

東海大学大学院 平成 26 年度 博士論文

Knowledge Intensive Organization Model
in Virtual Environment

based on CommonKADS Methodology

指導 濱本 和彦 教授

東海大学大学院~総合理工学研究科

総合理工学専攻

BOONPRASERT SURAKRATANASAKUL

ii

 Abstract

 This doctoral thesis presents a knowledge intensive organization model in virtual space
based on CommonKADS methodology. One of challenges in knowledge engineering is analysis and
organization of knowledge finding with an appropriate empirical methodology. Although some
methodologies are powerful, many of them are passive, in the sense that only a few suggestions are
made by the environment. From the survey, most of system lack of explain how an organization uses
it knowledge is built up, collaborative work supportability and interface understandable manner. To
compare with other techniques, it has complicated models and most of frameworks are non-
standardization. In this thesis, I propose a novel knowledge intensive organization model in a virtual
space based on knowledge model and organization model in CommonKADS framework, which by
developing knowledge schema as a part of analysis process covering knowledge management level
and knowledge object level. The benefit of the proposed method is useful and practical guidelines
for knowledge intensive organization. It provides the methods to obtain a thorough understanding of
the structures and processes used by knowledge workers. This method is not only to support
knowledge methodology with its environment, but also encourage a groupware by participating in
geographically-distributed development that contributes to knowledge exchange and sharing.

 Chapter 1 explains research overview and knowledge management concept. Knowledge
management consists of many mechanisms that encourage a system with SECI concept. To realize
mechanisms, knowledge engineers need to explore the existing knowledge and recreate knowledge
intensive task for solving encounter situation. The problem is lack of suggestion and environment-
driven convergence in the real world for an intellective-insight. An involvement of knowledge
development environment is related to the concept of computer-supported cooperative work assist
communicating, collaborating, and coordinating activities. The critical success factor of knowledge-
developing is an environmental supportability that encourages development process for creation and
usage of existing knowledge. Finally is an overview of research methodology and positioning.

 Chapter 2 contains background concepts, including CommonKADS framework,

architectural views and UML extension, GoogleTM APIs, and Keyhole markup language (KML).
CommonKADS methodology is a technique helps knowledge engineers to clarify the structure of a
knowledge-intensive task and specification of knowledge data. Unfortunately, its framework has an
ambiguous in model perspective and symbol-notation. To fix the problem, I apply an architectural
model and UML extension mechanisms to modify the knowledge schema for identification. By the
way, the GoogleTM APIs provide an interface to the provided services, and generate a virtual space
by loading the necessary components onto display space. These open services APIs allow
customization of the virtual space output, including ability to add application specific data on the
space and integration to the third-party components. Keyhole markup language (KML) is a
descriptive markup language based on the syntax and file format of XML. KML is used for
describing and storing geographical information that is associated with two and three-dimensional
coordinates system.

 Chapter 3 elaborates knowledge systematic schemas, which is recreated from

CommonKADS by using an architectural model. In this study, I develop three schemas on
knowledge discipline name: knowledge landscape, knowledge atlas, and knowledge systematic
schema. The knowledge landscape describes knowledge model in knowledge management level, on
the other hand, knowledge atlas defines organization model in knowledge object level. I conclude
both schemas in one schema: knowledge systematic schema. It was implemented three levels of
architectural views: physical view, logical view, and functional view and used UML extension for
describe model and elements.

 Chapter 4 explains knowledge realization. I propose a general scene-graph to implement the

knowledge systematic schema regimen for the virtual environment. About the element description, I
explain via tag-based schema by separate geographical information in KML and knowledge
informatics in XML with encapsulation. The system extracts the information using DOM-parser and
manipulates knowledge informatics with AJAX implemented module. I demonstrate this study by

iii

developing a prototype system using GoogleTM Earth APIs environment as virtual environment.

 Chapter 5 contains evaluation and discussion. For experiment the proposed schema, I

provide three strategies evaluation: feature comparison, questionnaire user response, and
experimental process task. In feature comparison, the results shows that the strength point of
proposed system is interface-wise guidance in knowledge-developing supportability dimension and
collaborative work in interoperability dimension. For the questionnaire user response, the
experimental results show the proposed method satisfies on supportability, usability, and utility in
knowledge-developing process. Additionally, its convergent design improves knowledge
methodological suggestion for wider user with various experiences. About the process of
experimental task experiment, the result can be shown that learning does not take too much time, so
that can easily learn in proposed system. Moreover, user can learn by themselves without material
suggestion and learning with experience from environment suggestion satisfies same as material
guideline.

 Chapter 6 is conclusions and future works. In this study, I present a knowledge intensive

organization model in virtual environment based on CommonKADS methodology. I demonstrate the
proposed approach by prototyping a system developed in GoogleTM Earth APIs environment as
virtual environment. Experimental results show that its convergent design improves knowledge
methodological suggestion for wider user with various experiences and the proposed method
satisfies on supportability, usability, and utility in knowledge-developing process. The new propose
of this thesis are the three knowledge schemas: (1) knowledge landscape schema for knowledge
concept in abstract space, (2) knowledge atlas schema for organization aspect in real world space,
and (3) knowledge systematic schema for knowledge management system. Finally, I demonstrated
the prototype application that developed with knowledge systematic schema in virtual environment.
The results of experiment show that the proposed system improves knowledge methodology in
various experience user levels for supportability, usability, and utility. Additionally, its convergent
design improves knowledge methodological suggestion for wider user with various experiences.
Based on this study, the proposed system can be further improved by including schema that provides
more complicated knowledge system and strategies for complex explanation in virtual space.
Furthermore, implementation in portable device may provide flexibility in access and collaboration
at diverse location.

--

iv

Contents

Title Page……………………………………………………………………………………... i
Abstract……………………………………………………………………………….....…… ii
Table of Contents…………………………………………………………….…....…............ iv
List of Figures……………………………………………………………………....….......... vii
List of Tables……………………………………………………………………....…............ ix
Acknowledgements………………………………………………………………...…........... x

1. Introduction 1

 1.1 Concept of Knowledge Management………………………....………………… 1
 1.1.1 Fundamental Processes of Knowledge Management……….……….. 2
 1.1.2 Knowledge Conversion Process……………………………….......... 3
 1.1.3 Lifecycle of Knowledge……..………………………………………. 5

 1.2 Literature Review.………………………………………………………………. 6
 1.2.1 Knowledge Quantization Mechanism……………………………...... 6
 1.2.2 Ontology…………………………………………………………...... 8
 1.2.3 Computer-Supported Cooperative Work……………………………. 9
 1.2.4 Survey of Existing Systems and Proposed System Definition…….... 9
 1.2.5 Knowledge Modeling Techniques Comparison……………………... 10

 1.3 Research Purpose.………………………………………………….………....... 12
 1.3.1 Problems and Opportunities……………………...………….……… 12
 1.3.2 Research Goals…………………………………....…………………. 12
 1.3.3 Research Challenges………………………………..………............. 12

 1.4 Thesis Organization.…………………………………………………….……… 13
 1.4.1 Methodology…...……...…………………………………………..... 13

 Bibliography 14

2. Background Concepts 16

 2.1 CommonKADS Framework……………………………………………………. 16
 2.1.1 Knowledge Management with CommonKADS…………………...... 16
 2.1.2 CommonKADS Principle………………………….……………....... 17
 2.1.3 Purpose of Models in CommonKADS…………………………........ 19

 2.2 Architectural Model Views and UML Extension…………….………………… 20
 2.2.1 Architectural Model Views………………………………………...... 20
 2.2.2 UML Extension Mechanisms………………………………...……… 21

v

Contents (continued)

 2.3 The GoogleTM APIs…………………………………………………………...... 22
 2.3.1 Steps for using the GoogleTM APIs……………………………..…… 22
 2.3.2 Related Features……………………………………………….…..... 23

 2.4 Keyhole Markup Language (KML) ………………………....…………………. 27
 2.4.1 Importing KML………………………………….……………..……. 28
 2.4.2 Server-side and Client-side KML Rendering……………………...... 28
 2.4.3 Creating and Sharing KML Files……………….……..…………..... 29

 Bibliography 31

3. Knowledge Schemas 33

 3.1 Knowledge Model……………………………………………………….…....... 33
 3.1.1 Domain Knowledge………………………………………….………. 34
 3.1.2 Inference Knowledge………………………….……………...…...... 35
 3.1.3 Task Knowledge…………………………………………….……….. 37
 3.1.4 Comparison with Other Analysis Approach...……………...…..…… 38

 3.2 Organization Model…………………………………………………………...... 39

 3.3 Knowledge Landscape Schema…………………………………………………. 43

 3.4 Knowledge Atlas Schema………………………………………………………. 46

 3.5 Knowledge Systematic Schema………………………………………………… 49

 3.6 Comparison between CommonKADS Model and Proposed Model................... 51

 3.7 Chapter Conclusion …………………………………………………….………. 52

 Bibliography 53

4. Knowledge Realization 55

 4.1 Knowledge and Virtual Space Design…………………………………...……... 56
 4.1.1 Scene-graph Design for Virtual Space………………………………. 56
 4.1.2 Knowledge Representation………………………………….………. 57
 4.1.3 Simulation Scene of Knowledge Space…….…..…………...…........ 59

 4.2 Realized Mechanisms…………………………………………………...………. 61
 4.2.1 Topological of Knowledge………………………………….……….. 61
 4.2.2 Knowledge Scenario Development Lifecycle.………………..…...... 61

 4.3 System Specification and Architecture…………………………………………. 63

vi

Contents (continued)

 4.4 Features and User Interface.…………………………………………………….. 65

 4.5 Chapter Conclusion………………….………………………………………….. 67

 Bibliography 69

5. Evaluation and Discussion 70

 5.1 Evaluation………………………………………….……………………........... 70
 5.1.1 Experiment1: Features Comparison…………………………………. 71
 5.1.2 Experiment2: Users Evaluation……………………………………... 73
 5.1.3 Experiment3:Process of Experimental Task.……….. …………….... 76

 5.2 Discussion……………………………………………………………….…....... 77

 5.3 Chapter Conclusion……………………………………………………………... 81

 Bibliography 83

6. Conclusions 84

Appendix 86

 Survey of the Proposed System Comparison with Protégé 2000 and WebODE..... 86
 A: Features Comparison…………………………………………………………... 87
 B: Questionnaire Response………………………………………………………... 89
 C: Process of Experimental Task………………………....……………………….. 99

vii

List of Figures

1.1 Distinction between Data, Information, and Knowledge…………………………….. 2
1.2 Basic of Knowledge Management Technology…………………..………................. 3
1.3 Knowledge Management Tool………………………………………………………. 3
1.4 Knowledge Conversion Process…………………………………………………....... 4
1.5 Activities in KM and the Associated Knowledge-value Chain…………………........ 5
1.6 Transition from Data to Information to Knowledge and to Wisdom……………....... 7
1.7 Knowledge Quantization Mechanism……………………………………………...... 7
1.8 Knowledge Quantization Mechanism Spiral…………………….…………...…........ 8
1.9 Survey of the Proposed System Comparison with Protégé 2000 and WebODE......... 10
1.10 Research Methodology Overview……………………………………...……………. 13

2.1 KM as Meta-level Activity Acts on Object-level……………………………………. 16
2.2 Cyclic Execution of three main KM activities: Conceptualize, Reflect, and -
 Act…………………………………………... 17
2.3 Building Blocks of CommonKADS Methodology…………………………………... 18
2.4 CommonKADS Model Suites………………………………………………………... 18
2.5 Architectural Model Views…………………………………………………………... 21
2.6 Diagram of Object Oriented Hierarchy Related of KML Elements…………………. 30

3.1 Knowledge Fragments (e.g, Rules) Share a Similar Structure………………………. 33
3.2 Sample of the Domain Schema in CommonKADS Methodology………………....... 34
3.3 Sample of the Knowledge base in CommonKADS Methodology………………....... 35
3.4 Mapping of Inference and Domain with Knowledge Role……………….………….. 36
3.5 Type of Transfer Functions in Inference Knowledge……………………………....... 37
3.6 Example of CommonKADS’s Inference Structure…………………………………... 37
3.7 Schematic View of the Data-Function Debate……………………………...……….. 38
3.8 Roadmap of Models in CommonKADS Context Level…………………………....... 41
3.9 Set of Worksheets Structure in Context Level………………………………………. 42
3.10 Architectural View of Knowledge Model in CommonKADS Concept…………....... 43
3.11 Metaclass Diagram of Knowledge Model with UML Extension……………………. 45
3.12 Knowledge Landscape in Online Course Registration Portal case study…………… 46
3.13 Core Package of Knowledge Atlas………………………………………………....... 46
3.14 Metaclass Diagram of Knowledge Atlas with UML Extension…………………....... 47
3.15 Knowledge Atlas in Online Course Registration Portal case study…………………. 48
3.16 Architectural View and Knowledge Systematic Schema……………………………. 50

4.1 Knowledge in the virtual space scene-graph…………………………………………. 57
4.2 Diagram of KML/XML-tag…………………………………………………….……. 58
4.3 Middle-in and Middle-out Approaches of Knowledge Specification……………….. 59
4.4 Simulation-scene Diagram of Virtual Space Design…………………………...……. 60

viii

List of Figures (continued)

4.5 The Topological of Knowledge and Filtration Developing………………………….. 61
4.6 Knowledge Scenario (A) and (B) and Reusability of Inference X and Y………........ 62
4.7 Architectural Layer (Software Architecture)…………………………………............ 64
4.8 Architectural Tier (System Architecture)……………………………………………. 65
4.9 User Interface Workspace……………………………………………………………. 65
4.10 Interface for KML/XML Investigation………………………………………………. 66

5.1 Flowchart of experimental process………………………………………………....... 73
5.2 Portion of questionnaire (Q1.A)…………………………………………….……….. 74
5.3 The experiment: (left) experiment in computer laboratory room and
 (right) brief and classify participants before experiment…………………………….. 74
5.4 Flowchart of process experimental tasks…………………………………………….. 76
5.5 Comparison of average between pre-test and post-test of
 environment-driven suggestion questionnaire (Q1)………………………………….. 78
5.6 Comparison of average in (Q2) basic features and
 (Q3) Collaborative work (groupware) supportability questionnaires……………….. 79

6.1 Thesis Traceability…………………………………………………………………… 84

ix

List of Tables

1.1 Explicit Knowledge versus Tacit Knowledge………………………….…….……… 4
1.2 Comparison of Knowledge Modeling Techniques………………………….……….. 11

2.1 Description of CommonKADS Model Levels…………………………….………… 19
2.2 Description of CommonKADS Models………………………………….….……….. 19
2.3 Mapping Knowledge Model and GoogleTM API Features………………….……...... 23

3.1 Sample of Worksheets in Organization Model……………………………….……… 40
3.2 Context Level Models and Description……………………………………….…....... 41
3.3 Architectural Knowledge Modeling Concept………………………………….…….. 44
3.4 Component Knowledge Modeling Concept………………………………….….…… 44
3.5 Knowledge Atlas Elements and Description……………………………………........ 47
3.6 Comparison of CommonKADS Model and Purposed Method………………………. 51

4.1 Traceability of Problem and Opportunities and Research Goal
 with Related Realization…………………………………………………………….. 55
4.2 Example of Knowledge Scenario Development: Reusable and Shareable…….……. 63
4.3 Developing Tools Specification…………………………………………………...... 63
4.4 GoogleTM Plugin Supporting Platform……………………………………………… 63

5.1 Traceability of Research Goal and Experiment Strategies…………………………... 70
5.2 The statements of comparative questions……………………...…………………….. 72
5.3 Features comparison between the proposed system, Protégé 2000, and WebODE…. 72
5.4 Three participant groups and description…………………………………………….. 73
5.5 The statements of environment-driven suggestion questions (Q1)…………………... 75
5.6 The statements of basic features questions (Q2)……………………………………... 75
5.7 The statements of collaborative work (Groupware) supportability questions (Q3)…. 75
5.8 Process of experimental task…………………………………………………………. 77
5.9 Result of average means and standard deviation in (Q1)…………………………….. 77
5.10 t-test summary in (Q1) pre-test and post-test of environment-driven suggestion
 of three user groups ………………………………………………………………….. 78
5.11 Result of average means and standard deviation in Basic features (Q2)
 and Groupware supportability (Q3) questionnaires………………………………….. 79
5.12 Responses of experimental participants…………………………………………........ 79
5.13 Result of average means and standard deviation in process of experiment task
 of training user group and non-training user group with spending time……………. 80
5.14 t-test summary in process of experiment task of training user group and
 non-training user group with spending time…………………………………………. 80

x

Acknowledgements

 I would like to express my deep and sincere gratitude to my supervisor, Prof. Dr. Kazuhiko
HAMAMOTO, whose encouragement, valuable guidance and being patient with supporting me to
complete this thesis. I am also thankful to the examination committees for going through such a
document and giving the valuable feedbacks, comments, suggestions and review this thesis: Prof.
Dr. Kiyoshi NOSU, Prof. Dr. Hidekazu TSUJI, Prof. Dr. Akira TOMONO, and Prof. Dr. Hiroshi
ISHII.

