - 1776
Resolution range $(Å)^a$	4071-209(213-209)
No measured reflections	721295
No unique reflections	45349
Redundancy ^a	159(154)
R _{merge} ^{a,b}	0.064(0.336)
R _{nim} ^{a,c}	0.016(0.085)
Completeness (%) ^a	99.7 (97.3)
$\langle I/\sigma(I) \rangle^a$	10.0 (6.6)
Refinement	
Resolution range (Å)	33.1-2.09
$R/R_{\rm free}^{\rm d}$	0.2297/0.2423
No. of protein atoms	3593
No. of water molecules	244
No. of ligands	NADPH, 2
RMSD	
bond lengths (Å)	0.013
bond angles (°)	1.7
Average B-factors ($Å^2$)	
protein atoms	37.1
water molecules	44.5
NADPH molecules	26.9
Ramachandran quality ^e	
Favored regions (%)	97.0
Outliers (%)	0.0
PDB accession code	5B1Y

Table 37: Data-collection, processing, phase determination and refinement

statistics for A. pernix CR.

^aValues in parentheses are for the last resolution shell.

^bRmerge= $\Sigma_h \Sigma_i | I_i(h) - \langle I(h) \rangle | / \Sigma_h \Sigma_i | I_i(h) |$, where Ii(h) is the intensity measurement for a reflection h

and <I(h)> is the mean intensity for this reflection.

 ${}^{c}\mathbf{R}_{\text{p.i.m.}} = \sum_{hkl} (\{1/[n_{hkl}-1]\})^{1/2} \sum_{i} |Ii(hkl)-\langle I(hkl)\rangle | / \sum_{hkl} \sum_{i} Ii(hkl).$

 ${}^{d}R_{free}$ calculated with randomly selected reflections (5%).

^eMolProbity [19] was used to monitor and validate the structural model.

3) 構造解析

精密化された結晶構造は Fig. 37 に示した. 結晶構造はダイマー構造をとって おり,補酵素 NADPH が両方のサブユニットで確認された. 6つのヘリックスと7 つのストランドから構成される β シートから成っており, NADPH はニワトリ脂 肪肝由来 CR と同様に,他の SDR ファミリーにおいて類似する傾向があるベー タシートの C 末端に位置していた.

Fig. 37: Overall structure of A. pernix CR.

The dimeric structure of *A. pernix* CR. The α -helices and β -strands are shown in green and orange, respectively. The adjacent subunit is shown in gray. The dimer-ization loop is involved between the two subunits. NADPH molecule (magenta) is shown as a stick model. The atoms are colored as described in Fig. 15.

4) 補酵素結合

A. pernix 由来 CR の立体構造において, NADPH が活性中心に結合していた
(Fig. 38). また,電子密度マップにより,ニコチンアミド-リボース間のグリコシド結合は syn であった.ニワトリ脂肪肝由来 CR と同様に A. pernix 由来 CR は, pro-S 特異的水素転移 (Type-B) を使用することも判明した. Arg13 と Ser12 の側

鎖, Ser36 と Arg37 の主鎖は, NADPH の 2⁻リン酸基と相互作用をとっているこ とが観察された (Fig. 38). 補酵素特異性の検証結果から,本酵素はNADPHを良 好な電子供与体としていると考えられた (Table 36). これは NADPH のアデノシ ンの 2⁻リン酸基を認識する機構が関与していると考えられた.

Fig. 38: Stereo-representation of the NADPH molecule

bound to A. pernix CR

Residues that interact with NADPH are labeled. The network of hydrogen bonds is shown as dotted lines. The final σ_A -weighted *Fo-Fc* omit electron density map for the NADPH is shown at the 1σ level. The atoms are colored as described in Fig. 15.

第3節 小括

A. pernix 由来 CR ホモログ酵素の検索をゲノムデータベースを利用して行い, そのアミノ酸配列から APE_2503.1 を見い出すと共に, CR の活性の発現に必要で ある 2 つのコンセンサス配列 [(S-YxxxK), (GxxxGxG)] が保存されていること を見い出した. このことから本酵素は CR 酵素活性を有し, さらに超好熱菌由来 であることから高度に安定性を有しているのではないかという仮説を立てた. この酵素を,大腸菌を宿主細胞として大量発現させ,精製を行い,CR 酵素活性 を測定したところ,予測通り CR 酵素活性を有していることが明らかとなった. また,熱,pH に対する安定性が高いだけでなく,2 ヶ月以上の長期間の保存 (room temperature) も可能であるなどの高い安定性を有していた (Fig. 45). さら に,有用化合物合成のための基質である ethyl 4-chloroacetoacetate (COBE) に対 して最も反応性が高いという結果を得た.

アミノ酸配列情報の解析からA. pernix 由来 CR はもともと3-オキソアシル(ア シル輸送タンパク質)レダクターゼ (OAR, EC1.1.1.100) とアノテーションされ ており CR と同様にオキシドレダクターゼ、EC 第1 群に分類されている酵素で ある. OAR は細胞質内で行われる脂肪酸生合成に関与している. 触媒反応は Fig. 24 で示した模式図のようになっており, 3-oxoacyl-[acyl-carrier protein]を基質とす る可逆的な反応を触媒する[40]. この基質は, acyl-carrier protein という脂肪酸の 担体として働くタンパク質であり, D-パントテイン 4'-リン酸が補因子として結 合しており, この補因子のチオール基に脂肪酸がチオエステル結合しているも のである. 本酵素は脂肪酸の生合成に関与する酵素であると考えられるため, ニワトリ脂肪肝由来 CR の低基質特異性 (広い基質特異性) である事を考えると OAR 活性を有している可能性があると推測することができた. 本酵素の結晶化 および立体構造を明らかにできたことで, 基質結合部位や補酵素結合部位の構 造, また, 酵素の安定性に寄与しうる耐熱化機構を分子レベルで明らかにする ための詳細な立体構造情報を得ることができた.

78

第Ⅳ章 総括

第1節 総合考察

本章ではニワトリ脂肪肝由来および A. pernix 由来 CR の酵素化学的機能の比較を行うと共に、立体構造の比較を行った.これらの比較した情報から酵素の安定化機構,および産業用酵素としての有用性を評価,生理的意義の解明を行った.