 I am thankful to all members in HAMAMOTO laboratory for their warmest relationship and
friendly.

 I am grateful to JICA for the scholarship. I wish to express my warm and sincere thanks
many JICA in charge: Ms. Maria Sutherland and Miss Tomomi Nishigaki, for their assisting through
my stay in Japan.

 Finally, I offer my regard and blessings to all of those who supported me in many ways
during completion of this thesis and during stay in Japan.

Boonprasert Surakratanasakul

Tokai University

Chapter 1: Introduction

1

Chapter 1

Introduction

 This chapter introduces an overview of research. It consists of four main parts. Firstly,
section 1.1 describes about the concept of knowledge management that is main basic concept for
developing the prototype system. Section 1.2 is literature review related with: knowledge
quantization mechanism, ontology definition, computer-supported collaborative work concept,
survey of existing systems for proposed system definition, and knowledge modeling techniques
comparison. Section 1.3 describes research purpose: problems and opportunities, research goal, and
challenge. Finally, section 1.4 is thesis organization and overview of research methodology.

1.1 Concept of Knowledge Management

 Knowledge Management (KM) is an important mechanism for managing knowledge of
organization that embedded in people, processes, and information generators. It views knowledge as
a valuable asset for value-adding organization. Many organizations define their own KM strategies
for explicating, developing, and distributing knowledge in order to stay competitive and be
innovative on proactive approach. The well-known definition of knowledge management of
Davenport and Prusak is defined [1]: “Knowledge Management is the name given to a set of
systematic and disciplined actions that an organization can take to obtain the greatest value from
the knowledge over which it disposes.”

 In knowledge management, the words “Data”, “Information”, and “Knowledge” are three
often-encountered words that belong closely together, seem to have slightly different meanings [2]:

 Data are the uninterpreted signals that reach our senses every minute by the zillions. A red,
green, or yellow light at an intersection is one example. Computers are full of data: signals
consisting of strings of numbers, characters, and other symbols that are blindly and mechanically
handled in large quantities.

 Information is a data equipped with meaning. For a human car driver, a red traffic light is
not just a signal of some colored object. It is interpreted as an indication to stop.

 Knowledge is the whole body of data and information that people bring to bear to practical
use in action, in order to carry out tasks and create new information. Knowledge adds two distinct
aspects: First, a sense of Purpose, since knowledge is the “intellectual machinery” used to achieve a
goal; Second, a Generative Capability, because one of the major functions of knowledge is to
produce new information. It is not accidental, therefore that knowledge is proclaimed to be a new
“factor of production”

Chapter 1: Introduction

2

 Characteristic Example

Data
Uninterpreted

Raw
…_ _ _...

Information meaning attached to data S O S

Knowledge
- attach purpose and
competence to information
- potential to generate action

Emergency
->

start to rescue

Figure 1.1: Distinction between Data, Information, and Knowledge.

 In information society, knowledge systems seem as an important mainstream technology
that needs to convert the art and craft of knowledge systems building into a real scientific discipline.
Organization and task analysis are knowledge-engineering activities that directly hook up with
business administration and managerial aspects. A recent field that has emerged in business
administration is knowledge management. It takes knowledge as a central subject for organizational
decision making in its own right, and attempts to deal with the management control issues regarding
leveraging knowledge.

 1.1.1 Fundamental Process of Knowledge Management

 Amrit defined the three fundamental processes of knowledge management as [3]:

– Knowledge Acquisition: The process of development and creation of insights, skills,
and relationships. Knowledge formalization tools are examples of direct knowledge
acquisition. Data capture tools with filtering abilities, intelligent databases, note-capture
tools, and electronic whiteboards are examples of information technology components
that can support indirectly knowledge data acquisition.

– Knowledge Sharing: Disseminating and making available what is already known. A
decision support system that provides a novice physician best clinical practice is an
example of knowledge that is being shared with that clinical agent. Possibly, the sharing
process has to be optimized on the specific context.

– Knowledge Utilization: Learning is integrated into the organization. Whatever is
broadly available throughout the company can be generalized and applied, at least in
part, to new situations.

 Figure 1.2 shows the fundamental process of knowledge management: knowledge
acquisition, knowledge sharing, and knowledge utilization. Figure 1.3 shows the continuous process
enabling users, who are utilizing the system for accomplishing their processes, to add, in the same
time, new knowledge and share it.

Chapter 1: Introduction

3

Figure 1.2: Basic of Knowledge Management Technology.

Figure 1.3: Knowledge Management Tool.

 1.1.2 Knowledge Conversion Process

 The classical view organization knowledge consists of explicit and tacit knowledge. Explicit
knowledge can be expressed in words and numbers and shared in the form of data, scientific finding,
product specifications, manuals, universal principles, and etc. This kind of knowledge can be readily
transmitted across individuals formally and systematically. Tacit knowledge is highly personal and
hard to formalize, making it difficult to communicate or shared with others. Subjective insights,
intuitions and hunches fall into this category of knowledge. Furthermore, tacit knowledge is deeply
rooted in an individual’s actions and experience, as well as in the ideals, values or emotions.[4] Table
1.1 shows explicit knowledge versus tacit knowledge.

Basic KM Technology

Acquisition Sharing

Utilization

Databases
Capture Tools

Communications
Networks

Collaborative Tools

KM Tool

Acquisition Sharing

Utilization

Chapter 1: Introduction

4

from

Table 1.1: Explicit Knowledge versus Tacit Knowledge.

Explicit Knowledge Tacit Knowledge
• Knowing about (objective knowledge)
• Rationalization of facts; formal methods.
• Easy to codify and transfer.
• Articulated knowledge (explicit knowledge

assets) maybe moved instantaneously
anytime anywhere by information
technologies.

• Codified knowledge maybe proactively
disseminated to people who can use specific
forms of knowledge.

• Knowledge that has been made explicit can
be discussed, debated, and improved.

• Making knowledge explicit makes it
possible to discover knowledge deficiencies
in the organization.

• Knowing how (subjective knowledge)
• Systems of ideas, perceptions, experience.
• Difficult to transfer.
• Relatively easy and inexpensive to begin.
• Employees may respond well to recognition

of the (claimed) knowledge.
• Likely to create interest in further

knowledge management processes.

 In area of knowledge management, it has been pointed out based upon old work in
philosophy, by the way a large part of knowledge is not explicit but tacit.[5] That is, knowledge is
often not explicitly describable by the people who possess it, nor is it easy to explain and to
formalize in books or manuals. Instead, it is a “background” capability, partly unconscious and
stemming from experience that is used in problem-solving and other human task. “The Knowledge-
Creating Company”, Nonaka and Takeuchi [6] have built a whole theory about knowledge and its
creation, on the basis of this distinction between tacit and explicit knowledge. As shown in Figure
1.4, four models of knowledge production are identified:

 Tacit Knowledge Explicit Knowledge

Tacit
Knowledge Socialization

Shares experience, discusses
ideas, opinions

Externalization

Articulate experience in
formal model; embed

experience into equipment
software, etc.

Explicit
Knowledge

Internalization

Convert models and formulate
into tacit skills, learn/teach

how to use equipment

Combination
Re-formulate formal models
and data, converts codes, etc.

Figure 1.4: Knowledge Conversion Process.

 1. from tacit to tacit knowledge (= Socialization): we can teach each other by showing
rather than speaking about the subject matter;

 2. from tacit to explicit knowledge (=Externalization): knowledge-intensive practices are
clarified by putting them down on paper, formulate them in formal procedures, and the like;

 3. from explicit to explicit knowledge (=Combination): creating knowledge through the
integration of different pieces of explicit knowledge;

to

 4. from explicit to tacit knowledge (=
a personal state where we can carry out a task successfully without thinking about it.

 Organizational knowledge creation continuously needs all four types of knowledge
production. The aim of knowledge management is to properly facilitate and stimulate these
knowledge processes, so that an upward, dynamic spiral of knowledge emerges. This is a unique
feature of knowledge engineering, because there is hardly any other mature scientifi
capable of externalization tacit knowledge. Also
knowledge engineering, e.g., through libraries of reusable task and domain models. The importance
of tacit knowledge is nowadays widely acknowl

 1.1.3 Lifecycle of Knowledge

 There are many frameworks for knowledge management.
intension to cover the complete
following activities with respect to knowledge and its management are distinguished
depended on many authors. Figure 1.5 shows the activities in knowledge management and the
associated knowledge-value chain.

Figure 1.5: Activities in

– Identify : internally and externally existing knowledge.
– Plan: what knowledge will be needed in the future.
– Acquire and/or develop
– Distribute : the knowledge to wh
– Foster the application
– Control : the quality of knowledge and maintain it.
– Dispose: of knowledge when it is no longer needed.

 The practical definition of knowledge management is: a framework and tool set for
improving the organization’s knowledge infrastructure, aimed at getting the right knowledge to the
right people in the right form at the right time.

Identifiy

Foster use

5

tacit knowledge (=Internalization): performing a task frequently leads to
a personal state where we can carry out a task successfully without thinking about it.

rganizational knowledge creation continuously needs all four types of knowledge
The aim of knowledge management is to properly facilitate and stimulate these

knowledge processes, so that an upward, dynamic spiral of knowledge emerges. This is a unique
feature of knowledge engineering, because there is hardly any other mature scientifi

alization tacit knowledge. Also the combination of knowledge is well supported in
knowledge engineering, e.g., through libraries of reusable task and domain models. The importance
of tacit knowledge is nowadays widely acknowledged in knowledge engineering and management.

of Knowledge

There are many frameworks for knowledge management. Most of all have in common their
intension to cover the complete lifecycle of knowledge within the organization.
following activities with respect to knowledge and its management are distinguished

many authors. Figure 1.5 shows the activities in knowledge management and the
value chain.

Figure 1.5: Activities in KM and the Associated Knowledge-value

internally and externally existing knowledge.
what knowledge will be needed in the future.

Acquire and/or develop: the needed knowledge.
the knowledge to where it is needed.

Foster the application: of knowledge in the business processes of the organization.
the quality of knowledge and maintain it.
of knowledge when it is no longer needed.

practical definition of knowledge management is: a framework and tool set for
improving the organization’s knowledge infrastructure, aimed at getting the right knowledge to the
right people in the right form at the right time.[8]

Plan Acquire /
Develop

Foster use Maintain /
Control quality Dispose

Chapter 1: Introduction

): performing a task frequently leads to
a personal state where we can carry out a task successfully without thinking about it.

rganizational knowledge creation continuously needs all four types of knowledge
The aim of knowledge management is to properly facilitate and stimulate these

knowledge processes, so that an upward, dynamic spiral of knowledge emerges. This is a unique
feature of knowledge engineering, because there is hardly any other mature scientific methodology

the combination of knowledge is well supported in
knowledge engineering, e.g., through libraries of reusable task and domain models. The importance

edged in knowledge engineering and management.

all have in common their
within the organization.[7] Typically, the

following activities with respect to knowledge and its management are distinguished by and
many authors. Figure 1.5 shows the activities in knowledge management and the

value Chain.

of knowledge in the business processes of the organization.

practical definition of knowledge management is: a framework and tool set for
improving the organization’s knowledge infrastructure, aimed at getting the right knowledge to the

Distribute

Dispose

Chapter 1: Introduction

6

 Obviously, knowledge management is not a one shot activity. It is embedded in a cycle
model of the Learning Organization. This is based, for example, on Argyris model of “double loop”
organizational learning. The first loop is direct learning about an application, product, or activity.
The second loop runs on top of that and is learning about knowledge and learning itself whereby the
mission, goals, and strategy of the organization act as the driving force. Knowledge management
helps the organization to obtain feedback and continuously learn from its own experiences, on the
basis of which its knowledge infrastructure for the future.

1.2 Literature Review

 The related literature review consists of: knowledge quantization mechanism, ontology
definition, computer-supported collaborative work concept, survey of existing systems for proposed
system definition, and knowledge modeling techniques comparison.

 1.2.1 Knowledge Quantization Mechanism

 According to Webster’s dictionary defined, “Knowledge is the fact or condition of knowing
something with familiarity gained through experience or association; acquaintance with or
understanding of a science, art, or techniques; the sum of what is known: the body of truth,
information, and principles acquired by mankind.” [9] In philosophy, cognition belongs to
consciousness category. Danah Zohar [10] thinks the consciousness moves under the quantum
mechanics rule, and his quantum management science has caused response and discussion in the
international management domain in recent years. According to the understanding about the light in
physics, Verna Allee [11] proposed that the knowledge has “the wave-particle duality”. We may
understand the knowledge for the entity and the process from different angles. The particle identifies
the body knowledge, while the wave refers to the process knowledge and terms of tacit knowledge.
So the knowledge is one kind of field material which has quantum attributes and characteristic.

 Quantum management thinking changes the level and border of knowledge energy:
According to the DIKW hierarchy model (The Data Information Knowledge and Wisdom
Hierarchy) about human mind proposed by Russell Ackoff [12] used figure 1.6 shows the transition
from data to information to knowledge and to wisdom. They thought understanding could facilitate
the transition of process from one to another. The transition from data to wisdom is often along with
the transformation from explicit knowledge to tacit knowledge through learning.

Chapter 1: Introduction

7

Figure 1.6: Transition from Data to Information to Knowledge and to Wisdom. [13]

 Conceptually, the framework of knowledge quantization is generalized to a quantization
spiral that comprises (1) quantization, (2) construction, (3) tailoring, and (4) re-quantization.[14]
Figure 1.7 shows the spiral of knowledge quantization mechanism.

Figure 1.7: Knowledge Quantization Mechanism.

 Figure 1.8 expresses the knowledge quantization mechanism in detail and compare activities
on the knowledge abstract and real world knowledge.

Connectedness

Understanding

Data

Information

Knowledge

Wisdom

understanding relations

understanding patterns

understanding principle

Quantization Construction

Tailoring Re-quantization

Chapter 1: Introduction

8

Figure 1.8: Knowledge Quantization Mechanism Spiral. [15]

 1.2.2 Ontologies

 Ontologies are put forward as a means to share knowledge bases between various
knowledge based systems. The main motivation behind ontologies is that allows for sharing and
reuse of bodies of knowledge in a computational form, and develop a library of reusable ontologies
in a standard formalism that each system developer was supposed to adopt.[16] The essence of
ontology is based on the related definition: ontology is a formal, explicit specification of a shared
conceptualization. “Conceptualization” refers to an abstract model of phenomena in the world by
having identified the relevant concepts of those phenomena. “Explicit” means that the type of
concepts used, and the constraints on their use are explicitly defined. For example, in medical
domain, the concepts are diseases and symptoms, the relations between them are casual and a
constraint is that a disease cannot cause itself. “Formal” refers to the fact that the ontology should be
machine readable, which excludes natural language. “Shared” reflects the notion that ontology
captures consensual knowledge, that is, it is not private to some individual, but accepted by a
group.[17-19]

Real World Space Abstract Space

1. Quantization

2. Construction

3. Tailoring

4. Re-quantization

t = 0

t = 1

t = 2

… t = n

Push knowledge quantum from real-
world to abstract space. Construct knowledge

correlated relationship.

Synthesize, integrate, and filtrate
with existing knowledge.

Knowledge-oriented learning and
update knowledge memory space.

Chapter 1: Introduction

9

 Ordinally, the term ontology comes from philosophy where it is employed to describe the
existence of begins in the world. Artificial Intelligence (AI) deals with reasoning about models of the
world. Therefore, it is not strange that AI researchers adopted the term ontology to describe what can
be (computationally) represented about the world in a program.[20]

 Ontologies are also essential to the development and use of intelligent systems, particularly
for the interoperation of heterogeneous systems. They are responsible for informing about the
domain vocabulary and explaining the meaning that interacting systems attribute to terms.

Furthermore, they facilities the domain model construction since it is through the ontology that the
vocabulary of terms and relations, with which it is possible to model the domain, is provided.[21]

 1.2.3 Computer-Supported Cooperative Work

 Computer-supported cooperative work (CSCW) is an idea that people should be able to
work together in a group, but do not have to be at one pace or time. “CSCW looks at how groups
work and seeks to discover how technology (especially computers) can help them work”. Because
people should interact with each other by some means of a communication model, which is the same
for all attendees, software packages have been constructed to help the interaction between the users.
The programs and additional hardware are called “Groupware”.[22-23]

 Groupware is a computer-based system that supports groups of people engaged in a
common task or goal, and provides an interface to share the environment. Collaboration technologies,
cooperative systems, coordination tools, group support systems, etc., are synonymous with the
groupware technology. By mediating human interaction and communication processes, groupware
systems have the potential to bring about the dramatic changes to the social functioning of
individuals, groups, and organizations. The goal of groupware is to assist groups in communicating,
in collaborating, and in coordinating their activities. Because of ontology building by a group of
people geographically separated over the world is likely to increase in the future; CSCW aspects by
Groupware are becoming more relevant for the ontology development tools. [24-26]

 1.2.4 Survey of Existing Systems and Proposed System Definition

 This section presents a survey of existing system in current market comparison with the
proposed system. In this study, I chose Protégé-2000 and WebODE for comparison. A survey is
divided into following clusters:

– Development tool feature: includes tools, environments and suites that can be used for
building a new from scratch or reusing existing knowledge. Apart from the common
edition and browsing functionality, included documentation, exportation and
importation from different formats, graphical view, and libraries.

– Merge and integration feature: appeared to solve the problem of merging or

integrating different on the same domain. This need appears when two companies or
organizations are merged together, or when it is necessary to obtain a better quality
schema from other existing in the same domain.

Chapter 1: Introduction

10

– Evaluation feature: appear as support tools that ensure schema and its related
technologies have a given level of quality.

– Annotation feature: the tool has been designed to allow users inserting and

maintaining (semi)automatically schema.

– Storage and querying feature: the tool has been created to allow using and querying
easily. Use of the web as a platform for communicating knowledge have appeared in
this context.

 Figure 1.9 shows a comparison survey of three systems: the proposed system, Protégé 2000,
and WebODE. A chart was arranged by number of features and system environments separated in
each cluster. All survey features = 28 features: development environment 10 features, merge and
integration 7 features, evaluation 4 features, annotation 4 features, and storage and querying 3
features. For more detail of survey are elaborated in an appendix.

Figure 1.9: Survey of the Proposed System Comparison with Protégé 2000 and WebODE.

 1.2.5 Knowledge Modeling Techniques Comparison
 From knowledge modeling techniques were reviewed (CommonKADS, Protégé 2000,
Multi-perspective, and UML), CommonKADS is the only techniques that can be considered a
knowledge engineering methodology. All this technique supports object-oriented approach in
modeling activities and their models are platform independent. CommonKADS, multi-perspective
modeling and UML are considered as hybrid approach in modeling as opposed to Protégé which is
not modeling tools in sense that use it to draw visual models or diagrams, but it is a tool that allows
us to input the knowledge into its knowledge base. The modeling part of Protégé is already

0

1

2

3

4

5

6

7

8

9

Development
environment (10)

Merge and
integration (7)

Evaluation (4)Annotation (4)

Storage and
querying (3) Proposed system

Protégé

WebODE

Chapter 1: Introduction

11

incorporate into the editing tool that could not be seen by the users. UML is a standard for modeling
defined by OMG; where else the other techniques are not standardizing in a formal manner. All
these techniques are fully documented in various forms. CommonKADS and UML is fully
documented in books and reports, Protégé documentations are online at their website, multi-
perspective modeling are documented by the respective modeling techniques. Most of these
techniques are evolving; Protégé is undergoing further enhancement by the Protégé developers,
multi-perspective by the respective technique developer and UML by the OMG members. These
techniques are useful to model domains, ranging from medical, legal, engineering, business and up
to social sciences. Protégé 2000 modeling technique supports Open Knowledge Base Connectivity
(OKBC) knowledge model and can be adapted for editing models in different Semantic Web
languages and supports RDF (Resource Description Framework) format for saving files. The
modeling techniques and their features are listed in Table 1.2.

Table 1.2: Comparison of Knowledge Modeling Techniques.

Technique
Feature

CommonKADS
Protégé

2000
Multi-

perspective
UML

K.E. methodology �

Object-oriented
Approach

� � � �

Platform
Independent

� � � �

Hybrid Approach �

� �

Editor Tool

�

Standard
Modeling
Language

�

Documentation � � � �

Evolving

� � �

Domain

Medical, legal,
engineering,
business and up
to social sciences

Medical,
legal,
engineering,
business and
up to social
sciences

Medical,
legal,
engineering,
business and
up to social
sciences

Medical, legal,
engineering,
business and up
to social sciences

Other features
(OKBC, RDF,
Semantic web)

�

Chapter 1: Introduction

12

1.3 Research Purpose

 The research propose starts from the source of problems and opportunities from literature
review, survey, and comparison, then identify the research achieve goals with the features of
acquired system, and develop through the research challenge.

 1.3.1 Problems and Opportunities

- [P-1] Organization knowledge is a key asset in an organization but it is often tacit and
private. From the survey, most systems lack of explain how an organization uses it
knowledge is built up.

- [P-2] From the survey, many systems lack of an interface understandable manner and
suggested usability in user perform.

- [P-3] From the survey, some system has not methodological support and lack of
collaborative work to improve knowledge exchange.

- [P-4] From the comparison, some technique has complicated models and most of
frameworks are non-standardization language for knowledge-developing process.

 1.3.2 Research Goals

 Overview purposes of the system are identified as followed:

- [G-1] Aim to develop useful and practical guidelines for knowledge intensive organization
by develop the schema is to get acquainted with the system and to assess the amount of
foreknowledge needed.

- [G-2] Enables one to spot the opportunities and bottlenecks in how organizations develop,
distribute and apply their knowledge resources, and so gives tools for corporate knowledge
management.

- [G-3] Provide the methods to obtain a thorough understanding of the structures and
processes used by knowledge workers even where much of their knowledge is tacit leading
to a better integration of information technology in support of knowledge work.

- [G-4] Designed concern how difficult is it to learn to work with the system and about the
amount of knowledge required of the underlying knowledge representation language.

- [G-5] Build better knowledge system that easier to use, has a well-structured architecture,
and simpler to maintain.

 1.3.3 Research Challenges

- Finds an appropriate schematic for developing Knowledge Management System (KMS).
- Discover two dimensional knowledge spaces: abstract knowledge and real world knowledge,

on hypothesis this connection can encourage the intellective insight.
- Supports and encourages knowledge management mechanisms.
- Improves communication and collaboration.
- Easy to use in non-experience users and beginner users, through the concept “everyone can

use and share knowledge”.
- Based on the fundamental process of knowledge management, knowledge conversion

process, lifecycle of knowledge, and learning organization.

Chapter 1: Introduction

13

1.4 Thesis Organization

 The thesis is organized as follow: Chapter 2 reviews about the background concepts: 2.1:
CommonKADS framework, 2.2: architectural views and UML extension mechanisms, 2.3: the
GoogleTM API, and 2.4: Keyhole Markup Language (KML). Chapter 3 describes about knowledge
schema covers both of concept and context levels. Chapter 4 describes knowledge realization, virtual
space design, realized mechanisms, and system definition. Chapter 5 is evaluation and discussion.
Finally, chapter 6 is conclusions and the future works.

 1.4.1 Methodology

 The flow chart diagram below in figure 1.9 shows the steps of the research methodology.

Figure 1.10: Research Methodology Overview.

2. Develop Knowledge Landscape
Schema

3. Develop Knowledge Atlas Schema

7. Conclusions

Content
Level

Context
Level

5. Realize in Virtual Space

Scenegraph

GoogleTM API KML/XML

4. Develop Knowledge Systematic Schema

Functional Logical Physical

1. Develop the new framework

Applied CommonKADS

6. Evaluations

Comparison Questionnaire Process Task

Chapter 1: Introduction

14

Bibliography

[1] Davenport T.H., Prusak L., “Working Knowledge: How Organizations Manage What They Know”, Harvard
Business School Press, Boston, (1997).

[2] Wiig M., “Knowledge Management – An Emerging Discipline Rooted in a Long History”, Journal of the
American Society for Information Science, vol.53, no.12, pp.1009-1018 (1999).

[3] Amrit Tiwana, “The Knowledge Management Toolkit”, Prentice Hall, (2002)

[4] Nonaka I., “A Dynamic Theory of Organizational Knowledge Creation”, Organization Science, vol.5(1),
pp.14-37 (1994).

[5] Herschel, R.T., Nemati, H. and Steiger, D., “Tacit to Explicit Knowledge Conversion: Knowledge Exchange
Protocols”, Journal of Knowledge Management, vol.35, pp.113-125.

[6] Nonaka I. and Takeuchi H., “The Knowledge Creating Company”, Oxford: Oxford University Press (1995).

[7] R.Morkvenas, J.Bivainis, and M.Samoska, “Analysis of Organization Knowledge Potential Content”,
proceedings of the ITI2009 31th Int.Conf on Information Technology Interfaces, June 22-25, Cavtat, Croatia,
pp.499-503 (2009).

[8] Jim Greer, Gordon McCalla, John Cooke, Jason Collins, Vive Kumar, Amdrew Bishop and Julita Vassileva,
"The Intelligent Helpdesk: Supporting Peer-Help in a University Course", ITS’98, LNCS 1452, pp.494-503
(1998).

[9] A. Th. Schreiber, J.M. Akkermans, A. A. Anjewierden, R. de Hoog, N. R. Shadbolt, W. Van de Velde, and B.
J. Wielinga, “Knowledge Engineering and Management: The CommonKADS Methodology”, MIT Press,
Cambridge, MA, (1999).

[10] Leif E. and Malone M., “Intellectual Capital: Realizing Your Company’s True Value by Finding Its Hidden
Brainpower”, New York: Harper Business; pp.10-15 (1997).

[11] Bally J.M., "Designing Workscape: an Inter-disciplinary Experience", SIGCHI Conference on Human
Factors in Computing Systems: Celebrating Interdependence, pp.10-15 (1994).

[12] Kingston, J. and Macintosh, A., “Knowledge Management through Multi-Perspective Modeling :
Representing and Distributing Organizational Memory”, Knowledge-Based Systems, vol.13, pp.121-131.

[13] Ackoff, R. L., “From Data to Wisdom”, Journal of Applied Systems Analysis,
vol. 16, pp.3-9 (1989).

[14] Toyoaki Nishida, “Conversational Informatic An Engineering Approach”, John Wiley & Son Ltd, England
(2007).

[15] Kubota H., Sumi Y., and Nishida T., "Sustainable Knowledge Globe: a System for Supporting Content-
oriented Conversation", AISB, pp.80-86 (2005).

[16] Minoh M., and Nishiguchi S., "Environment Media – In the Case of Lecture Archiving System", KES 2003,
vol. II, pp.1070-1076 (2003).

[17] Hidekazu Kubota, Satoshi Nomura, Yasuyuki Sumi, and Toyoaki Nishida, "Sustainable Memory System
Using Global and Conical Spaces", Journal of Universal Computer Science, vol. 13, no. 2, pp.135-148 (2007).

[18] N. Fridman Noy, R. W. Fergerson, and M. A. Musen, “The Knowledge Model of Protégé-2000: Combining
Interoperability and Flexibility”, SMI Technical Report, Standford University, School of Medicine (2000).

[19] Fensel D., “Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce”, Springer
(2001).

Chapter 1: Introduction

15

[20] P. Speel, N. R. Shadbolt, W. de Vries, P. van Dam,and K. O’Hara, “Knowledge Mapping for Industrial
Purposes”, In Proc Twelfth on Knowledge Acquisition, Modeling Management (KAW’99) (1999).

[21] A. Anjewierden, J. Wielemaker and C. Toussaint, Shelley, “Computer Aided Knowledge Engineering”,
Knowledge Acquisition, vol.4(1) (1992).

[22] Retana S.S. Guizzardi, Lora Aroyo, and Gred Wagner, "Agent-Oriented Knowledge Management in Learning
Environments: A Peer-to-Peer Helpdesk Case Study", AMKM 2003, LNAI 2926, pp.57-72 (2003).

[23] Robert Woitsch and Dimitris Karagiannis "Process-Oriented Knowledge Management Systems Based on KM-
Services: The PROMOTE Approach", PAKM 2002, LNAI 2569, pp.398-412 (2002).

[24] A. Th. Schreiber, B. J. Wielinga, R. de Hoog, J.M. Akkermans, and W. Van de Velde, “CommonKADS: A
Comprehensive Methodology for KBS Development”, IEEE Expert, 9(6):28-37, December (1994).

[25] Wilfried Post, Bob Wielinga, Robert de Hoog, and Guus Schreiber, “Organizational Modeling in
CommonKADS: The Emergency Medical Service”, IEEE Expert: Intelligent Systems and Their Applicationd,
vol.12, November, pp.46–55 (1997).

[26] Cuena, J. and M. Molina, “The Role of Knowledge Modeling Techniques in Software Development: a General
Approach Based on a Knowledge Management Tool”, International Journal of Human-Computer Studies,
vol.52, pp.385-421 (2000).

Chapter 2: Background Concepts

16

Chapter 2

Background Concepts

 This chapter describes about research background concepts. It consists of four main parts.
Firstly, section 2.1 describes about the concept of CommonKADS framework that applied for this
research. Section 2.2 describes architectural model views and UML extension mechanisms for
develop knowledge schemas. Section 2.3 describes the GoogleTM APIs and its features. Finally,
section 2.4 describes about Keyhole markup language (KML) and their characteristic.

2.1 CommonKADS Framework

 2.1.1 Knowledge Management with CommonKADS

 The basic of knowledge management with CommonKADS approach is distinguish a
management level and knowledge object level. For the knowledge management level, we see
knowledge as a resource that has to manage just as any other resource. Knowledge-management
level comprises management tasks.[1] Basically, this means that the resource has to be made
available: - at the right time; at the right place; in the right shape; with the need quality; against the
lowest possible cost.

 To make knowledge management a viable enterprise, more flesh must be added to the
skeletal model in figure 2.1. This means describing a process model for the management level and an
object model for the object level.[2]

Figure 2.1: KM as Meta-level Activity acts on Object-level.

Knowledge Management Level

Knowledge Object Level

organizational goals
knowledge as a resource
value chain

knowledge assets
organizational roles
business processes

knowledge
management

actions

report
experiences

Chapter 2: Background Concepts

17

Figure 2.2: Cyclic Execution of three main KM activities: Conceptualize, Reflect, and Act.

 Figure 2.2 shows the knowledge management is a cyclic process that consisting of three
different types of management activities: conceptualize, reflect, and act.[3]

 2.1.2 CommonKADS Principle

 The CommonKADS enterprise originates from the need to build industry-quality knowledge
systems on a large scale, in a structured, controllable, and repeatable way. When the CommonKADS
work started back in 1983, there was little interest in such methodological issues. At that time, the
prevailing paradigm for knowledge systems was rapid prototyping of one-shot applications, using
special purpose hardware and software such as LISP machines, expert system shells, and so on.[4-5]

 A methodology such as CommonKADS or any other software-development approach
consists of a number of elements. These elements can be depicted graphically in the form of a
pyramid see figure 2.3.[6] The methodological pyramid has five layers, where each consecutive layer:
the “worldview” of the methodology. There are in fact the advertising slogans of an approach. These
slogans need to be grounded in theory, methods tools and practical case studies which constitute the
other four layers.[7] The slogans of CommonKADS can be formulated as a number of principles that
form the baseline and rationale of the approach. The principles are based on the lessons learned
about the knowledge-system development in the past.[8-9]

Act

implement changes
monitor improvements

Reflect

identify improvements
plan changes

Conceptualize

identify knowledge
analyze strength/weakness

Chapter 2: Background Concepts

18

Figure 2.3: Building Blocks of CommonKADS Methodology.

 CommonKADS model suite is the practical expression of the principle underlying
knowledge analysis. It constitutes core of the CommonKADS knowledge-engineering methodology.
Figure 2.4 shows three groups of levels. In each level has models for develop the own goal for target
knowledge system. In context level, it consists of organization model, task model, and agent model.
Concept level, it has knowledge and communication model. Artifact level has only one model:
design model.[10-12]

Figure 2.4: CommonKADS Model Suites.

Use
case studies

application projects

Tools

Methods

Theory

World View

CASE tools
implementation environments

life-cycle model, process model,
guidelines, elicitation techniques

graphical/textual notations
worksheets, document structure

model-based knowledge engineering
reuse of knowledge patterns

feedback

organization
model

task
model

agent
model

knowledge
model

communication
model

design
model

Context

Concept

Artifact

Chapter 2: Background Concepts

19

 2.1.3 Purpose of Models in CommonKADS

Table 2.1: Description of CommonKADS Model Levels.

Level Description

Context
Analyze an organizational environment and the corresponding
critical success factors for a knowledge system.

Concept
Yield the conceptual description of problem-solving functions and
data that are to be handled and delivered by a knowledge system.