ニワトリ脂肪肝由来と A. pernix 由来 CR の補酵素結合部位の比較を行った. 本研究で得られた 2 種の酵素の補酵素 NADPH に対する Km値は, ニワトリ脂肪 肝由来 CR では 0.017 mM, A. pernix 由来 CR では 0.116 mM となっている. この Km値を比較したところ, ニワトリ脂肪肝由来 CR の方が補酵素 NADPH に対する 親和性が高いという結果が得られている. そして立体構造における補酵素結合 部位を比較した図が Fig. 39 である.

79

Fig. 39: Stereo-representation of the NADPH molecule bound to *A. pernix* (A) and Tx chicken fatty liver CRs (B).

Residues that interact with NADPH are labeled. The network of hydrogen bonds is shown as dotted lines. The final σ_A -weighted *Fo-Fc* omit electron density map for the NADPH is shown at the 1σ level. The atoms are colored as described in Fig. 15.

Fig. 39A は A. pernix 由来 CR の補酵素結合部位であり, Fig. 39B はニワトリ脂肪肝由来 CR の補酵素結合部位の構造である.補酵素と A. pernix 由来 CR とニワ

トリ脂肪肝由来 CR それぞれの間での直接相互作用数 (水素結合数) は 12, 19 と なっており, A. pernix 由来 CR の方が少ないものとなっている. ニワトリ脂肪肝 由来 CR では三つのアルギニン残基 (Arg16, Arg41, Arg47) と Asn15 の側鎖によ り形成される 6 つの水素結合により, アデニンリボースの 2'-リン酸基と結合し ていることが確認された. しかし A. pernix 由来 CR ではこの作用は4 つしか確認 されなかった. ニワトリ脂肪肝由来 CR の方が NADPH に対する親和性が高いこ とに, 酵素と NADPH 間の相互作用数が関係していることが判明した.

次に基質特異性の比較を行った. ニワトリ脂肪肝由来とA. pernix 由来 CR の両 方で最も高い親和性, 触媒効率を示した ethyl 4-chloroacetoacetate(COBE)におい て, ニワトリ脂肪肝由来 CR は K_m 値が 0.008 μ M, K_{cat}/K_m 値が 67.5×10² min⁻¹ μ M⁻¹, A. pernix 由来 CR ではそれぞれ 0.7 μ M, 0.9×10² min⁻¹ μ M⁻¹ となっており, ニワトリ 脂肪肝由来 CR は*A. pernix* 由来 CR と比べて K_m 値はとても低い (0.014倍), K_{cat}/K_m 値 は と て も 高 い (75 倍) と い う 結 果 が 得 ら れ た . ま た こ の ethyl 4-chloroacetoacetate(COBE)以外の, 9,10-phenanthrenequinone においてもニワトリ 脂肪肝由来 CR は K_m 値が 2.5 μ M, K_{cat}/K_m 値が 0.56×10² min⁻¹ μ M⁻¹, *A. pernix* 由来 CR はそれぞれ 14.5 μ M, 0.05×10² min⁻¹ μ M⁻¹ となっており, こちらでもニワトリ脂 肪肝由来 CR は *A. pernix* 由来 CR と比べて K_m 値は低く(0.17 倍), K_{cat}/K_m 値は高 い (11 倍) という結果が得られた. この結果からニワトリ脂肪肝由来 CR の方が ethyl 4-chloroacetoacetate (COBE) や 9,10-phenanthrenequinone などの比較的低分 子構造の基質 (Fig. 40) を好んでいることが判明した. この基質特異性に関して, 立体構造からの考察を行った.

9,10-Phenanthrenequinone

Ethyl 4-chloroacetoacetate(COBE)

Fig. 40: Structure of COBE and 9,10-Phenanthrenequinone.

Fig. 41 はニワトリ脂肪肝由来 CR と A. pernix 由来 CR の立体構造を比較したも のである. Fig. 41A はニワトリ脂肪肝由来 CR の立体構造であり, ethylene glycol の結合が確認されたサブユニット A と結合が確認されなかったサブユニット B を表記している. Fig. 41B は A. pernix 由来 CR の立体構造であり, それぞれの substarte binding pocket も表記している. ニワトリ脂肪肝由来 CR の A サブユニッ トではクライオプロテクタントである ethylene glycol が結合することで、活性部 位を閉じる役割を有するTyr172が下側を向きクローズ型をとり,Bサブユニット ではオープン型を取ることによって活性部位のキャビティーの大きさが変化し ている. ニワトリ脂肪肝由来 CR のオープン型をとっている B サブユニットと A. pernix 由来CRのBサブユニットを見てみると広いキャビティーを持っている ことがわかる. この substarte binding pocket の広いキャビティーが, 類似してい るニワトリ脂肪肝由来とA. pernix 由来 CR の広い基質特異性 (Table 13, 36) に関 与していると考えられる. ニワトリ脂肪肝由来 CR の ethylene glycol の結合が確 認された A サブユニット, 結合が確認されなかった B サブユニットと A. pernix 由来 CR の B サブユニットを比較すると、 ニワトリ脂肪肝由来 CR の ethylene glycol の結合が確認された A サブユニットの活性部位のキャビティーが小さく なっていることが判明した. これは活性部位を閉しる役割を有する Tyr172 が下 側を向きクローズ型をとっていることが理由だと考えられる.活性部位を閉じ る役割を有する Tyr172 を含むアクティブサイトリッド (Ile164-Gln174) の存在 が, A. pernix 由来 CR に存在しているのかをアミノ酸配列の比較を行い, 確認し た.

B

The structures of Tx chicken fatty liver and *A. pernix* CRs are shown in blue and pink, respectively. NADPH (magenta), ethylene glycol (yellow), active-site lid residue (Tyr172 in Tx chicken fatty liver CR) and the disorder region (L197 and R205 in *A. pernix* CR) are shown as stick models. The substrate-binding pocket structures of Tx chicken fatty liver and *A. pernix* CRs are indicated. Atoms are colored as described in Fig. 15. Fig. 42 はニワトリ脂肪肝由来 CR と A. pernix 由来 CR の配列情報を比較したものであり, A. pernix 由来 CR では,活性部位を閉鎖する役割を有する Tyr172 を含むアクティブサイトリッド (Ile164-Gln174)の存在は認められなかった.これらのことから,ニワトリ脂肪肝由来 CR の方が ethyl 4-chloroacetoacetate(COBE)や9,10-phenanthrenequinone などの比較的低分子の基質を好む傾向にあるのは,基質が結合することで Tyr172 が活性部位を閉じ, substarte binding pocket が小さくなるためと考えられる.