Artifact
Converts into a technical specification that the basis for software
system implementation.

 In practice, not always do all models have to be constructed. It depends on goals of project
as well as experiences gained in running project.

Table 2.2: Description of CommonKADS Models.

Model Description
Context Level

Organizational model

Support the analysis of major features an organization, in order
to discover problems and opportunities for knowledge system,
establish their feasibility, and assess the impacts on the
organization of intended knowledge actions.

Task model

Tasks are the relevant subparts of a business process. The task
model analyzes the global task layout, its inputs and outputs,
preconditions and performance criteria, as well as needed
resources and competences.

Agent model

Agents are executors of task. An agent can be human, an
information system, or any other entity capable of carrying out a
task. The agent model describes the characteristics of agents, in
particular their competences, authority to act, and constraints in
this respect. Furthermore, it lists the communication links
between agents in carrying out a task.

Chapter 2: Background Concepts

20

Table 2.2: Description of CommonKADS Models. (continued)

Model Description
Concept Level

Knowledge model

The purpose of knowledge model is to explicate in detail
types and structures of the knowledge used in
performing a task. It provides an implementation-
independent description of role that different knowledge
components play in problem-solving, in a way that is
understandable for humans. This makes the knowledge
model an important vehicle for communication with
experts and users about the problem-solving aspects of a
knowledge system, during both development and system
execution.

Communication model

Since several agents may be involved in a task, it is
important to model the communicative transactions
between the agents involved. This is done by
communication model, in a conceptual and
implementation-independent way, just as with the
knowledge model.

Artifact Level

Design model

The above CommonKADS models together can be seen
as constituting the requirements specification for the
knowledge system, broken down in different aspects.
Based on these requirements, the design model gives the
technical system specification in terms of architecture,
implementation platform, software modules,
representational constructs, and computational
mechanisms needed to implement the functions laid
down in the knowledge and communication model.

2.2 Architectural Model Views and UML Extension

 2.2.1 Architectural Model Views

 Architectural model deals with the analysis and design of the high-level structure of system.
It is the result of assembling a certain number of architectural elements in some well-chosen forms to
satisfy the major functionality and performance requirements of system, as well as some other non-
functional requirements such as reliability, scalability, portability, and availability. Architectural
model deals with abstraction, with decomposition and composition, with style, and esthetics. To
describe architecture, I use a model composed of multiple-view perspectives. In research, I propose
two architectural model’s views for develop knowledge modeling: Logical view and Functional
view.[23]

 Logical view primarily supports what the system should provide in terms of services. The
system is decomposed into a set of key abstractions, taken mostly from the domain in the form of
objects or object classes. It exploits the principles of abstraction, encapsulation, and inheritance.

Chapter 2: Background Concepts

21

 Functional view supports how the system’s elements work together seamlessly by usage of
scenarios. For which, it describes the corresponding script like the inference structure and scenario in
task knowledge of CommonKADS methodology in research.

Figure 2.5: Architectural Model Views.

 2.2.2 UML Extension Mechanisms

 The extension mechanisms are provided by the UML in order to allow users to customize
and extend the language to suite their particular needs. The standard extension mechanisms allow
developer to adapt UML to accommodate new concepts are: Stereotype, Tagged Value, and
Constraint.[24-25].

 Stereotype is an extension of vocabulary of UML, which allows designer to create new
building blocks from existing ones but specific to domain problem. Basically, all UML elements can
be customized and/or extended by defining and naming using the stereotypes. General form of
stereotypes is <<stereotype-name>>.

 Tagged value is an extension of properties of a UML element which allows designer to
create new information in that element’s specification. It need not be always visible and can be
contained e.g. in a database record associated to the object, which is not graphically represented in a
diagram. General form is: {tag=value}.

 Constraint is an extension of semantics of a UML element. It represents rules that apply to
UML models. It may apply to one or more elements within the model. Designer may employ both
predefined and user-defined constraints. Constraints may also be defined using the Object Constraint
Language (OCL).

 Nowadays the UML extension mechanisms are applied in several model systems for
example; UML for Enterprise Application Integration (EAI), UML for CORBA, and UML for
Enterprise Distributed Object Computing (EDOC), and etc.[26]

Logical View

end-user functionality,
structure, class, interface,

collaboration

Process View

active class, communication,
integrator, performance,

 scalability

Implementation View

components, package

Physical View

topological, network,
system engineering

Functional View

use-case, scenario

Chapter 2: Background Concepts

22

2.3 The GoogleTM APIs

 The GoogleTM APIs reference includes a description of various interface, members, and
google.earth functions in the Earth API. The google.earth namespace contains global functions that
aid in process of using the Earth API interfaces. For examples, instantiation of GoogleTM Earth
browser plug-in objects is done via the google.earth.createInstance method, event handling can be
accomplished via the google.earth.addEventListener and google.earth.removeEventListener methods,
etc.[27]

 For the browser plugin-specific interface, interfaces whose names begin with GE allow for
programmatic access to core plugin functionality and other miscellaneous options. For examples,
GEGlobe, GENavigationControl, GEControl, GEOptions, GETime, GEEventEmitter,
GETimeControl, GEPlugin, GETourPlayer, GEFeatureContainer, GESchemaObjectContainer,
GEView, GEGeometryContainer, GEStyleSelectorContainer, GEWindow, etc.

 For KML-based interfaces, interfaces whose name begins Kml- represent KML –related
objects such as <Placemark> and <LookAt>. For examples, KmlAbstractView, KmlFolder,
KmlLocation, KmlAltitudeGeometry, KmlGeometry, KmlLod, KmlRegion, KmlLookAt, KmlScale,
KmlModel, KmlCamera, KmlStyle, KmlMultiGeometry, KmlContainer, KmlObject,
KmlOrientation, KmlTour, KmlDocument, KmlFeature, etc.

 2.3.1 Steps for using the GoogleTM APIs

 Step 1: Loading the GoogleTM Earth API:

 The Browser tells GoogleTM to load the earth module into the google.earth namespace and
specifies version.

 Step 2: Creating a container for the plugin.

 The GoogleTM Earth plugin is loaded into DIV element with a unique id.

 Step 3: Creating initializing functions.

 Create three functions as part of this step. In order will: (1) attempt to create a new instance
of the plugin, (2) Be called when the plugin instance is successfully create, and (3) Be called if the
instance cannot be created google.earth.createInstance show three options: the DIV element into
which the instance should be added, the function to call when success is returned, and the function to
call if a failure is returned.

 The success callback function will contain all of the code required to set up all of the objects
and views that will first appear when plugin instance is loaded in browser. The function must contain
the GEWindow.setVisibility method, setting the window visibility to true, so that the plugin is
visible inside its DIV.

 Step 4: Calling the initializing function when the page is loaded.

 The GoogleTM namespace includes the setOnLoadCallBack() function, which calls the
specified function once the HTML page and requested APIs has been loaded. Using this function
ensures that the plugin is not loaded until the page’s DOM is completely built out.

Chapter 2: Background Concepts

23

 Step 5: Loading Additional Databases.

 Developer can load own database to display on the GoogleTM Earth globe by specifying that
database during initialization, or by calling addSideDatabase() on the Earth object. Loading a
database at initialization will load only that database; the standard GoogleTM Earth imagery will not
be loaded.

 Step 6: GoogleTM Maps Engine maps.

 GoogleTM Maps Engine uses the term of map to refer to a collection of imagery and vector
layers; it is equivalent of a database in GoogleTM Earth. GoogleTM Maps Engine maps can be loaded
into the plugin using the methods above.

2.3.2 Related Features

 To deploy the knowledge model on the virtual space. I applied the features for using in
research below: [28-29]

Table 2.4: Mapping Knowledge Model and GoogleTM APIs Features.

Knowledge Model Elements GoogleTM APIs Features
Knowledge Node Placemark: icon, short description
Node Description Ballon: description, link

Relationship LineStrings

Viewpoint

Camera Control: panning, tiling
 - Camera
 - Look At
Zooming
Fly to

Control
Layer Controls
Navigation Controls
Altitude Modes

Scenario
Touring
 - Importing a Tour
 - Defining the Active Tour

Event Handling
Event Listener
DOM Event

Additional
Accessors
Object Containers
KML (reference in section 2.4)

– Placemark

 A point placemarks marks a position on the Earth’s surface. The most basic placemark
includes a standard icon and geographic location. Additionally, placemark can include: description,
custom icon, and style-map that defines a rollover icon. The activities about placemarks are adding a
placemark name, defining a custom icon, changing the size of an icon, and using a StyleMap to style
an icon

Chapter 2: Background Concepts

24

– Balloon

 Balloons are information windows displayed in GoogleTM Earth Plugin, optionally
associated with feature. Their content can include HTML, CSS, or JavaScript. Most aspects of
balloons can be controlled through the API.

 Feature balloons: content scrubbing such as, getDescription(), getBalloonHtml(), and
getBalloonHtmlUnsafe(), HTML string balloons, HTML DIV balloons, Closing balloons, and
geometries and overlays.

– Line Strings

 A lineString is a connected set of line segments. The color, color mode, and width of line
can all be specified in the associated placemark’s LineStyle. If the line string is drawn above the
Earth’s surface or above the sea floor, it can be set to extend down to the terrain using the extrude
property; if the line is drawn on the surface (by clamping to the ground or sea floor), it can be set to
follow the terrain using tessellate property.

– Camera Control

 The “view” in GoogleTM Earth is the image user see in the plugin window; the “camera” is
the viewer’s location in space. These are two different ways to define a view: Camera and LookAt.

 Camera: with the Camera view, the point user specify defines the location of the viewer in
space. Setting a latitude and longitude moves the viewer to a specific location; the viewer can then
be hoisted into space and rotated around the x, y, and z axes until the view is as desired.

 LookAt: with a LookAt, the point being specified in the code is the point being viewed.
Changing the range, tilt, and heading values will never change the absolute point in space at which
the view is aimed.

 Getting the current view: Developer can use the copyAsLookAt() function to return the
latitude and longitude of the point at which the camera is looking, the altitude at which the camera is
set, its tilt, and the compass heading in degrees.

 Panning the camera - The camera can be moved to either an absolute location, defined by a
Camera or LookAt, or to a position relative to its current view.

 Panning to an absolute location - Locations on the globe are specified by their latitude and
longitude values. The GoogleTM Earth Plugin accepts values with up to six digits of precision
(0.123456). To move from the current view to an absolute location, while retaining the tilt, range,
heading, and altitude values: Panning relative to the current view - The view can be moved in by
direction relative to its current position.

 Tilting the camera - A LookAt can contain a tilt value between 0 and 90 degrees inclusive,
with 0 being directly above the viewed point, and 90 viewing along the horizon. A Camera can
contain a tilt value between 0 and 360 degrees. 0 degrees is a view directly down from the specified
point; 90 set a view along the horizon; 180 views directly up into the sky. In addition, a Camera
accepts a roll attribute, which rotates the viewer around the z axis.

Chapter 2: Background Concepts

25

– Zooming

 Zooming in and out is controlled by the range attribute for a LookAt, and the altitude
attribute for a Camera. Changing the altitude attribute of a LookAt changes the altitude of the point
being viewed. Because the viewer range is relative to this point, the viewer’s altitude is also changed.

– Fly To

 Developer can control the speed at which the plugin moves to newly-specified locations.
GEOptions.setFlyToSpeed() accepts a float from 0.0 to 5.0, inclusive, as well as
SPEED_TELEPORT. Speed increases with the value; SPEED_TELEPORT moves to the specified
location instantly.

– Layer and Controls

 Layers contain additional information that is draped over the base GoogleTM Earth imagery
layer. Navigation controls allow the user to pan, tilt, and zoom using controls superimposed on the
viewport. By default, the terrain layer is the only one layer displayed when the Google Earth Plugin
first loads. Not all of the layers that are available in the GoogleTM Earth desktop client are available
with the plugin.

– Navigation Controls

 Navigation controls allow a user to move around in GoogleTM Earth, and include zoom, pan,
tilt, scroll, and rotate controls. These can be always visible, never visible, or can be hidden until the
user moves their mouse cursor over the controls’ area in the plugin.

 The navigation controls can be positioned at any corner of the GoogleTM Earth Plugin
window. To do so, change the value of the x and y units to be relative to either the top or bottom of
the window, and either the left or right.

– Altitude Modes

 Absolute altitude modes are calculated from sea level. To place an object underwater,
specify a negative altitude value. A negative altitude over land will place the object below the
Earth’s surface. Objects below the Earth’s surface cannot be viewed or clicked.

– Touring

 The GoogleTM Earth Plugin can play tours authored in KML, allowing viewers to interact
with the Earth environment while viewing scripted controlled tours. The plugin currently exposes
tour playback methods; tour authoring is not supported in the plugin.

 Importing a tour

 Simple tour: with the <gx:Tour> feature as the root-level feature of the KML, can be
fetched and passed directly to GETourPlayer. The tour must be the only feature in the KML file.

 Complex tour: If developer tour is contained within a KMZ file, or if developer KML file
contains more than just a tour, or if the tour is nested within a container (such as <Document> or
<Folder>), developer will need to manually look for the <gx:Tour> feature within the file. One way
is to “walk” through the file’s DOM until the KML Tour feature is found. Developer can use the
kmldomwalk.js utility script to do this. For an example, the KML file includes some placemarks and
features, which need to be loaded into Earth as well. The preceding code simply loads the fetched

Chapter 2: Background Concepts

26

tour into the Earth plugin. It does not include controls for setting the fetched tour as active, or for
controlling playback.

 Defining the Active Tour: Any number of tour objects can be loaded into the plugin, but
only one can be set as the currently active tour. Once a tour is set as active, the tour controls appear
on the screen.

– Events

 The GoogleTM Earth API provides a number of different events, which can be used with
google.earth.addEventListener to provide additional interactivity in developer applications. Using
event listeners, developer can create actions that are triggered on mouse events (such as clicks,
movement, or dragging) or screen events (such as change to view).

 Adding an Earth API event listener requires three arguments, and accepts an optional fourth:
the object on which to add the listener, the even to listener for, the function to call when the event is
fired, and (optionally) whether or not this listener should initiate capture (refer to relevant W3C
DOM documentation for details of event capture). The default value for this fourth argument is false.

– Event Listeners

 Mouse events can be attached to most geometry in the plugin (the exception is 3D models)
to entire viewport, or to the globe only. There are listeners for most mouse events, including clicks
and movements. For a full list of mouse events, refer to the GEEventEmitter_Interface_Reference.

 View events are fired when the view begins to change, while it is changing, and when it has
ended. Listeners for view events must be attached to the viewport object of the plugin instance
(ge.getView()).viewchangeend may fire in the middle of a view change, if the plugin pauses for a
brief period during the change. If users are relying on viewchangeend to indicate the absolute end of
a view change, it is recommended that user include a brief timeout to ensure that no further view
changes are to follow

 A frameend event is fired when Earth has finished rendering the viewport. This event will
be called many times in succession when the viewport is changing. Add a listener for this event and
make incremental changes to the viewport for smooth animation. A frameend listener must be
attached to the GoogleTM Earth Plugin instance.

 The balloonclose event is fired when the current description balloon is closed. Its listener
must be attached to the plugin instance.

 Removing event listeners

 Developer can remove event listener using removeEventListener(). Developer must pass the
same object, event type, and function name to removeEventListener() as were specified when
creating the event listener.

– DOM Events

 To add listeners to HTML elements on the page outside of the plugin, developer can use this
helper function that will work across all modern browsers: This accounts for the different methods of
attaching handlers in Internet Explorer and most other browsers; Internet Explorer® uses
attachEvent and onclick, while other use addEventListener and click.

Chapter 2: Background Concepts

27

– Accessors

 getUrl() : An object’s URL is its base address concatenated with its ID using the # character.
This URL can be returned by calling getUrl() on the object. Objects created with the API (rather than
imported as KML) do not have a base address; their URL will consist of a # character and their ID.

 getComputedStyle() : Returns the object’s style properties as a KML style object, merging
any inline styles with styles imported from setHref() or a StyleUrl.

 getElementsByUrl() : Objects that are imported as KML have an identifying URL
consisting of their base address and ID, joined with the # character.

 getElementById() : When an object is created with the API, rather than imported as KML,
the object does not have a base address. In this case, the object can be returned by passing only its ID
to getElementById().

 getElementByType() : Developer can obtain an array of all elements of a certain type, by
passing that type as a string to getElementsByType().

– Object Containers

 There are a number of container objects in the GoogleTM Earth API. These are used to hold
arrays of related objects:

• A GELinearRingContainer holds an array of linear ring objects. For example, a
polygon’s inner boundaries are stored in a linear ring container.

• GEFeatureContainers contain features, as with folders in KML.

• GEGeometryContainers hold any number of geometries in a MultiGeometry
object.

• Containers are abstract classes and cannot be created directly from the API.

 Modifying Container: Containers have methods that allow developer to enumerate, add,
remove, and manipulate individual items in the collection. Some common methods are described
below; for a full list, refer to the API Reference for the applicable container type.

2.4 Keyhole Markup Language (KML)

 Keyhole Markup Language (KML) is an open-standard markup language for display of
geographic data in geo-browser. The GoogleTM Earth Plugin can import KML in different ways, in
order to display features, tours, and views. The plugin supports all KML 2.2 tags, as well as
extensions to KML using the gx namespace. The plugin can also return KML representations of
features, whether those features were imported as KML or created with the APIs.[30]

Chapter 2: Background Concepts

28

 2.4.1 Importing KML

 There are three methods of importing KML into the plugin.

 (1) KmlNetworkLink loads a KML or KMZ file from a specified URL. The fetched KML
can then be added to the plugin just as any other object, using ge.getFeatures().appendChild().
KmlNetworkLink references a KML or KMZ file by its URL. The contents of the file can be added
into the Earth instance, but they cannot be manipulated before being displayed – there is no access to
the KML’s DOM. A NetworkLink is a standard way of importing content in the KML language.

 fetchKml and parseKml accept KML in different ways, but both return a KmlFeature object,
allowing for access to, and manipulation of, the object’s hierarchy (its children and other descendant
features).

 (2) fetchKml also loads KML from a URL, but returns a KmlFeature object representing the
root KML feature. The object’s KML DOM can be accessed and updated before it is appended to the
plugin’s KML DOM. fetchKml calls specified callback function when a success or failure message
is returned. fetchKml’s asynchronous behavior allows the plugin to continue while the network fetch
is completing.

 (3) parseKml takes a KML string, and also returns a KmlFeature object. As with fetchKml,
the returned object’s KML DOM can be accessed. parseKml returns the object immediately.

 Accessing and Modifying the DOM

 The fetch KML object’s DOM can be accessed and modified before or after the KML
features are displayed. In the example below, a placemark is created using the Earth API, and is then
appended to the KML object returned by the fetchKml() or parseKml() function. When the KML
object is added to Earth, the API-created placemark is included.

 Getting a feature's KML representation

 The GoogleTM Earth Plugin can provide a feature’s KML representation, so that the feature
can be displayed in any KML-compatible application. To obtain a feature’s KML, use
KmlFeature.getKml().

 2.4.2 Server-side and Client-side KML Rendering

 When KML content containing a large number of features (placemarks, polygons, lines) is
loaded into GoogleTM Maps, a server-side decision is made about whether or not to render the
document’s features on the server or in the user’s web browser. The user experience, including
feature appearance and interactivity, will not be affected by this decision; the content will look and
behave the same way, regardless of the chosen method. However, there is a subtle difference in the
behavior of these methods that surfaces when using the GGeoXml class to render KML content in
the GoogleTM Maps API. When simple KML files are loaded via GGeoXml and client-side, browser-
based feature rendering is chosen; Goverlay-based objects are created and added to the map,
triggering addoverlay events accordingly. On the other hand, when large KML files are loaded with
GGeoXml and server-side rendering is invoked, these objects are not created and addoverlay is not
triggered. For this reason, it is not recommended to rely on the addoverlay event being triggered on
individual KML features loaded via GGeoXML.[31]

Chapter 2: Background Concepts

29

 2.4.3 Creating and Sharing KML Files

 Developer can create KML files with the GoogleTM Earth user interface, or can use an XML
or simple text editor to enter “raw” KML from scratch. KML files and their related images (if any)
can be compressed using the ZIP format into KMZ archives. To share KML and KMZ files,
developer can e-mail them, host them locally for sharing within a private internet, or host them
publicly on a web server. Just as web browsers display HTML files, Earth browsers such as
GoogleTM Earth display KML files. Once developer have properly configured server and shared the
URL (address) of KML files, anyone who is installed GoogleTM Earth can view the KML files
hosted on developer public web server. Many applications display KML, including GoogleTM Earth,
GoogleTM Maps, GoogleTM Maps for mobile, NASA WorldWind, ESRI ArcGIS Explorer, Adobe
Photoshop, AutoCAD, and Yahoo! Pipes.

 KML is an open standard official named the OpenGIS® KML Encoding Standard (OGC
KML). It is maintained by the Open Geospatial Consortium, Inc. (OGC). Figure 2.6 shows the
diagram of object oriented hierarchy related with KML elements. They are a useful way for a single
element to serve as the programmatic foundation for multiple similar derived elements. All elements
derived from Object can have id assigned to them. This id is used by the KML update mechanism
for files loaded with a NetworkLink. It is also used by shared styles. The id is a standard XML ID.
Because KML is an XML grammar and file format, tag names are case-sensitive and must appear
exactly. When developers are editing KML text files, developer can load the schema into any XML
editor and validate KML code with it. [32]

Chapter 2: Background Concepts

30

Figure 2.6: Diagram of Object Oriented Hierarchy Related of KML Elements.

GroundOverlay

Object
(has an id)

Feature

Geometry

StyleSelector

TimePrimitive

AbstractView

SubStyle

gx:TourPrimitive

gx:Tour

NetworkLink

Placemark

Overlay

PhotoOverlay

ScreenOverlay

Container
Folder

Document

Point

LineString

LineRing

Polygon

MultiGeometry

Model

gx:Track

gx:MultiTrack

Link Icon

Orientation

Location

Scale

Style

StyleMap

TimeSpan / gx:TimeSpan

TimeStamp / gx:TimeStamp

Camera

LookAt

Region

Lod

LatLonBox

LatLonAltBox

gx:LatLonQuad

BalloonStyle

ListStyle

ColorStyle

LineStyle

PolyStyle

IconStyle

LabelStyle gx:AnimationUpdate

gx:FlyTo

gx:SoundCue

gx:TourControl

gx:Wait
gx:PlayList

Chapter 2: Background Concepts

31

Bibliography

[1] Mark A. Musen, L. M. Fagen, D. M. Combs, and E. H. Shortliffe, “Use of a Domain-Model to Drive an
Interactive Knowledge-Editing Tool”, Int. J. Man-Machine Studies, vol.26, pp.105-121 (1987).

[2] Chaomei Chen and Ray J. Paul, “Visualizing a Knowledge Domain’s Intellectual Structure”, IEEE (2001).

[3] Chau, K.W., Chuntian, C. and Li, C.W., “Knowledge Management Systems on Flow and Water Quality
Modeling”, Expert System with Application, vol.22, pp.321-330 (2002).

[4] Chen-Burger, J., “Knowledge Sharing and Inconsistency Checking on Multiple Enterprise Models”,
Informatics Research Report EDI-INF-RR-0037, AIAI, University of Edinburgh (2001).

[5] Gao, F, Li M and Nakamori, Y., “System Thinking on Knowledge and its Management: Systems Methodology
for Knowledge Management”, Journal of Knowledge Management, vol.6, no.1, pp.7-17 (2002).

[6] Hendriks, P. and Virens, D., “Knowledge-based Systems and Knowledge Management: Friends or Foes?”,
Information & Management, vol.35, pp.113-125 (1999).

[7] Loucopoulos, P. and Kavakli, V., “Enterprise Knowledge Management and Conceptual Modeling”, Lectures
Notes in Computer Science, vol.1565, pp.123-143 (1999).

[8] Sallis,E. and Jones, G., “Knowledge Management in Education: Enhancing Learning & Education”, Kogan
Page, London (2002).

[9] Studer, R., Benjamins, V.R.,and Fensel, D., “Knowledge Engineering: Principle and Methods”, Data &
Knowledge Engineering, vol.25, pp.161-197 (1998).

[10] Visser, P., Kralinger, R. and Capon, T., “A Method for the Development of Legal Knowledge Systems”,
ICAIL’97, Melbourne, Australia, pp.151-160 (1997).

[11] Wigg, K.M., “Knowledge Management: Where Did It Come From and Where Will It Go?”, Expert System
with Application, vol.13, no.1, pp.1-14.

[12] Choo, C.W., “Working with Knowledge: How Information Professionals Help Organization Manage What
They Know”, Library Management, vol.21, no.8, pp.395-403 (2000).

[13] Grosso, W.E., Eriksson, H. Fergerson, R.W., Gennari,J.H., Tu, S.W. and Musen, M.A., “Knowledge
Modeling at the Millennium (The Design and Evolution of Protégé-2000)”, SMI Technical Report-SMI-
1999-0801.

[14] Motta, E., “Reusable Components for Knowledge Modeling: Case Studies in Parametric Design Problem
Solving”, IOI Press, Amsterdam.

[15] Rolland, C. and N. Prakash, “A Proposal for Context-Specific Method Engineering”, Atlanta, GA, USA,
pp.191-208 (1996).

[16] Henderson-Sellers, B., “Method Engineering for OO System Development”, Comm. ACM, vol.46, no.10,
pp.73-78 (2003).

[17] Tiwana, A., and Ramesh, B., “A Design Knowledge Management System to Support Collaborative
Information Product Evolution”, Decision Support Systems, vol.31, pp.241-262 (2001).

[18] Weilinga, B., Sandberg, J. and Schreiber, G., “Methods and Techniques for Knowledge Management: What
Has Knowledge Engineering to Offer?”, Expert System with Application, vol.13, no.1, pp.73-84.

[19] Bloodgood,J.M. and Salisbury, W.D., “Understanding the Influence of Organizational Changes Strategies on
Information Technology and Knowledge Management Strategies”, Decision Support Systems, vol.31, pp.55-
69 (2001).

Chapter 2: Background Concepts

32

[20] Busse S., Kutsche R., Lesser U., Weber H., “Federated Information Systems: Concepts, Terminology and
Architectures”, Technical report 99-9. TU Berlin, April.

[21] Brinkkemper, S., “Method Engineering: Engineering of Information Systems Development Methods and
Tools”, Inf. Software Technology, 38(4), pp.257-280 (1996).

[22] Nuseibeh, B., “Towards a Framework for Managing Inconsistency between Multiple Views”, SIGSOFT 96
Workshop, San Francisco, pp.184-186 (1996).

[23] Jacobson I., Christerson M., Johnsson P., Overggard G., “Object-Oriented Software Engineering, A Use Case
Driven Approach”, Addison-Wesley/ACM Press, Wokingham, England (1992).

[24] Awad, E.M., “Building Expert Systems: Principles, Procedures, and Applications”, Minneapolis: West
Publishing Company (1996).

[25] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling Language User Guide”, Addison-Wesley,
Reading, MA (1998).

[26] Scott, K., “UML Explained”, Addison Wesley, Reading, Massachusetts (2001).

[27] GoogleTM Earth API, https://developer.google.com (2012).

[28] Hao Zhang, Manchun Li et al. : “Land use information release system based on Google Maps API and XML”,
Geoinformatics 18th Intl. Conf., Beijing, China (2010).

[29] Jiang Peng, Xu Huaiyu et al. : “An instant and interactive platform based on Google Earth Plug-in”,
Advanced Computer Control (ICACC) 2nd Intl. Conf. , Shenyang, China (2010).

[30] Open Geospatial Consortium Inc. : “OpenGIS® Catalogue Services Specification 2.0.2 – ISO Metadata
Application Profile”, Version 1.0 (2007).

[31] The Open Geospatial Consortium Inc.: “OpenGIS KML Encoding Standard (OGC KML)”.

[32] M. R. Genesereth and R. E. Fikes, “Knowledge Interchange Format Version 3.0 Reference Manual”, Report
Logic 92-1, Logic Group, Stanford University, California (1992).

Chapter 3: Knowledge Schemas

33

Chapter 3

Knowledge Schemas

 This chapter describes about knowledge schemas that designed for this system. Section 3.1
describes concept of knowledge model in CommonKADS and category of knowledge structure:
Domain knowledge in 3.1.1, Inference knowledge in 3.1.2, Task knowledge in 3.1.3, and
comparison with others analysis approaches in 3.1.4. For section 3.2 describes about an organization
model and related models. Section 3.3 describes a schema name Knowledge Landscape which
designed for concept model. Section 3.4 describes about Knowledge Atlas schema which designed
for context model. Section 3.5 describes the Knowledge Schema. Finally, section 3.6 is conclusion.

3.1 Knowledge Model

 Knowledge thus typically has an “aboutness” character: it tells us about the way to
understand some other piece(s) of information. The knowledge model specifies the knowledge and
reasoning requirements of the prospective system. It is a tool that helps us clarifying the structure of
a knowledge-intensive information-processing task.[1] The different between a knowledge system
and database application: Database application seldom interested in the actual facts that have to be
placed in the database. For the knowledge system, a knowledge base typically contains certain pieces
of knowledge such as rules, which are of interest. In knowledge modeling, we typically distinguish
multiple knowledge bases containing different types of knowledge (e.g., instances of different rule
types). [2]

 CommonKADS moves away from the idea of one large knowledge base. Instead, we need
to identify parts of the knowledge base in which the knowledge fragments (e.g., rules) share a
similar structure, as shown in figure 3.1.

Figure 3.1: Knowledge Fragments (e.g, rules) Share a Similar Structure.

Rule 1: IF…THEN…
Rule 2: IF…THEN…
Rule 3: IF…THEN…
Rule 4: IF…THEN…
Rule 5: IF…THEN…
Rule 6: IF…THEN…
Rule 7: IF…THEN…
Rule 8: IF…THEN…
Rule 9: IF…THEN…
<plus many others>

rules of
type A

rules of
type B

rules of
type C

rules of
type D

single flat knowledge base

multiple rule sets
containing rules

with similar structure

Chapter 3: Knowledge Schemas

34

 Knowledge modeling is a technique that helps to clarify the structure of a knowledge-
intensive task and provides a specification of the data and knowledge structures that required for the
application. It is developed as part of the analysis process therefore phrased in the vocabulary of the
application meaning both of domain and reasoning task. In CommonKADS methodology,
knowledge model consists of three parts each capturing a related group of knowledge structure
called “knowledge category”.[3] It consists of: domain knowledge, inference knowledge and task
knowledge.

 3.1.1 Domain Knowledge

 This category specifies the domain specific knowledge and information types. Its modeling
implies capturing the static structure of information and knowledge types. Just like in regular data
modeling, a schema is constructed containing the major types and relations occurring in an
application domain. The notation used is similar to a UML’s class diagram principle but no included
behavioral things such as, operations and methods. Domain knowledge description typically consists
of two types: Domain schema and Knowledge base. [4]

 Domain schema is a schematic description of the domain specific knowledge and
information through a number of type definitions. From a general software engineering point of view,
the domain schema resembles a data model or object model. In addition to UML class diagram,
constructs are included to cover modeling aspects that are specific to knowledge-intensive systems.
In practice, the three main modeling construct are CONCEPT, RELATION, and RULE-TYPE. In
addition, several other constructs are available such as SUPER/SUBTYPE OF and
AGGREGATE/PART. All of concepts similar to UML class model. Figure 3.2 shows the domain
schema in CommonKADS methodology.

Figure 3.2: Sample of the Domain Schema in CommonKADS Methodology.

 Knowledge base contains instances of the types specified in domain schema. It contains
certain pieces of knowledge such as rules which are of interest. In knowledge modeling, we
distinguish multiple knowledge bases containing different types of knowledge such as, instances of
different rule types. Figure 3.3 shows the sample of knowledge base in CommonKADS
methodology.

CONCEPT name;
 ATTRIBUTES:
 value: dial-value;
END CONCEPT name;

VALUE-TYPE dial-value;
 VALUE-LIST: {zero, low, normal};
 TYPE: ORDINAL;
END VALUE-TYPE dial-value;

<<CONCEPT>>
name

value: dial-value;

<<VALUE-TYPE>>
dial - value

VALUE-LIST: {…};
TYPE: ORDINAL;

Chapter 3: Knowledge Schemas

35

Figure 3.3: Sample of the Knowledge base in CommonKADS Methodology.

 Domain Knowledge Lifecycle The separation of “domain schema” and “knowledge base”
means that we have to reinterpret the term “knowledge acquisition” as consisting of at least two
steps: (1) Defining a knowledge type such as a rule type, (2) Elicit the instances of this type and
putting them in a knowledge base.

 3.1.2 Inference Knowledge

 The inference knowledge describes the basic inference steps that want to make using the
domain knowledge. It describes how these static structures can be used to carry out a reasoning
process. In software engineering terms, the inferences represent the lowest level of functional
decomposition. The components of the inference knowledge are inference, knowledge role, and
transfer function. [5]

 Inferences are best seen as the building blocks of the reasoning machine because it carries
out a primitive reasoning step. Typically, an inference uses knowledge contained in some knowledge
base to derive new information from its dynamic input. In addition, inferences are indirectly related
to the domain knowledge. The indirect coupling of inference and domain knowledge enables to
reuse inference descriptions independently from domain knowledge.