また arachidonic acid による阻害について、この得られた立体構造情報からの 考察を行った. ニワトリ脂肪肝由来 CR は 1.49 μ M という非常に低濃度な arachidonic acid により活性が 83.6%阻害されるという結果が得られている. しか し同じ濃度の arachidonic acid で *A. pernix* 由来 CR は活性が阻害されないという 結果も得ている. ニワトリ脂肪肝由来 CR の阻害様式は、本研究より基質との非 競合的阻害であることが判明している. これは基質結合部位以外の場所に arachidonic acid が結合しているということを意味している. Fig. 41A において、 基質結合部位以外で arachidonic acid が結合できそうな場所に着目してみると、 おそらく補酵素 NADPH の結合部位であると考えられる. しかし本研究では arachidonic acid が補酵素 NADPH と競合的阻害様式をとるのかについては未だ明 らかになっていない. 今後より詳細な arachidonic acid の阻害様式, 即ち補酵素 NADPH と競合的阻害をとるのかを酵素反応速度論的アプローチによる解析、ニ ワトリ脂肪肝由来 CR と arachidonic acid の複合体結晶を作製し、CR- arachidonic acid 複合体の立体構造解析を行う必要性がある.

次に酵素の安定化機構の解明を行うために、ニワトリ脂肪肝由来 CR と A. pernix 由来 CR のダイマー構造の境界面に焦点を当て、構造比較を行った.

84

<i>A. pernix</i> CR	METTYALVTGGSRGIGRATVLRFAREGW-SVVIAYKSR-ADLAEKTAEEARRLGSPEAY :57
Chicken CR	LRVRSVLVTGANRGIGLGFVQHLLALSNPPEWVFATCRDPKGQRAQELQKLASKH-PNLV :62
	**** **** * * * *
<i>A. pernix</i> CR	TVRVDVGDPDSVTEMSSRVGELIPHLNVLVNAAGVLQLGGIEETSISEWEETLRVNLT :115
Chicken CR	IVPLEVTDPASIKAAAASVGERLKGSGLNLLINNAGIARANTIDNETLKDMSEVYTTNTI :122
	* * ** * *** ** * * * *
<i>A. pernix</i> CR	GVYLVTKLLLPLLRKAKWASIVNVASIAGETGNVVA-GVAYSASK :159
Chicken CR	APLLLSQAFLPMLKKAAQENPGSGLSCSKAATINTSSTAGS <u>IQDLYLWQYGQ</u> ALS <mark>YRCSK</mark> :182
	* ** *** *** active-site lid * **
<i>A. pernix</i> CR	AGVIGLTKRLAVQLAGYGIRVNAVAPSFVETDM-TRSFLDTPEKRERIASLHPLKIILKP :218
Chicken CR	AALNMLTRCQSMGYREHGIFCVALHPGWVKTDMGGTLEDKSRVTV :227
	* ** ** * * * *** *
<i>A. pernix</i> CR	EDVAEAILFLADPRRSR-GITGHVLSIN-AGRRT : 250
Chicken CR	DESVGGMLKVLSNLSEKDSGAFLNWEGKVMAW :259 (26%)
	* **

Fig. 42: Structure-based amino acid sequence alignment of A. pernix and Tx

chicken fatty liver CRs.

Sequences were aligned using MATRAS [33]. Asterisk indicates conserved residues. The blue and red boxes represent the GXXXGXG and S-YXXXK motifs, respectively. The sequence for the active-site lid of Tx chicken fatty liver CR is underlined. The residues that are disordered and not visible in the electron-density map are shown in gray. The sequence homology between *A. pernix* CR and Tx chicken fatty liver CR is shown in parenthesis.

Fig. 43 は比較を行ったニワトリ脂肪肝由来 **CR** と *A. pernix* 由来 **CR** のダイマー 構造の境界部分を示している.

A. pernix 由来 CR の 2 つのサブユニット間には 1 つのイオンペア相互作用 (Glu99-Arg129) と 1 つの水素結合相互作用 (Glu99-Tyr176) があり, これらは Glu99 の側鎖により形成されている. これらの相互作用に関与する Glu99, Arg129, Tyr176 がニワトリ脂肪肝由来 CR ではそれぞれ Asp106, Lys136, His199 に置換されていた. これらの距離は 4.0 Åと離れており, サブユニット間の相互 作用は確認されなかった. この状況から A. pernix 由来 CR のサブユニット間相互 作用の影響を確認するため, A. pernix 由来 CR の Glu99 における部位特異的変異 実験を行った. ニワトリ脂肪肝由来 CR で置換されていた Asp, 側鎖をなくした Ala に部位特異的に変異させた E99D, E99A を作製し, 分光光学的に酵素活性を 測定した. 結果は Fig. 44 に示した. 結果として側鎖が短くなるにつれて熱に対 する安定性が低下するということが判明した. これはサブユニット間の相互作 用が A. pernix 由来 CR の熱安定性に大きく寄与していることを示していた.

Fig. 43: The intersubunit interaction through E99 in *A. pernix* CR (A), and the equivalent positions in Tx chicken fatty liver CR (B).

Residues belonging to the A and B subunits (chains) are shown in green and cyan, respectively. Atoms are colored as described for Fig. 15. The final σ_A -weighted *Fo-Fc* omit electron density maps for residues involved in the intersubunit interaction are shown at the 1σ level. The networks of hydrogen bonds are shown as dotted lines.

Fig. 44: Effects of temperature on enzyme stability.

The enzyme was incubated at 100 °C, and the remaining activity was assayed at 50 °C with appropriate intervals. The pHs of buffers were adjusted to room temperature, 25 °C : (\bigcirc), wild-type *A. pernix* CR; (\triangle), E99D CR mutant; (\Box), and E99A CR mutant.

Fig. 45 は酵素活性の時間安定性を分光光学的に確認した結果であり、ニワト リ脂肪肝由来 CR では 10 日間ほどで活性の完全な失活が確認されたが、A. pernix 由来 CR では約2ヶ月でも活性の減少が確認されなかった. これらのことより、A. pernix 由来 CR のサブユニット間の相互作用は熱安定性だけでなく、時間経過的 な安定性にも貢献していると考えられる.

Fig. 45: Effects of time on enzyme stability.