 Specification of inference: The main feature that distinguishes an inference from a
traditional “process” or “function” is the way in which the data on which the inference operates are
described. Inference I/O is described in term of functional roles: abstract names of data objects that
indicate their role in the reasoning process. Figure 3.4 shows the inference knowledge and domain
knowledge mapping with the knowledge role.

KNOWLEDGE-BASE knowledge-base_name;

USES:

 <RULE-TYPE> FROM <SCHEMA NAME>;

 …

EXPRESSIONS:

/*RULE-TYPE EXPRESSION*/

antecedent expression CONNECTION SYMBOL consequent
expression

…

END KNOWLEDGE-BASE knowledge-base_name;

Chapter 3: Knowledge Schemas

36

Figure 3.4: Mapping of Inference and Domain with Knowledge Role.

 Knowledge role (Inference I/O) is described in terms of functional role: abstract names of
data objects that indicate their role in the reasoning process. It has two types of roles: dynamic and
static role.

 - Dynamic roles are the run-time inputs and outputs of inferences. Each invocation of the
inference typically has different instantiations of the dynamic roles.

 - Static roles are more or less stable over time. Static roles specify the collection of domain
knowledge that is used to make the inference.

 Transfer function is a function that transfers an information items between the reasoning
agent that described in knowledge modeling and its environment such as another system or some
users. Transfer functions are black boxes from the knowledge model point of view: only their name
and I/O are described. Transfer function has 4 functions: obtain, receive, present, and provide.

 - Obtain: The reasoning agent requests a piece of information from an external agent. The
reasoning agent has the initiative. The external agent holds the information item.

 - Receive: The reasoning agent gets a piece of information from an external agent. The
external agent has the initiative and also holds the information item.

 - Present: The reasoning agent presents a piece of information to an external agent. The
reasoning agent has the initiative and also holds the information item.

 - Provide: The system provides an external agent with a piece of information. The external
agent has the initiative. The reasoning agent holds the information item.

KNOWLEDGE-ROLE dynamic_input_role;

 TYPE: DYNAMIC;

 DOMAIN-MAPPING: concept_name;

END KNOWLEDGE-ROLE dynamic_input_role;
concept_name from inference-
domain mapping

KNOWLEDGE-ROLE dynamic_output_role;

 TYPE: DYNAMIC;

 DOMAIN-MAPPING: concept_name;

END KNOWLEDGE-ROLE dynamic_output_role;

Chapter 3: Knowledge Schemas

37

 System Initiative External Initiative
External

Information
Obtain Receive

Internal
Information

Present Provide

Figure 3.5: Type of Transfer Function in Inference Knowledge.

 In CommonKADS methodology, the set of inference steps can be represented graphically in
CommomKADS’s inference structure. The combined set of inference specifies the basic inference
capability of the target system. It is an abstract representation of the possible steps in the reasoning
process. For model the inference, there use a specific notation that no direct UML equivalent to
develop their structure. [6] Figure 3.6 shows a CommonKADS’s inference structure and its notations.

Figure 3.6: Example of CommonKADS’s Inference Structure.

 3.1.3 Task Knowledge

 The third category of knowledge modeling is task knowledge. Task knowledge describes
what goals and application pursues, and how these goals can be realized through decomposition into
subtasks and ultimately inferences. Task knowledge is described in a hierarchical fashion: top-level
tasks are decomposed into smaller tasks, which in turn can be split up into even smaller tasks. Task
knowledge is similar to the higher levels of functional decomposition in software engineering, but
also includes control over the functions involved. Task can be decomposed into subtasks or into
basic inferences. At the lowest level of task decomposition, the tasks are linked to inferences and
transfer functions.[7]

 The TASK and TASK-METHOD can best be understood as respectively the “what” view
(what needs to be done) and the “how” view (how is it done) on reasoning tasks. In most real-life
models, one level of decomposition is insufficient. In that case, a top-level task is decomposed in
several new tasks, which again are decomposed through other methods, and so on. Tasks that are not
decomposed further into other tasks are called primitive tasks; the other tasks are called composite
tasks. Tasks are divided into subtasks up to level of elementary inferences that are not decomposed
further. As a result, a task is composed of a number of combined inferences yielding an inference
diagram.[8]

Chapter 3: Knowledge Schemas

38

 3.1.4 Comparison with Other Analysis Approaches

 Difference 1: “data model” contains both data and knowledge. Knowledge can be seen as
“information about information”. It implies that parts of the “data model” describe how we should
interpret or use other parts. We could also want to describe a domain-knowledge type that allows us
to infer the latter from the former. This requires specialized modeling tools, in particular the
construct RULE-TYPE.[9]

 Difference 2: “functions” are described datamodel-independent. Decoupling of functions
and data makes a knowledge model more complex, but it enables exploitation on powerful forms of
reuse. The input/output of functions in a knowledge model is not described in terms of data model
elements, but in terms of task-oriented “role” names. These “roles” act as placeholders for data-
model elements. Effectively, role decouples the description of the static information structure on the
other hand and the functions on the other hand.

 Difference 3: the need to represent “internal” control. In OMT, control is specified through
state-transition diagram, useful for systems in which information processing is mainly driven by
external events. However, in reasoning tasks, there is usually a clear need to also represent the
internal control of the reasoning.

 Difference 4: knowledge model abstracts from communication aspects. The knowledge
model abstracts from all issues concerning interaction with the outside world. These interactions are
described in the communication model.[10]

 Figure 3.7 shows the schematic view of the data-function debate comparing between object-
oriented analysis and structured analysis, including their view point with the CommonKADS
methodology.[11]

Figure 3.7: Schematic View of the Data-Function Debate.

Object-Oriented Analysis

Data Viewpoint

Function Viewpoint

Structured Analysis

static information structure is starting point
functions are grouped with the data
reuse of data/function groups (“objects”)

functional decomposition is starting point
data types are derived from DFDs

CommonKADS: function-data decoupling

parallel function/data description
reusable functional decompositions
reusable data/knowledge types

Chapter 3: Knowledge Schemas

39

 In the Yourdon approach, functional decomposition is the starting point of analysis; in the
modern object-oriented approaches the “data” are the initial focus of attention. CommonKADS takes
an intermediated position, assuming both data and function descriptions can be stable and
reusable.[12]

3.2 Organization Model

 The CommonKADS approach intentionally combines and integrates ideas coming from
various areas in organizational analysis and business administration. It has been influenced by soft
systems methodology, especially in its thinking on how to come a clear and agreed picture of what
the real problems and opportunities in an organization are. In this regard, it is also useful to consult
literature on organizational learning.

 One of the prominent tools in managing knowledge is the knowledge-based systems. It can
be deployed as the technological means for capturing and managing both of tacit and explicit
knowledge as part of an organization-knowledge management initiative.[13] The capabilities of
knowledge-based systems were no longer limited to the emulation of expert reasoning; they could
also be applied to managing organization knowledge such as business rules, procedures and
guidelines.

 From the study on assessing the knowledge-based systems of Gill’s problems[14], the
successful adoption of knowledge systems is not primarily dependent on either technical or
economic reasons. It depends on mainly due to organizational and managerial issues. From this
study, I raise two issues concerns in an organizational aspect. The first concern is a coordination of
knowledge system development with organization’s business and IT strategies. Knowledge system
should be able to support the strategic information system needs and overall business processes. The
second concern about failure to understand the task that system would best support. Generally, not
all tasks can be performed better by the system. There are some tasks better performed by human
especially when the domain task is multidimensional and requires complex judgments.

 From above concerns, the CommonKADS methodology provides tool for scoping and
feasibility analysis for the organizational aspects. CommonKADS aims to integrate organization
process analysis and information analysis. It provides worksheets to describe the organizational
context, the performed-tasks, and the responsive agents.[15] For example, Table 3.1 shows a sample
of worksheet suite. This worksheet is OM-4: Knowledge assets worksheet.

Chapter 3: Knowledge Schemas

40

Table 3.1: Sample of a Worksheet in Organization Model.

 To develop knowledge-based systems, knowledge engineers collect the system information
from organization aspect by the suite of worksheets. All of worksheets are separated in three groups
and one checklist: Organization model (OM), Agent model (AM), Task model (TM), and
Organization-Task-Agent Checklist (OTA).[16]

 Organization model is regarded as a feasibility study for knowledge system. The study is
conducted based on problems and opportunities of system. It focuses on such areas as, structure,
process, people, resources, process breakdowns and knowledge assets. This model has three main
proposes: (1) To identify an area in organization where knowledge-based applications can be
implemented, (2) To identify what impact the knowledge-based application will have in organization
when it is implemented, and the last, (3) To provide the system developers with a feeling for where
the organization the applications will be deployed.[17]

 For Agent model, it has purpose to understand a role played by different agents when
performing a task. In knowledge system, agents can be as people, computers or any other entity that
can perform the task. In model worksheets, they specify agent characteristics, authority to perform
the task and any associated constraints.

 Last model is the Task model. It has purpose to provide an insight of impact that
introducing the knowledge system will have on organization. This model refers to characteristics of
the business processes, for examples, inputs and outputs, pre-conditions, performance and quality,
function of the agents that will carry out the processing, flow of knowledge between agents and their
overall control, the knowledge and competences of the agents and the resources available to deliver
the business process.[18]

 In this research focused on the organization model, I applied the organization model from
the worksheet to the model using the UML extension mechanism. I gathered all of organization
model worksheet and conclude to the one metamodel.

Chapter 3: Knowledge Schemas

41

Figure 3.8: Roadmap of Models in CommonKADS Context Level.

 Figure 3.8 shows a road map for carrying out knowledge-oriented organization and task
analysis in context level of the CommonKADS methodology. In the organization model, it consists
of four worksheet that investigate rely on their goal. All of worksheets have relationship and can
combine to one model with their relationship.[19]

Table 3.2: Context Level Models and Description.

Model Description
Organization Model

OM-1 Define problems and opportunities.
OM-2 Describe organization aspects.
OM-3 Describe all business process.
OM-4 Describe Knowledge assets of OM-2.

OM-5
Represents a big picture of all benefits versus the cost
and needed technologies for the solution.

Task Model
TM-1 Refinement of data in OM-3 (Business process).
TM-2 Refine model of OM-4 (Knowledge assets).

Agent Model
AM-1 Agent description.

Organization Model

Problems
&

Opportunities

General
Context

(Mission,
Strategy,

Environment,
CSF's,...)

Potential
Solutions

OM-1 OM-2

Organization
Focus Area
Description:

Structure

Process

People

Culture & Power

Resources

Knowledge

OM-3 OM-4

Process
Breakdown

Knowledge
Assets

Chapter 3: Knowledge Schemas

42

 In table 3.2 shows the worksheets number and their description. Figure 3.9 shows the set of
worksheets structure in CommonKADS methodology (organization model) and their description.[20]

Figure 3.9: Set of Worksheets Structure in Context Level.

OM-1

problems,
solution,
context

OM-3

process
breakdown

OM-2

description of
organization
focus area

OM-4

knowledge
assets

OM-5

judge
feasibility
(decision

document)

TM-1

task analysis

TM-2

knowledge
item

analysis

AM-1

agent model
OTA-1

assess impact
& change
(decision

document)

start

refine

refine

integrate

integrate

stop

stop

[if unfeasible]

[if unfeasible]

integrate, comparing both the old and new solutions

context
analysis
ready

Chapter 3: Knowledge Schemas

43

3.3 Knowledge Landscape Schema

 To model the knowledge modeling, it composes of two levels point of views: architectural
level and metaclass (component) level. Architectural level is a higher level that describes the
structure of knowledge model in terms of package dependencies, as well as the control regimen
through which these packages interact. Architectural level composes with three main packages based
on the knowledge category in CommonKADS. It consists of domain knowledge package, inference
knowledge package and task knowledge package. Inside of domain knowledge package, it has two
sub-packages: knowledge schema package and knowledge base package. Figure 3.10 shows an
architectural view of knowledge model and the peripheral packages that related with knowledge
modeling.

Figure 3.10: Architectural View of Knowledge Model in CommonKADS Concept.

 From figure 3.10, the knowledge model architecture has two perspective views: logical view
and functional view. The logical view provides abstract for represent the domain knowledge from the
knowledge domain-sources, such as business knowledge in an organizational aspect. On the other
hand, the functional view realizes the scenarios from the knowledge-intensive task that correspond
with inference and task knowledge in object’s form, by inside-out and outside-in realized techniques.
Descriptions of architectural elements are itemized in Table 3.3.

Chapter 3: Knowledge Schemas

44

Table 3.3: Architectural Knowledge Modeling Concept.

Package
Stereotype Responsibility

Logical view

Domain Knowledge Model the domain specific knowledge and information types.

Knowledge Schema Describe domain specific knowledge through a number of
type definitions.

Knowledge Base Contain instances of the types specified in domain schema.

Functional view

Inference Knowledge Specification of invocation of an inference method.

Task Knowledge Model of the reasoning function.

 Figure 3.11 shows the metaclass diagram in component level. It defines the knowledge
model with the UML extension mechanisms and describe knowledge model characteristic in an object
oriented approach.

Table 3.4: Component Knowledge Modeling Concept.

Component Stereotype Responsibility

Concept Class that represents the category of things.

Relation
Used for more complicated types of modeling and defined
through a specification of arguments e.g. inheritance and
aggregation relationship etc.

Rule type Categorization and specification of domain knowledge.

Knowledge Base Collection of data stores that contains instances of domain
knowledge types.

Inference
The lowest level of functional decomposition on carrying
out primitive reasoning steps.

Role Defines functional roles in reasoning process.

Dynamic knowledge role Run-time inputs and output of an inference.

Static knowledge role The collection of domain knowledge is used to make the
inference.

Transfer function
Transfers information between Inference knowledge and
the reasoning agent / external entities.

Task
Defines the reasoning function and invokes the
corresponding task method.

Task Method
Formalize method control structure in control language
provided by the architecture.

Chapter 3: Knowledge Schemas

45

Figure 3.11: Metaclass Diagram of Knowledge Model with UML Extension.

 Concepts of component elements in metaclass diagram are itemized in Table 3.4. Figure 3.12
is an example schema from the case-study “online course registration portal”. The domain concerns
the online course registration process in which courses are registered for the students in the
respective LP/Semester. On case of knowledge intensive task, I have mainly focused concern with
the “student counseling” for selection of courses of interest.

Chapter 3: Knowledge Schemas

46

Figure 3.12: Knowledge Landscape in Online Course Registration Portal case study.

3.4 Knowledge Atlas Schema

 Although different organization systems have different goals and internal structures, they
use similar concepts to describe their structure and operations. To model knowledge atlas with UML
extension mechanism in high level, it consists of three package extensions rely on concept of context
model in CommonKADS methodology: organizational aspect package, agents package and task
package. All of package extensions based on the UML 2.0 core definitions. Figure 3.13 shows the
core package of knowledge atlas.

Figure 3.13: Core Package of Knowledge Atlas.

Chapter 3: Knowledge Schemas

47

 In package level, the main component is the organizational aspects package. Figure 3.13
shows the meta-class diagram that describes the knowledge atlas’s architecture by using the UML
extensions. From figure 3.14, the primary concepts used when defining are:

Table 3.5: Knowledge Atlas Elements and Description.

Component Description

Structure
An organization is built from structural units.

Function
Each structural unit carries out one or more business
functions.

Process

Processes describe how the work is done within the
business. Processes are governed by Rules and
Functions are related in time through processes.

People

People play roles in the organization. They fill
positions in the structure. They sponsor certain
solutions to problems and possess knowledge that is
required for a function. They have responsibilities and
so on.

Power

People derive power from their role in the
organizational structure and from the knowledge they
possess. Power plays a role in defining the problem
and assessing a solution’s feasibility.

Resources

The objects within the business, such as material,
information, and products are used or produced in the
business. The resources are arranged in structures and
have relationships with each other. Resources are
manipulated by used, consumed, refined, or produced
through processes. Resources can be categorized into
physical, abstract and informational.

Knowledge

This subcomponent is especially relevant for
knowledge-based system - oriented organizational
analysis. Knowledge is an organizational asset and can
be described by knowledge items. A knowledge item
is a collection of knowledge fragments used to perform
the tasks that are defined by one or more functions.
Knowledge items characterize the knowledge in the
organization at a fairy general level of description,
mainly for managerial purposes. The organization
model also contains a list of an organization’s possible
knowledge bottlenecks.