The enzyme activity was assayed at room temperature, 25° C : (\diamond), wild-type *A. pernix* CR; (\Box), wild-type Tx chicken fatty liver CR.

ここまでの比較を通して産業用酵素としての評価を行った.機能・構造の比較 により熱に対する安定性,長期的利用面ではA.pernix由来CRは適していると考 えられた.しかし基質特異性,補酵素特異性においてはニワトリ脂肪肝由来CR が極めて高い親和性,触媒効率を示していた.親和性が低い(Km 値が高い)も のは,それだけ実際に利用する際に大量に必要になるというコスト面での問題 が起きる.特に補酵素 NADPH は高価なので,親和性が低い酵素を利用する方が コストの面において適しているといえる.即ちコスト面においてはニワトリ脂 肪肝由来CR が極めて適しているといえる.しかしニワトリ脂肪肝由来CR は安 定性が極めて低いという問題点がある.つまりこの安定性の低さを改善するこ とで,ニワトリ脂肪肝由来CR は産業利用酵素として極めて適した酵素になりえ るといえる.

Fig.43, 44, 45 で示した検証結果から*A. pernix* 由来 CR のダイマー構造の境界部 分に存在する Glu99, Arg129, Tyr176 の相互作用が高い安定性に関与していると 考えられた. ニワトリ脂肪肝由来 CR の Asp106, Lys136, His199 をそれぞれ, この A. pernix 由来 CR の Glu99, Arg129, Tyr176 に置換することで, 産業利用酵素とし て極めて適したニワトリ脂肪肝由来 CR を設計することができると思われる. ま たこの設計を行い, 高度安定性を付加することができれば, (S)-CHBE の容易な 合成, 安定性の低さから困難であったニワトリ脂肪肝由来 CR の基質との複合体 結晶にもつながると考えられる.

最後にニワトリ脂肪肝由来 CR の生理的意義を解明するために、ニワトリ脂肪 肝由来 CR, A. pernix 由来 CR の基質特異性に焦点を当てることにした. 今回ニワ トリ脂肪肝由来 CR の各基質に対する親和性(Km), 触媒効率(Kcat/Km)を求めた結 果,最も高い親和性,触媒効率を示したのは COBE であり, A. pernix 由来 CR にお いても最も高い親和性,触媒効率を示したのは COBE であった. この情報を含め, この2種の酵素の得られている情報を比較した.

Table 38 は 2 種の酵素の得られている情報を比較し、まとめたものである. COBE に対する触媒効率はニワトリ脂肪肝由来 CR では9,10-phenanthrenequinone よりも 120 倍高く, A. pernix 由来 CR では 17 倍高かった. それぞれ 2 番目に高い 触媒効率を示した 9,10-phenanthrenequinone よりも、これほど高い値を示すとい うことは、本実験条件下ではこの COBE が最良の基質であることは妥当である と考えられる. ニワトリ脂肪肝由来 CR は生体内において脂質代謝などで機能 していると推測しており、また A. pernix 由来 CR は本来、脂肪酸生合成に関与す る OAR にアノテーションされていることから、脂肪酸生合成の関与する機能を 有していると推測される. しかし COBE は生体内でこれらの反応系路に関わる 化合物とは考えられなかった. だが活性反応を示した他の化合物と比較して、 ニワトリ脂肪肝由来 CR で 120 倍以上, A. pernix 由来 CR では 17 倍以上の高い触 媒効率を示しているこれらの結果は、これらの酵素の生体内での機能に関係す ると考えられた. 即ちこの COBE の構造と類似した構造を持つ化合物が、ニワト リ脂肪肝由来 CR および A. pernix 由来 CR の生体内基質となっていると推定した.

89

ニワトリ脂肪肝由来 CR のホモログ酵素として機能・構造を解明した A. pernix 由来 CR は上記でも記述したが,本来 3-オキソアシル(アシル輸送タンパク質)レ ダクターゼ (OAR) としてアノテーションされている. OAR の触媒する反応模 式図は Fig. 24 に示すように, 3-oxoacyl-[acyl-carrier protein]を基質とする. この 3-oxoacyl-[acyl-carrier protein]とはアシル輸送タンパク質という脂肪酸の担体と して働くタンパク質で, D-パントテイン 4'-リン酸が補因子として結合しており, この補因子のチオール基に脂肪酸がチオエステル結合しているものである. こ の 3-oxoacyl-[acyl-carrier protein]と COBE の構造を比較したものが, Fig. 46 となっ ている.

and A. pernix CR.					
	Chicken fatty liver CR	A. pernix CR			
Annotation	Carbonyl reductase	3-oxoacyl-[acyl-carrier-protein] reductase			
Optimum reaction pH	6.5	6.0			
pH stability	6.0–9.0	3.0–11.5			
Optimum reaction temperature (°C)	40	>70			
Thermostability	Stable up to 40 $^{\circ}C$	Stable up to 90 °C			
Storage stability	50% activity loss in 3 days	No activity loss for at least 2 months			
$K_{ m m}$					
COBE (µM)	0.00794	0.7			
9,10-Phenanthrenequinone (mM)	0.002	0.0145			
Para-toluquinone (mM)	0.146	0.2			
Isatin (mM)	0.04	ND			
NADPH (mM)	0.017	0.116			
$K_{ m cat}/K_{ m m}$					
COBE (min ⁻¹ mM ⁻¹)	6750×10^{3}	900×10^{2}			
9,10-Phenanthrenequinone $(min^{-1}mM^{-1})$	560×10^{2}	52.4×10^{2}			
Para-toluquinone (min ⁻¹ mM ⁻¹)	13.5×10^{2}	8.46×102			
Isatin (min ⁻¹ mM ⁻¹)	38×10^{2}	ND			

Table 38: Information comparison of Tx chicken fatty liver CR

Fig. 46: Structure comparison of substrate.

A: Structure of 3-oxoacyl-[acyl-carrier protein], B: Structure of COBE.

この 2 つの基質の構造を比較すると互いにジケトン構造を有しており,全体 の構造も極めて類似していた. A. pernix 由来 CR は分類上は OAR に分類されてい ることからも,この構造が類似している COBE に対し極めて高い触媒効率を示 すのは妥当だと考えられた.ニワトリ脂肪肝由来 CR は、甲状腺除去を行ったニ ワトリにおいて,脂肪肝の形成に関与している可能性が高いこと,そしてニワ トリの脂肪酸生合成は肝臓で行われることが確認されている[17].これまでの研 究から,ニワトリ脂肪肝由来 CR は細胞質型 CR であることが判明している. OAR も触媒反応は細胞質内で行われるものである.これらのことを踏まえ,ニ ワトリ脂肪肝由来 CR の生体内基質は 3-oxoacyl-[acyl-carrier protein]であり,OAR として脂肪酸生合成に関与する可能性があるという新規な知見を得ることに成 功した.

第2節 要約

カルボニル還元酵素 (CR) は多様なカルボニル化合物の酸化還元を触媒する NAD(P)H 依存性-酸化還元酵素である.全てのCR は短鎖型脱水素酵素/還元酵素 ファミリーに属している.このSDR ファミリーに属す酵素のアミノ酸配列には, 触媒において重要な役割を担うチロシン残基が保存されているアミノ酸モチー フ(S-YxxxK),及び酸化還元酵素活性に必須な補酵素 NAD(P)H の結合アミノ酸 モチーフ(GxxxGxG),この2 つの共通する配列が厳密に保存されていることが 既に知られている. CR はその基質特異性から, 脂質由来のケトンや脂肪族アル デヒドなどの内因性カルボニル化合物の代謝や生体異物代謝としての役割があ ると考えられている.

甲状腺除去したニワトリの脂肪肝で特異的に発現する 27 kDa の機能未知タン パク質を同定することに成功しているが,酵素の機能推定には至っていなかっ た.しかしこれまでの研究でこの機能未知タンパク質が CR であることが判明し ていたが,生理的意義の解明までには至っていなかった.本研究はこの生理的 意義の解明を目的としている.大腸菌において発現させた組換え酵素を精製し, 各基質における $K_m(\mu M)$, $K_{cat}(min^{-1})$, $K_{cat}/K_m(min^{-1}/\mu M)$ を測定した結果, ethyl 4-chloroacetoacetate (COBE) において最も高い親和性,触媒効率が示された.こ の値は次に高い親和性,触媒効率を示した 9,10-phenanthrenequinone と比べ親和 性(K_m), 触媒効率(K_{cat}/K_m)がそれぞれ約0.0032倍, 120倍の数値と大幅に異なって いた.活性に対するpHと温度の影響を確認したところ,ニワトリ脂肪肝由来CR の最適 pH は pH 6.5 であり,熱安定性は非常に低く, 60°C10 min で失活した.ま た, pH 6~pH 9 の領域に対して安定に存在していた.また arachidonic acid の阻害 様式と阻害定数(K_i 値)を分光光学的に求めた結果, arachidonic acid の阻害様式は 非競合的阻害であることが判明した.また arachidonic acid の K_i 値 は 1.7 μ M と いう結果が得られ、阻害作用は極めて強いと考えられる.

酵素は三次元的に組み上がった立体構造をとって始めてその機能を発揮する. ゆえにその分子構造の解明は機能を明らかにするために必要不可欠なものとなる.そこでニワトリ脂肪肝由来 CR の立体構造を分子レベルで明らかにするため の実験として,ニワトリ脂肪肝由来 CR の酵素の結晶化を行い,良質な結晶が得 られた.この得られた結晶を用い低温 X 線回折実験を行い,回折データを収集 し,データ処理は HKL2000 を用いて行い,格子定数から結晶系を推定,空間群 を決定した.初期位相の決定は分子置換法により行い,精密化した結晶構造を得 ることに成功した.ニワトリ脂肪肝由来 CR の結晶構造はダイマー構造を形成し

ていた. 補酵素 NADPH は両方のサブユニットで確認され, ethylene glycol が片方 のサブユニットのみで確認され、NADPH からの水素移動には pro-S 特異的水素 移動(Type-B)を使用することが判明した. Arg16, Arg41, Arg47はNADPHのアデニ ンリボースの 2-リン酸基と相互作用をとっていることが観察され NADPH を特 異的に認識していると考えられた. サブユニット A, B の構造を比較したところ, ethylene glycol 分子が確認されたサブユニット A の Tyr172 残基の側鎖はサブユ ニットBのTyr172の側鎖に対し103.7°回転しており、これはAサブユニットに おける活性部位の閉鎖を示唆している. Tyr172 残基の側鎖の動きは活性部位で の ethylene glycol 分子の結合により影響を受けている可能性が考えられた. この Tyr172の側鎖の役割を詳細に解明するために, Dpn I法を用いて, Tyr172をAla に変異させた Y172A 変異体を作成した. Y172A 変異体 CR におけるモデル基質 9,10-phenanthorenequinone に対するミカエリス定数を求めた結果, Y172A 変異体 はKm値がWTと比較して10倍に上昇していたことから,活性部位に"フタ"をす ることで基質との結合を強固なものにする役割を有していると考えられた. Tyr172 の機能を明らかにしたことでニワトリ脂肪肝由来 CR の詳細な機能を解 明することはできたが、依然として得られたデータだけでは、本酵素の生体内 での天然の基質を推定することが難しく, 生理的意義の解明も困難であり, COBE などの有用化合物合成に応用する際には安定性の低さが問題であった. この問題を解決するために、ニワトリ脂肪肝由来CRとアミノ酸配列の相同性を 有するホモログ酵素を探索し、その機能・構造を解明することにした.

対象は高い安定性を持つ酵素が多い超好熱菌で脂質代謝などに関与する酵素 とした.結果,当研究室で保有していた超好熱菌 A. pernix 由来 CR(APE_2503.1) がヒットし,この酵素は分類としては CR ではなく本来脂肪酸生合成に関与する 3-オキソアシル(アシル輸送タンパク質)レダクターゼ (OAR) に分類されている が,CR 活性に必要な触媒アミノ酸モチーフ,補酵素 NAD(P)H の結合アミノ酸モ チーフが完全に保存されていることから CR の活性を有しているのではないか

94

と考えられた. A. pernix 由来 OAR は好熱菌由来のものであるため、高い安定性 を有し CR 酵素活性を有していることが予想され、この酵素の機能、構造を解明 することで高い安定性に関与する構造を解明し、その高度安定性をニワトリ脂 肪肝由来 CR に付与することで低い安定性の問題点を改善すること、また機能か らニワトリ脂肪肝由来 CR の生理的意義の解明に繋げることを目的としA. pernix 由来 CR の機能・構造解析実験を行った.