Goal

The purpose of business or the outcome of business as
a whole is trying to achieve. Goals can be broken
down into sub-goals and allocated to individual parts
of the business, such as processes of objects. Goals
express the desired states of resources and are
achieved by processes.

Chapter 3: Knowledge Schemas

48

Rule

A statement defines or constraints some aspect of the
business, and represents business knowledge. It
governs how the business should be run or how
resources may be structured and related to each other.
Business rules are defined using the Object Constraint
Language (OCL) which is a part of the UML standard.

Figure 3.14: Metaclass Diagram of Knowledge Atlas with UML Extension.

Chapter 3: Knowledge Schemas

49

Figure 3.15: Knowledge Atlas in Online Course Registration Portal case study.

 Figure 3.15 is an example schema from the case-study “online course registration portal”. In
this scope, I have mainly focused concern with the “assessment criteria” for checking pre-requisites,
constraints, and policies.

3.5 Knowledge Systematic Schema

 This proposal is recreated from former research “A CommonKADS’s Knowledge Atlas
with UML Extensions” and “CommonKADS’s Knowledge Model using Architectural View and
Extension Mechanism”. The difference is former research separated virtual space development
between knowledge management level and knowledge object level. This approach concluded all in
one schema and one virtual space.

 The main concept of elaborating knowledge in virtual space is explaining the knowledge
pattern by using virtual space supportability with a manner that is understandable. The elaboration is
not only to make sense of knowledge methodological, but also to support development in virtual
space and design of knowledge information in XML tag-based. For these reasons, I propose the
knowledge systematic schema that is recreated from CommonKADS methodological by using three
architectural views: (1) physical view, (2) logical view, and (3) functional view. To realize all of
views in the same virtual environment, I have developed one spot to connect those views. I call the
spot as the conjugate point. The conjugate point in the schema is an abstract template class that
associates role playing of knowledge relying on each selected-view. It provides template structure of
three knowledge types for dynamic responsibility of knowledge.

Chapter 3: Knowledge Schemas

50

Figure 3.16: Architectural View and Knowledge Systematic Schema.

 Physical view realizes the role of conjugate class as the knowledge asset class in
organization aspect. Logical view realizes the role of knowledge instance class in knowledge base.
Functional acts as the knowledge role class of inference structure. Figure 3.16 shows the
architectural view and metadata diagram of schema.

 About the view concept, Physical view represents an organization aspect that contributes to
the understanding of knowledge context. It acts as an infrastructure for facilitating the
interoperability of geographically-distributed development.

 Logical view represents an abstraction of domain knowledge and classifies the finding
knowledge with concept and their relation. It acts as the moderator of real world and abstract space
of knowledge between knowledge asset in physical view and knowledge role in functional view via
knowledge instance. Additionally, logical view encourages the quantization mechanism of
knowledge for the correlated abstraction of knowledge instance and concept.

 Functional view realizes the scenario from the knowledge intensive task that corresponds
with inference and task knowledge. Its purpose is to develop a new idea by determining a chronicle
order to inference knowledge as knowledge scenario and performing by touring timeline service.
Additionally, this view is used to predict an expired knowledge and trace-back the expired-chain for
updating the knowledge base in logical view.

Chapter 3: Knowledge Schemas

51

3.6 Comparison of CommonKADS Model and Proposed Model

 This section shows a comparison of CommonKADS model that consist of knowledge model
and organization model to compare with the proposed model that consists of knowledge landscape
schema, knowledge atlas schema, and knowledge systematic schema.

Table 3.6 Comparison of CommonKADS Model and Purposed Method

Technology
features

CommonKADS Approach

Proposed Approach

Knowledge
Model

Organization
Model

Landscape
Schema

Atlas
Schema

Systematic
Schema

Knowledge
Engineering
Technology

� � � � �

Artifacts

2 diagrams
(Domain K.

diagram,
Inference
structure)

5 tables
(OM.1-5)

1 diagram
(Meta

diagram)

1 diagram
(Meta

diagram)

1 diagram
(Meta

diagram)

Platform
Independent

� � � � �

View /
Architectural

view

2 views
(Domain K
Diagram,
Inference
structure)

1 view
(Organization

aspect)

2 views
(Logical

view,
Functional

view)

1 view
(Physical

view)

3 views
(Physical

view, Logical
view,

Functional
view)

Object-oriented
approach

Only Domain
knowledge

- � � �

Standard
modeling
language

- - � � �

Documentation

� � � � �

Consistency
checking

- - � - �

Extensibility

- - � � �

Exchanging

- - � � �

Chapter 3: Knowledge Schemas

52

3.7 Chapter Conclusion

 Knowledge model is an important part of the CommonKADS methodology and general
knowledge based system. In spite of the process for constructing knowledge model is similar to
other software system but it has not standard technique available for developing. UML is a general
purpose modeling language that covers a wide range of different application domain. It is a standard
modeling and could be adopted for the knowledge model development with its feature. This thesis
chapter describes an UML approach for developing the knowledge model in CommonKADS
methodology by using the architectural view and extension mechanisms feature. This approach
provides model perspectives and extensible notations for modeling the knowledge model in the same
context within standard of UML. The model consists of two levels: architectural level and metaclass
(component) level. In methodology, I used two model perspectives for develop in an architectural
level: logical view and functional view. Logical view supports view of abstract representation for
knowledge type definition as objects. Functional view supports view of scenario that correspond
with the usage of inference and task knowledge for define the interactive objects. All defined objects
will be correlated by relationship in metaclass diagram of the component level. To define the
metaclass, I used the extension mechanism such as stereotype for define knowledge model’s concept.
The result from methodology is the knowledge model that developed within CommonKADS
concept and relies on the UML standardization.

 In this chapter, I propose three schemas for develop the prototype system: (1) knowledge
landscape schema, (2) knowledge atlas schema, and (3) knowledge systematic schema. Knowledge
landscape schema is representative schema for the knowledge model in content level of
CommonKADS. Knowledge atlas schema represents an organizational aspect in context level. Both
of schemas are concluded in one schema for implementation in virtual environment called,
knowledge systematic schema.

Reference Publication:

Boonprasert Surakratanasakul and Kazuhiko Hamamoto : “CommonKADS’s Knowledge Modeling using UML
Architectural View and Extension Mechanism”, The 7th Intl. Conf. on Advanced Information Management and
Service, Jeju, Korea (ICIPM 2011).

Boonprasert Surakratanasakul and Kazuhiko Hamamoto : “A CommonKDAS’s Knowledge Atlas with UML
Extensions”, The Joint International Symposium on Natural Language Processing and Agriculture Ontology,
Bangkok, Thailand (SNLP 2012).

Boonprasert Surakratanasakul and Kazuhiko Hamamoto : “Conjugate of Knowledge Items Between Abstract and
Organization Knowledge Models”, The 4th International Conference on Digital Information and Communication
Technology and Its Applications, Bangkok, Thailand (DICTAP 2014).

Chapter 3: Knowledge Schemas

53

Bibliography

[1] Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel Shadbolt, Walter Van de Velde,
and Bob Wielinga, “Knowledge Engineering and Management: The CommonKADS Methodology”, A
Bradford Book, The MIT Press (1999).

[2] Speel, P., Schreiber, A. Th., Van Joolingen, W., and Beijer, G., “Conceptual Models for Knowledge-Based
Systems, in Encyclopedia of Computer Science and Technology”, Marcel Dekker Inc., New York (2001).

[3] Mohd Syazwan Abdullah, Chris Kimble, Ian Benest, and Richard Paige, “Knowledge-based systems: a re-
evaluation”, Journal of Knowledge Management, vol. 10, no.3, pp.127-142 (2006).

[4] Maarten Sierhuis, “An Object-Oriented Design Method for Knowledge Based Systems”, Proceeding of
IEEE/ACM International Conference: Developing and Managing Expert System Program, pp.296-303 (1991).

[5] Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Richard Paige, and Chris Kimble, “Knowledge Modelling
Using the UML Profile”, Proceedings of the 3rd IFIP Conference on Artificial Intelligence Applications and
Innovations (AIAI), (June 2006), Athens, Greece, IFIP International Federation for Information Processing,
pp.70-77 (2006).

[6] Guus Schreiber, Bob Wielinga, and Robert de Hoog, “CommonKADS: A Comprehensive Methodology for
KBS Development”, IEEE Intelligent Systems, vol. 9, pp.28-37, December (1994).

[7] M.S. Abdullah, I.Benest, A.Evans, and C.Kimble, “Knowledge Modelling Techniques for Developing
Knowledge Management Systems” 3rd European Conference on Knowledge Management, Dublin, Ireland,
ISBN:0-9540488-6-5, pp.15-25, September (2002).

[8] Gruber, T.R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing”, Stanford
University (1993).

[9] Gomez-Perez, A., Benjamins, R.R., “Overview of Knowledge Sharing and Reuse Components: Ontologies
and Problem-Solving Methods”, IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5),
Stockholm Sweden (1999).

[10] Mohd Syazwan Abdullah, Andy Evans, Ian Benest, Richard Paige, and Chris Kimble, “Modelling Knowledge
Based Systems Using The eXxcutable Modelling Framework (XMF)”, Proceedings of the 2004 IEEE
Concerfence on Cybernetics and Intelligent Systems, pp.1055-1060, December (2004).

[11] Devedzic, V., “Knowledge Modeling – State of the Art”, Integrated Computer-Aided Engineering, vol. 8, no.
3, pp.257-281 (2001).

[12] Garden, N. and Garden, Y., “An Application of Knowledge Based Modeling using Scripts”, Expert System
with Applications, vol.25, no.4, pp.555-568 (2003).

[13] Hakansson, A., “A UML as an Approach to Modeling Knowledge in Rule-based Systems”, 21st SGES
International Conference on Knowledge Based Systems and Applied Artificial Intelligence (ES2001),
Peterhouse College, Cambridge, UK (2001).

[14] Cuena, J. and M. Molina, “The Role of Knowledge Modeling Techniques in Software Development: a General
Approach Based on a Knowledge Management Tool”, International Journal of Human-Computer Studies,
vol.52, pp.385-421 (2000).

[15] Wilfried Post, Bob Wielinga, Robert de Hoog, and Guus Schreiber, “Organizational Modeling in
CommonKADS: The Emergency Medical Service” IEEE Expert: Intelligent Systems and Their Applicationd,
vol. 12, pp. 46–55, November (1997).

[16] Guus Schreiber, Bob Wielinga, and Robert de Hoog, “CommonKADS: A Comprehensive Methodology for
KBS Development”, IEEE Intelligent Systems, vol. 9, pp.28-37, December (1994).

Chapter 3: Knowledge Schemas

54

[17] Paul D. Scott and Robert C. Vogt, “Knowledge Oriented Learning”, Proceeding of eight International of joint
Conference on Artificial Intelligence IJCAI’83, vol.1, pp.432-435 (1983).

[18] Perez-Martinez, J.E., “Heavyweight Extensions to the UML Metamodel to Describe the C3 Architectural
Style”, ACM SIGSOFT Software Engineering Notes, vol.28, no.3 (2003).

[19] Vladimir Sklenar, Martin Radvansky, and Michal Dobes, "Navigation in Knowledge-Based System for
Helpdesk Based on FCA", ICCS 2007, LNAI 4640, pp. 501-504 (2007).

[20] Kende, R., “Knowledge Modeling in Support of Knowledge Management”, Lecture Notes in Artificial
Intelligence, 2070, pp.107-112 (2001).

Chapter 4: Knowledge Realization

55

 Chapter 4

Knowledge Realization

 This chapter describes about how to realize knowledge in virtual space and prototype
system. The realization is based on problem and opportunities and research goal relationships as
following in table 4.1:

Table 4.1: Traceability of Problem and Opportunities and Research Goal with Related Realization.

Problems and
Opportunities*

Research Goals* Realization

[P-1]

[G-1] Knowledge and virtual space design
[G-2] Realized mechanisms

[G-3]
Knowledge and virtual space design and
Realized mechanisms

[P-2]
[G-4]

Knowledge and virtual space design and
Realized mechanisms

[G-5] System specification and architecture

[P-3]

[G-2] Realized mechanisms

[G-3]
Knowledge and virtual space design and
Realized mechanisms

[G-5] System specification and architecture

[P-4]
[G-2] Realized mechanisms

[G-3]
Knowledge and virtual space design and
Realized mechanisms

* reference number from research purpose in chapter 1, page 12.

 From the traceability table the first column is the problems and opportunities which define
in research purpose in chapter 1. The second column is research goals which response to the problem
and opportunities. For example, problem [P-1]: “Organization knowledge is a key asset in an
organization but it is often tacit and private. From the survey, most systems lack of explain how an
organization uses it knowledge is built up”. The responsive of [P-1] in research goals are: [G-1]:
“Aim to develop useful and practical guidelines for knowledge intensive organization by develop the
schema is to get acquainted with the system and to assess the amount of foreknowledge needed”, [G-
2]: “Enables one to spot the opportunities and bottlenecks in how organizations develop, distribute
and apply their knowledge resources, and so gives tools for corporate knowledge management”, and
[G-3]: “Provide the methods to obtain a thorough understanding of the structures and processes used
by knowledge workers even where much of their knowledge is tacit leading to a better integration of
information technology in support of knowledge work”. The last column is how to answer the
research goal with realization in this chapter.

 For the description: Section 4.1 describes knowledge and virtual space design that consists
of three subsections: scene-graph design for virtual space in 4.1.1, knowledge representation in 4.1.2,
and simulation scene of knowledge space in 4.1.3. Section 4.2 describes about realized mechanisms:
topological of knowledge in 4.2.1 and knowledge scenario development life cycle in 4.2.2. Section
4.3 is system description and its architecture. Section 4.4 is system features and users interfaces.
Finally, section 4.5 is chapter conclusion.

Chapter 4: Knowledge Realization

56

4.1 Knowledge and Virtual Space Design

 To develop a knowledge methodology in virtual space, I develop from the knowledge
systematic schema in chapter 3 section 3.5. It aims to explicate in detail of type and structure of
knowledge used in performing task and also concentrate on conceptual structure of knowledge. I
used this schema to design a scene-graph for an imaginary guideline before implementation. The
benefit from manage knowledge in virtual space are simplicity and well-known by learning from
experiences in controllable spiral that understandable in human-sense. It is an important vehicle role
for communication between experts and users during both developing through system execution.

 4.1.1 Scene-graph Design for Virtual Space

 Knowledge schema has purpose to explicate in detail of types and knowledge structure
which used in performing task. Although the prototype system demonstrates with GoogleTM API
which have feature functions for managing scene-graph by itself, but some API functions, developer
need the concept of scene-graph for insight implementation. To describe scene-graph concept, I use
concept of the WorldToolKitTM (WTK) for demonstration. This concept is a generality which can
apply for other programming languages, such as, Java 3D API, etc.

 Generally, a common definition of a graph is a data structure composed of nodes and arcs.
A node is data element, and arc is relationship between data elements. To render scene-graph, WTK
provides function for creating nodes and placing them at specific positions in the scene-graph.
Developer might be concerned the scene-graph on the common rules as followed:

– The scene-graph is rendered automatically into the window as the simulation runs.
– Different scene-graphs may have common sub-trees. This means that the same

geometry can be referenced by more than one scene-graph.
– Each scene-graph has a single root node.
– Traversal begins at the root node of scene-graph.
– The renderer traverses the tree from top to bottom and left to right.

 Depending on the type of node, WTK will do different things. Nodes in WTK can be
grouped into three distinct types: Geometry node, Attribute node, and Procedural node.

 Geometry nodes contain the representation of visible entities by draw the specified set of
polygons. Attribute nodes used to affect the way geometry nodes are rendered by modify the current
state, which determines an appearance of subsequent geometry. Procedural nodes used to control the
way a scene-graph is put together by process the children of this node, depending on the type of
traversal directed by the node. For managing the state of the scene-graph, Separator and Transform
Separator nodes are used to manage state of scene-graph by isolating the effects of attribute nodes.

 From knowledge schema, I design a general scene-graph shown in figure 4.1 (left). Scene-
graph starts at the root node. The root node has relationships with three nodes. Light node specifies
lighting of the landscape on the virtual space. Transform node sets a position and orientation
information for develop Task method into Task knowledge. The transform separator manages the
sub-graph of Inference knowledge level. On Inference level, it consists of geometry node of
Inference knowledge, Transfer function, and Knowledge role. The transform separator in this level
separates Domain knowledge level by scope of the knowledge base. In this level, it has concept node

Chapter 4: Knowledge Realization

57

and level of detail (LOD) node that describes knowledge instance and attribute instance in geometry
node. For figure 4.1 (right) shows a scene-graph for GoogleTM earth. The different is scene-graph for
GoogleTM Earth do not need configure environment.