大腸菌により A. pernix 由来 CR を発現させ、耐熱性を利用した熱処理精製、 Talonカラムクロマトグラフィーで均一に精製し、CR酵素活性を有しているかを 分光光学的に測定し, CR 酵素活性を確認した. 基質に対する親和性, 触媒効率 を求めた結果、ニワトリ脂肪肝由来 CR と同様に COBE が最も高い親和性、触媒 効率を示していた. 最適 pH は pH 6 で, pH3~11.5 の領域に対して安定に存在して いた. 20~100℃までの温度で安定に存在しており. 仮説通り高い安定性を有する 酵素であることも判明した. 高安定性に関与する構造を明らかにするために、 酵素の結晶化, 酵素の結晶に対する低温 X 線回折実験を行い, A. pernix 由来 CR のアミノ酸残基,水分子,補酵素 NADPH の位置を分子置換法で同定し、立体構 造を決定した. 立体構造はダイマー構造をとっており、補酵素 NADPH が両方の サブユニットで確認され、6つのヘリックスと7つのストランドから構成される β シートから成っていた. ニワトリ脂肪肝由来 CR と同様に NADPH から pro-S 特異的水素移動(Type-B)を使用することが示唆され, Arg13 と Ser12 の側鎖, Ser36 と Arg37 の主鎖は NADPH の 2`-リン酸基と相互作用をとっていることが確認さ れた. 補酵素特異性の検証結果から、本酵素は NADPH を良好な電子供与体とし ていると考えられた. これは NADPH のアデノシンの 2`-リン酸基を認識する機 構が関与していると考えられた.

本研究の目的であるニワトリ脂肪肝由来 CR の生理的意義の解明,また高安定 性の付加を行うためにニワトリ脂肪肝由来 CR と A. pernix 由来 CR の機能・立体 構造の比較を行った.ニワトリ脂肪肝由来 CR と A. pernix 由来 CR の補酵素の結

95

合部位の構造を比較すると、補酵素とA. pernix 由来 CR およびニワトリ脂肪肝由 来CR それぞれの間での直接相互作用数は 12, 19 となっており, A. pernix 由来CR の方が少ないものとなっている. ニワトリ脂肪肝由来 CR では6 つの水素結合が あり、A. pernix 由来 CR ではこの作用は4つしか確認されなかった. これらの結 果はHADPHの親和性に関係してくると考えられ、ニワトリ脂肪肝由来 CR では Km 値が 0.017 mM, A. pernix 由来 CR では Km 値が 0.116 mM となっており、ニワ トリ脂肪肝由来CRの方が親和性は高いという結果になっており、構造比較の結 果と一致していた. ニワトリ脂肪肝由来 CR と A. pernix 由来 CR の立体構造を比 較するとニワトリ脂肪肝由来 CR の A サブユニットではクライオプロテクタン トである ethylene glycol が結合することで、活性部位を閉鎖する役割を有する Tyr172が下側を向きクローズ型をとり, B サブユニットではオープン型を取るこ とによって活性部位のキャビティーの大きさが変化している. A. pernix 由来 CR では、活性部位を閉鎖する役割を有する Tyr172 を含むアクティブサイトリッド (Ile164-Gln174)の存在は確認されなかった. A. pernix 由来 CR のモノマーにはサ ブユニット間のイオンペアが 26. ニワトリ脂肪肝由来 CR のモノマーにはサブ ユニット間のイオンペアが 11 ずつ含まれている. A. pernix 由来 CR における 2 つ の大きなサブユニット間イオンペアネットワークが α1, α4, α6 に位置しており, ニワトリ脂肪肝由来 CR においては1 つだけのイオンペアネットワークが α5 に 位置していた.これらの結果はA. pernix 由来CR におけるサブユニット間のイオ ンペアおよびイオンペアネットワークがニワトリ脂肪肝由来 CR のそれらと比 べ著しく強いことを示唆していた. A. pernix 由来 CR のサブユニット A および B 間には 1 つのイオンペア相互作用 (Glu99-Arg129) と 1 つの水素結合相互作用 (Glu99-Tyr176) があり、これらは Glu99 の側鎖により形成されている. これらの 相互作用に関与する Glu99, Arg129, Tyr176 がニワトリ脂肪肝由来 CR ではそれぞ れ Asp106, Lys136, His199 の短い側鎖に置換されていた. これらの距離は 4.0 Å と離れており、サブユニット間の相互作用は確認されなかった. これらの状況 から A. pernix 由来 CR の Glu99 の側鎖の影響を確認するために, ニワトリ脂肪肝 由来 CR で置換されていた Asp, 側鎖をなくした Ala に部位特異的に変異させた E99D, E99A を作成し, 分光光学的に活性を測定した. 結果として側鎖が短くな るにつれて熱安定性が低下するということが判明した. これはサブユニット間 の相互作用が A. pernix 由来 CR の熱安定に関与していることを示唆していた. 酵 素活性の時間安定性についても分光光学的に確認すると, ニワトリ脂肪肝由来 CR では 10 日ほどで完全な失活が確認されたが, A. pernix 由来 CR では約 2 ヶ月 (room temperature) でも活性の減少が確認されなかった. これらのことを踏まえ 考えると, A. pernix 由来 CR の Glu99 の側鎖が熱安定性だけでなく, 時間安定性 にも関与していると考えられる. ニワトリ脂肪肝由来 CR のアミノ酸を, この A. pernix 由来 CR の安定性に関与するアミノ酸に置換することで, 高い安定性を付 与することができると考えられた.

最後にニワトリ脂肪肝由来 CR の生理的意義を解明するために、ニワトリ脂肪 肝由来 CR, A. pernix 由来 CR の基質特異性に焦点を当てることにした. 今回ニワ トリ脂肪肝由来 CR の各基質に対する親和性(K_m), 触媒効率(K_{cat}/K_m)を求めた結 果、最も高い親和性、触媒効率を示したのは COBE であり, A. pernix 由来 CR にお いても最も高い親和性、触媒効率を示したのは COBE であった. この COBE に対 する触媒効率はニワトリ脂肪肝由来 CR では9,10-phenanthrenequinone よりも 120 倍高く, A. pernix 由来 CR では 17 倍高かった. それぞれ 2 番目に高い触媒効率を 示した 9,10-phenanthrenequinone よりもこれほど高い値を示すということは、本 実験条件下では COBE が最良の基質であることは間違いないと考えられる. ニ ワトリ脂肪肝由来 CR は生体内において脂質代謝などで機能していると推測し ており, A. pernix 由来 CR は脂肪酸生合成に関与する OAR にアノテーションさ れていることから、脂肪酸生合成の関与する機能を有していると推測される. しかし COBE は生体内でこれらの反応系路に関わる化合物とは考えられなかっ た. だが活性反応を示した他の化合物と比較して、ニワトリ脂肪肝由来 CR で 120 倍以上, A. pernix 由来 CR では 17 倍以上の高い触媒効率を示している結果は, これらの酵素の生体内での機能に関係すると考えられた。即ちこの COBE の構 造と類似した構造を持つ化合物が、ニワトリ脂肪肝由来CRおよびA. pernix 由来 CR の生体内基質となっていると推定した. ニワトリ脂肪肝由来 CR のホモログ 酵素として機能・構造を解明した A. pernix 由来 CR は本来 OAR としてアノテー ションされている. OAR は 3-oxoacyl-[acyl-carrier protein]を基質としており、この 基質とCOBEの構造を比較した. 互いにジケトン構造を有しており、全体の構造 も極めて類似していた. A. pernix 由来 CR は分類上は OAR に分類されていること からも、この構造が類似している COBE に対し極めて高い触媒効率を示すのは 妥当だと考えられた. ニワトリの脂肪酸生合成は肝臓で行われることが確認さ れている. ニワトリ脂肪肝由来 CR は、甲状腺除去により人為的に甲状腺機能低 下症に近い環境下で生じた脂肪肝で発現し、その変化に関わっている可能性が 高い. またこれまでの研究から細胞質型 CR であることが判明している. OAR も 触媒反応は細胞質内で行われる. これらのことを踏まえると, ニワトリ脂肪肝 由来 CR の生体内基質は 3-oxoacyl-[acyl-carrier protein]であり, OAR として脂肪酸 生合成に関与しているのではないかという新規な知見を得ることができた.
謝辞

本研究を行うにあたり,始終ご懇篤なるご指導とご鞭撻を賜りま した東海大学農学部准教授 米田一成先生ならびに東海大学総合農 学研究所前教授 芝田猛先生に心より深甚なる謝意を表します.また, 本論文を作成するに当たり,ご校閲ならびにご助言を賜りました, 東海大学農学部教授 荒木朋洋先生,ならびに東海大学農学部准教 授 永井竜児先生,東海大学農学部准教授 安田伸先生に深く感謝い たします.

さらに、始終御協力を賜りました東海大学農学部機器分析室技術 員 千々岩有紀氏に心より感謝いたします.そして、本研究に対し 数々のご助言を賜りました、東海大学農学部教授 星良和先生、東海 大学阿蘇教養教育センター准教授 山口浩先生にお礼申し上げます. また、X線回折実験を行った機関である高エネルギー加速器研究機構 のスタッフの皆様に感謝します.本研究課題に関する放射光実験は、 放射光共同利用実験採択課題番号 2014G502 で実施されたものです.

本研究を行うにあたり,実験に関するデータの構築に関与してい ただいた東海大学農学部バイオサイエンス学科生物化学研究室の歴 代関係者皆様に厚く感謝の意を表します.

99

参考文献

- Lithell, H., Boberg, J., Hellsing, K., Ljunghall, S., Lundqvist, G., Vessby, B., Wide, L. Serum lipoprotein and apolipoprotein concentrations and tissue lipoprotein lipase activity in overt and subclinical hypothyroidism: he effect of substitution therapy. *European Journal of Clinical Investigation* (1981)11, 3-10.
- 2. Laker, M. E., Mayes, P. A.

Effect of hyperthyroidism and hypothyroidism on lipid and carbohydrate metabolism of the perfused rat liver.

Biochemical Journal (1981) 196, 247-255.

- Scottolini, A. G., Bhagavan, N. V., Oshiro, T. H., Abe, S. Y.
 Serum high-density lipoprotein cholesterol concentrations in hypo and hyperthyroidism. *Clinical Chemistry* (1980) 26, 584–587.
- 4. Ringer, R. K.

Thyroids.

Avian Physiology (1976) 3, 348-358.

5. Nikki, T., Nobukuni, K.

Effect of androgen and/or thyroid hormone deficiency on growth and skeletal muscle weights in domestic fowl.

Proceedings Faculty of Agriculture Kyushu Tokai University (1989) 8, 47-53.

- Shibata, T., Kawatana, M., Mitoma, K., Nikki, T.
 Identification of Heat Stable Proteins in the Fatty Livers of Thyroid- ectomized Chickens.
 The Journal of Poultry Science (2007) 44, 2, 182-188.
- 7. Raheja, K. L., Snedecor, J. G.

Comparison of subnormal multiple doses of L-thyroxine and Ltriiodothyronine in propylthiouracil-fed and radiothyroidectomized chicken (Gallus domesticus).

Comparative Biochemistry and Physiology (1970) 37, 555-563

8. King, D. B., King, C. R.

Thyroidal influence on gastrocnemius and sartorius muscle growth in young White Leghorn cockerels.

General and Comparative Endocrinology (1976) 29, 473–479.

- Moore, G. E., Harvey, S., Klandorf, H., Goldspink, G.
 Muscle development in thyroidectomised chickens (*Gallus domesticus*). *General and Comparative Endocrinology* (1984) 55, 195–199.
- 10. Nikki, T., Nobukuni, K.

Effects of thyroid hormones on weight of muscle, bone, viscera and fat in chicken.

Japanese poultry science (1994) 31, 262–269.

- 秋葉 征夫,三浦 秀樹,堀口 雅昭,矢内 清恭,斉藤 克,古山久雄 ブロイラーにおける腹腔内脂肪の過剰蓄積と脂肪肝の発生状況について 日畜会報(1986) 57,732-736.
- 12. International Chicken Genome Sequencing Consortium.

Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.

Nature (2004) 432, 695-716.

13. Ringer, R. K.

Thyroids.

Avian Physiology (1976) 2, 592-633

 The International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome.

Nature (2001) 409, 860-921.

 Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome.

Nature (2002) 420, 520-562.

16. Marvin, H. N., Smith, G. C.

Technique for thyroidectomy in the pigeon and the early effect of thyroid removal on heat production.

Endocrinology (1943)32, 87–91.

Shibata, T., Akamine, T., Nikki, T., Yamashita, H., Nobukuni, K.
 Synthesis of betaine-homocysteine S-methyltransferase is continuously enhanced in fatty livers of thyroidectomized chickens.

Poultry Science (2003) 82, 207–213.

 Sgraja, T., Ulschmid, J., Becker, K., Schneuwly, S., Klebe, G., Reuter, K., Heine, A. Structural Insights into the Neuroprotective-acting Carbonyl Reductase Sniffer of Drosophila melanogaster.

Journal of Molecular Biology (2004) 342, 1613–1624.

 Yoneda, K., Fukuda, Y., Shibata, T., Araki, T., Nikki, T., Sakuraba, H., Ohshima, T. Expression, purification, crystallization and preliminary X-ray analysis of NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver. *Acta Crystallographica. Section F, Structural Biology Communications* (2012) F68, 1568-1570.

ニワトリ脂肪肝で特異的に発現する NAD(P)H 依存性 carbonyl reductase(CR)の機能解析 東海大学大学院平成 25 年度修士論文 (2014),1-60

- Nishinaka, T., Kinoshita, Y., Terada, N., Terada, T., Mizoguchi, T., Nishihara, T. Characterization of multiple forms of carbonyl reductase from chicken liver. *Enzyme* (1992) 46, 221-228.
- Nakanishi, M., Deyashiki, Y., Ohshima, K., Hara, A.
 Cloning, expression and tissue distribution of mouse tetrameric carbonyl reductase. Identity with an adipocyte 27-kDa protein.

European Journal of Biochemistry (1995) 228, 381-387.

^{20.} 福田 雄大

- 23. 諏訪 陽一,片岡 道彦,イマイ ファビアナ リカ,宮川 拓也,岡井 公彦, 永田 宏次,清水 昌,田之倉 優 カルボニル還元酵素 S1 の基質認識機構の構造学的解析 蛋白質-構造,第48回日本生物物理学会年会
- Otwinowski, Z., Minor, W.
 Processing of X-ray diffraction data collected in oscillation mode.

Methods in Enzymol (1997) 276, 307-326.

- Collaborative Computational Project, Number 4
 The CCP4 suite. Programs for protein crystallography.
 Acta Crystallographica. Section D, Structural Biology (1994) 50, 760–763.
- Murshudov, G. N., Vagin, A. A., Dodson, E. J.
 Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallographica. Section D, Structural Biology* (1997) 53, 240–255.
- Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., Warren, G. L.

Crystallography and NMR system. A new software suite for macromolecular structure determination.

Acta Crystallographica. Section D, Structural Biology (1998) 54, 905–921.

- Emsley, P., Cowtan, K.
 Coot. Model-building tools for molecular graphics.
 Acta Crystallographica. Section D, Structural Biology (2004) 60, 2126–2132.
- Lovell, S. C., Davis, I. W., Arendall, W. B. 3rd, de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., Richardson, D. C.
 Structure validation by Cα geometry. φ, ψ and Cβ deviation.
 Proteins (2003) 50, 437–450.

30. Holm, L., Sander, C.

Touring protein fold space with Dali/FSSP.

Nucleic Acids Research (1998) 26, 316–319.

31. Krissinel, E., Henrick, K.

Inference of macromolecular assemblies from crystalline state.

Journal of Molecular Biology (2007) 372, 774–779.

32. Flynn, T. G., Weiner, H. eds.

Wermuth, B. Aldo-keto reductases.

Enzymology of Carbonyl Metabolism 2 (1985) 209-230.

33. 田中 信忠

カルボニル還元酵素の立体構造と分子認識

生物工学会誌 (2005) 4, 185-187

34. Kawabata, T.

MATRAS: A program for protein 3D structure comparison.

Nucleic Acids Research (2003) 31, 3367-3369.

35. Benner, S. A.

The stereoselectivity of alcohol dehydrogenases: a stereochemical imperative? *Experientia* (1982) 38, 633–636.

 Sgraja, T., Ulschmid, J., Becker, K., Schneuwly, S., Klebe, G., Reuter, K., Heine, A. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of *Drosophila melanogaster*.

Journal of Molecular Biology (2004) 342, 1613–1624.

Tanaka, N., Nonaka, T., Tanabe, T., Yoshimoto, T., Tsuru, D., Mitsui, Y.
 Crystal structures of the binary and ternary complexes of 7α-hydroxysteroid dehydrogenase from *Escherichia coli*.

Biochemistry (1996) 35, 7715-7730.

38. Ghosh, D., Weeks, C. M., Grochulski, P., Duax, W. L., Erman, M., Rimsay, R. L., Orr, J. C. Three-dimensional structure of holo 3α,20 b-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family.

Proceedings of the National Academy of Sciences (1991) 88, 10064-10068.

39. 曽根 孟起

ニワトリ脂肪肝で特異的に発現する NAD(P)H 依存性カルボニル還元酵素の X 線結晶構造解析及び変異体 S159A,Y178F,K182M の機能解析に関する研究 東海大学大学院平成 26 年度修士論文 (2015), 1-66

40. Shimakata, T., Stumpf, P. K.

Purification and characterizations of beta-Ketoacyl-[acyl-carrier-protein] reductase, beta-hydroxyacyl-[acyl-carrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from *Spinacia oleracea* leaves.

Archives of Biochemistry and Biophysics (1982) 218, 77-91.

 Sako, Y., Nomura, N., Uchida, A., Ishida, Y., Morii, H., Koga, Y., Hoaki, T., Maruyama, A. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C.

International journal of systematic bacteriology (1996) 46, 1070–1077.

本論文に関わる報告

本論文は下記に発表した論文を基礎としてまとめたものである.

Yudai Fukuda, Takeki Sone, Haruhiko Sakuraba, Tomohiro Araki, Toshihisa Ohshima, Takeshi Shibata, Kazunari Yoneda, A novel NAD(P)H-dependent carbonyl reductase specifically expressed in the thyroidectomized chicken fatty liver: catalytic properties and crystal structure *FEBS Journal*, 282 (2015) 3918–3928

Yudai Fukuda, Haruhiko Sakuraba, Tomohiro Araki, Toshihisa Ohshima, Kazunari Yoneda, Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon *Aeropyrum pernix* K1 *Enzyme and Microbial Technology*, 91 (2016) 17–25