Figure 4.1: Knowledge in the virtual space scene-graph.
(left): Scene-graph for WTK, (right): Scene-graph for GoogleTM Earth.

 4.1.2 Knowledge Representation

 For added acquired knowledge to system, knowledge might be transformed into the
knowledge item that represents with XML-formatting file. It is composed of meta-knowledge and
hyperlink of information body. Meta-knowledge is abstract of information body and hyperlink of
information body obtains the detailed content of knowledge. Users can access to information body
through hyperlink, so as to implement the integration of operations.

 In knowledge structure, it consists of three tag parts: card name, description and hyperlink
of information body. Figure 4.2 shows a sample of knowledge in an XML file. Considered tag of
XML file, the <card> element represents a unit of a knowledge item. It contains three child
elements: <name>, <description>, and <bodylink>. The <name> element contains a name of
knowledge card that impile to knowledge item, the <description> elements contains the short
abstraction of knowledge item, and the <bodylink> element contains the URL of an embedded file
(e.g., an image, a movie clip, a slide, and so on).

Chapter 4: Knowledge Realization

58

Figure 4.2: Diagram of KML/XML-tag.

 For knowledge specification, I use an approach of middle-in and middle-out techniques to
specify the knowledge. The middle-out approach is preferred, but can only be used if the inference
structure of the task template is already at the required level of detail. If decomposition is necessary,
the process essentially becomes “middle-in”. Deciding on the suitability of the inference structure is
therefore an important decision criterion. Figure 4.3 shows middle-in and middle-out approaches for
knowledge specification.

Chapter 4: Knowledge Realization

59

Figure 4.3: Middle-in and Middle-out Approaches to Knowledge Specification.

 4.1.3 Simulation Scene of Knowledge Space

 The concern of knowledge realization in virtual space is how difficult to learn to work and
how to clarify required of the underlying knowledge representation. First of all, I designed a
scenegraph to realize schemas that represent knowledge elements with geometry-node, an
application user can visually grasp the global nature of node, explore the information space, and
accommodate new at an appropriate place based on manner understandable by the abilities of virtual
space. I considered develop the GoogleTM APIs interface both of Map and Earth for implement the
virtual space prototype, on reasons to investigate the macroscopic view of knowledge and the
participating geographically distributed development. About the element description, I explain via
KML/XML tag-based schemas, relied on the schema definition and use meta-knowledge for access
information body via the hyperlink, so as to implement an integrated knowledge operation. The level
of detail (LOD) depends on the zooming interface value and priority of node type, for example,
inference node zooming priority more than transfer function node, etc. User can use the camera
control for getting current view, searching the node, panning, tiling, etc. based on the geocoding
application features. To realize schemas in virtual space, I separate the virtual space by geographical
altitude in three layers: physical layer, logical layer, and functional layer.

Chapter 4: Knowledge Realization

60

Figure 4.4: Simulation-scene Diagram of Virtual Space Design.

 Physical layer is a ground layer that represents knowledge assets in organization and
conducted by Knowledge Atlas schema. User can develop the knowledge asset via node
<placemark> and display <balloon> for detail, such as holder, resources, process, etc. Additionally,
they can customize an icon for more insight dimension, for example, using man-icon for the tacit
knowledge and book-icon for the explicit knowledge, etc.

 Logical layer is a middle layer, located between physical and functional layer. It contains an
abstraction of domain knowledge that conducted by the logical view of Knowledge Landscape
schema. It acts as the moderator between real-world and abstract-world of knowledge by linking
between knowledge asset on physical layer and knowledge role in functional layer via by knowledge
instance. Furthermore, its view encourages the mechanism of knowledge quantization on the
correlated abstraction among knowledge instance, concept, and their relation.

 Finally, functional layer is an upper layer that conducted by functional view of Knowledge
Landscape schema. Its purpose to develop the new idea by determines a chronicle order of inference
knowledge, as knowledge scenarios for the system perform by touring timeline. Additionally, I use
this layer to predict the expired knowledge and trace-back the expired-chain for updating the
knowledge base. Figure 4.4 shows the scene of the virtual space in 2D diagram.

Chapter 4: Knowledge Realization

61

4.2 Realized Mechanisms

 4.2.1 Topological of Knowledge

 In virtual knowledge memory space, it comprised of knowledge node that has own latitude,
longitude, and zooming value for determine user’s viewpoint. The geographical value of node
enables user to judge the location reply on knowledge schemas and spatial clues. Figure 4.5 shows
the topological of knowledge node and filtration developing.

Figure 4.5: The Topological of Knowledge and Filtration Developing.

 4.2.2 Knowledge Scenario Development Lifecycle

 Knowledge scenario is the sequencing related to step of inference knowledge usage. It
similarly likes functional decomposition and method in computer programming. Typically, each of
knowledge scenarios has only one individual goal to achieve as atomicity goal.

 To develop the knowledge scenario, user might determine the chronicle order to inference
knowledge element, such as, inference and/or transfer function. The chosen inference knowledge

Chapter 4: Knowledge Realization

62

display its ordering number and the linking line to the others on a step, as a task knowledge. The
structure and length of scenario depend on the situation occurs and the solution to achieve a goal.
User can edit knowledge scenario by rearranging or combining old and new the inference knowledge
as life cycle. Figure 4.6 shows the knowledge scenario developing: scenario (A) and scenario (B)
and their reusability.

Figure 4.6: The Knowledge Scenario (A) and (B) and Reusability of Inference X and Y.

 From figure 4.6, knowledge scenario (A) represents with thick-line has 5 steps (a1) - (a5).
knowledge scenario (B) represents with dot-line has 5 steps (b1) - (b5). Both of knowledge scenarios
have two shared 2 inferences: inference X and inference Y.

 Example

 This example describes two task knowledge have an aim to write a basic 3D program. Task
(a) is written by JavaTM 3D and Task (b) is written by WorldToolKitTM.

Table 4.2: Example of Knowledge Scenario Development: Reusable and Shareable.

Task (a): Java 3DTM Task (b): WorldToolKitTM

(a1) Create a Canvas3D object.
(a2) Create a VirtualUniverse object.
(a3) Create a Locale object, attaching it to
the VirtualUniverse object.
(a4) Construct a view branch graph.
 (a4.1) Create a View object,
ViewPlatform, PhysicalBody, and
PhysicalEnvironment object.
 (a4.2) Attach Canvas3D, ViewPlatform,
PhysicalBody, and PhysicalEnvironment
object to View object.
(a5) Construct content branch graph(s).
(a6) Complie branch graph(s).

(b1) Create a WTuniverse.
(b2) Entered simulation by calling
WTuniverse_go.
(b3) Read sensors.
(b4) Call Universe action function.
(b5) Perform object tasks.
(b6) Play/Record paths.
(b7) Render the Universe.

Chapter 4: Knowledge Realization

63

 From two above tasks, the sequencing number of step (a1) - (a6) and b(1) - b(7) are the task
method that similar to knowledge scenario. Each of steps in task method equal as an inference. Some
of inferences from task (a) and (b) could be shared, for example, inference (a2) and (b1). Because of
these inferences contain the Knowledge instances that have same Concept such as, VirtualUniverse
and WTuniverse are the Knowledge instance that have the Concept of creating of virtual area.

4.3 System Specification and Architecture

 For system specification, I separated the specification with two dimensions: Developing
tools specification in table 4.3 and Environment configuration in table 4.4.

Table 4.3: Developing Tools Specification.

Developing Tool Specification

GoogleTM Code Playground
Modifying API
Coding AJAX
Unit Testing

EditPlus 3.51
Coding AJAX and JavaScript
Develop XML (Knowledge Schema)
Develop KML + XML

IBM Rational Rose, Microsoft
Visual C++

Design Schema
Develop UML Model (e.g,Use-Case)

WorldToolKitTM 9,
Java 3D

Design Scenegraph Concept

 For environment configuration, the application is developed on the system platform below:

Operation system#1:
Operation system#2:

Windows 7 Home Premium SP1
Windows XP SP3

CPU#1:
CPU#2:

Intel Core-i5
Intel Core-i3

RAM: 4 GB
Browser: Internet Explorer 10.0.10

 For more information about the GoogleTM plugin, table 4.4 is currently supported on the
following platforms:

Table 4.4: GoogleTM Plugin Supporting Platform.

Microsoft Windows
Apple Mac OS X 10.5 and higher

(Intel)
Google Chrome 5.0+
Internet Explorer 7.0+
Firefox 3.0+
Flock 1.0+

Google Chrome 5.0+
Safari 3.1+
Firefox 3.0+

Chapter 4: Knowledge Realization

64

 To install the GoogleTM plugin, browser to any webpage in which the plugin is included (e.g.
http://code.google.com/apis/ajax/playground/#hello,_earth). The browser will likely ask for
permission before installing plugin – click through to allow installation. Once the plugin is installed,
user may need to refresh the page before the plugin display correctly.

 For the application software architecture, I designed the system with software layer
architecture. It consists of four layers: Application layer, Business layer, Middle-ware layer, and
Physical layer. For the application layer, it composes of web browser as an application interface and
GoogleTM Map / Earth plugin for interpret KML to render on the virtual space. On the business layer,
it composes of a module for compile the XML that represent the knowledge information rely on the
knowledge schemas, both of Knowledge Landscape and Knowledge Atlas. The module is developed
with AJAX for compile the XML file by construct the object tree model (DOM – Data Object
Model). For using the knowledge schema via XML, it is used together with the KML-tag by
encapsulation the knowledge schema-XML with KML-tag. On the middle-ware layer, it provides the
GoogleTM API and KML namespace as the fundamental infrastructure. Finally the physical layer, it
focuses on the communication for interoperability of the system via the internet. Figure 4.7 shows
the software architecture with the layer architecture.

Figure 4.7: Architectural Layer (Software Architecture).

 For the system architecture, I elaborated the architecture via the Web-base Client-Server
architecture, due to the system features use the GoogleTM Map and Earth API from the GoogleTM
server-side. For the knowledge information, it is stored in two ways: the first way is deploy the
database on the internet / WAN for globalized sharing. The second way is deploy the database in an
organization via intranet network. The different of two options is the usability and security. However,
knowledge engineer can use both two ways by separated the critical knowledge into the intranet
scope. For the prototype system, I developed by sharing text file. The text file is lightweight sharing
in case the number of knowledge is not large. For import and export knowledge information, the
system provides an interface for transform the information via standard-XML to/from the system.
Figure 4.8 shows the system tier architecture.

Chapter 4: Knowledge Realization

65

Figure 4.8: Architectural Tier (System Architecture).

4.4 Features and User Interface

Figure 4.9: Prototype User Interface.

(1) Virtual
space panel

(2) Project
description

(5) Utility
panel

(4) Scene of
KML/XML

(3) Knowledge
perspective view

Chapter 4: Knowledge Realization

66

 Figure 4.9 is the prototype system interface that consists of 5 panels:
(1) virtual space panel, (2) project description panel, (3) selected knowledge view, (4) KML/XML
scene for editor, and (5) utility panel.

 Virtual space panel is an operational knowledge virtual space function; user can create,
update, and manipulate knowledge node directly with virtual space features. All of information on
virtual space panel is linked to project description panel via KML/XML data. User can select node in
project description panel for update information detail in case of user non-familiar operating on
virtual space, and for observe knowledge hierarchy.

 For knowledge perspective view, user can select and hide perspective view for inspection
knowledge layer on virtual space. KML/XML scene for editor shows data of selected node in project
description with KML/XML-format for advanced user directly editing, as shown in figure 4.10.

Figure 4.10: Interface for KML/XML Investigation.

 On utility panel, it consists of the peripheral tools such as, searching node, import and
export information, help information, and knowledge tutor for assistance naïve user.

Chapter 4: Knowledge Realization

67

4.5 Chapter Conclusion

 Managing knowledge through knowledge memory system is an important part of
knowledge management initiative. I use the CommonKADS methodology concept to be the
guideline for develop the schemas of knowledge content and organization context for display in the
virtual space. In virtual space, I represent knowledge item by node. Each of knowledge node
composed of latitude, longitude and zooming values that determine the user field of vision. To
delivery knowledge, user creates the knowledge scenario by the series of knowledge node, called
knowledge scenario. The advantage for define knowledge in a scenario are reusability and
modifiability. User can create a new knowledge scenario with previous knowledge and filtrate
knowledge forward to the sustainable knowledge memory system.

 For knowledge realization, I develop the knowledge memory space on the virtual space, it is
a memory system that has an objective view enables user to edit contents on surface by using
geographical arrangement and topological connection. It provides an overview of large data contents
and facilitate for knowledge sharing on people and increasing their connectivity as a lightweight
activity.

 I propose a scene-graph to implement the knowledge schema regimen. The scene-graph is
not only explicating graphical simulation, but also has control over the decision of server-side and
client-side rendering to encourage the groupware system. To describe the elements of knowledge, I
encapsulate knowledge informatics in XML with Keyhole Markup Language (KML). The system
extracts the information using DOM-parser and manipulates knowledge information with AJAX
implemented module. Finally, I demonstrate the proposed approach by prototyping a system
developed in GoogleTM Earth APIs environment as virtual environment.

 From an elaborate of knowledge realization responsive research goal in this chapter, the
problems and opportunities issues have been solved as following:

 [Problem-1]: Organization knowledge is a key asset in an organization but it is often tacit
and private. From the survey, most systems lack of explain how an organization uses it knowledge is
built up.

 This problem was solved by developing of knowledge systematic schema which
compounded from both of concept and context level in knowledge discipline, especially knowledge
atlas schema from context level that indicate an organization aspect and focus on organization
knowledge development. Finally, knowledge systematic schema was realized in virtual environment
by scene-graph and knowledge representation with its mechanisms.

 [Problem-2]: From the survey, many systems lack of an interface understandable manner
and suggested usability in user perform.

 This problem was solved with creation of a virtual environment that developed for
knowledge-developing process. The proposed system used virtual technology to simulate abstract
space and real-world space of knowledge developing in virtual environment, with an objective to
connect abstract space and real world space in an understandable manner. An user interface of

Chapter 4: Knowledge Realization

68

virtual environment is designed base on how difficult is it to learn to work and how to clarify
required of the underlying knowledge representation.

 [Problem-3]: From the survey, some system has not methodological support and lack of
collaborative work to improve knowledge exchange.

 This problem was solved from knowledge schemas that developed and modified by take an
advantage from CommonKADS methodology by optimized two models: knowledge model and
organization model. Finally, the proposed schema was realized in virtual environment that developed
in web-based application and architecture for sharing and exchange knowledge information
enhancement via network communication.

 [Problem-4]: From the comparison, some technique has complicated models and most of
frameworks are non-standardization language for knowledge-developing process.

 In this study, I solved the complicated and various models by using architectural model
view for given multi-perspective in each of model, and concluded all in one model for realization in
a virtual environment. For the standardization, I customized the UML language with extensions
mechanisms to define knowledge elements and regiment.

Reference Publication:

Boonprasert Surakratanasakul and Kazuhiko Hamamoto : “Scene-Graph Design for Knowledge Memory Space”, The
31st International Conference on Simulation Technology, Kobe Japan (JSST 2012).

Boonprasert Surakratanasakul and Kazuhiko Hamamoto : “Knowledge Schema for Knowledge’s Virtual Space”,
Kansai Joint Conference of Institute of Electronic and Engineering (KJCIEE 2012).

Boonprasert Surakratanasakul and Kazuhiko Hamamoto : “Knowledge Memory System Design on Virtual Space”,
Proceeding of ITE Tokai University, Vol.5, No.1, pp.13-19 (2012).

Chapter 4: Knowledge Realization

69

Bibliography

[1] Kubota H., Nomura S., Sumi Y., and Nishida T., “Sustainable Memory System using Global and Conical
Spaces”, Journal of Universal Computer Science, vol.13 no.2, pp.135-148 (2007).

[2] Bally J.M., “Designing Workspace: an Interdiscipline Experience”, SIGCHI Conference on Human Factors
in Computing Systems, pp.10-15 (1994).

[3] Toyoaki Nishida, “Conversational Informatics an Engineering Approach”, John Wiley & Son Ltd. England
(2007).

[4] Minoh M., and Nishiguchi S., “Environment Media – In the case of Lecture of Archiving System”, KES2003,
vol. II, pp.1070-1076 (2003).

[5] Bederson B.B., and Hollan J.D., "Padd++: A Zooming Graphical Interface for Exploring Alternate Interface
Physics", UIST’94, pp.17-26 (1994).

[6] Dennis J Bouvier, “Getting Started with the Java 3D API”, Sun Microsystems (1999).

[7] Leno Franzen, Hans Kessock, and Dave Hinkle, “WorldToolKit Reference Manual”, Engineering Animation
inc., April (1999).

[8] Ryosuke Saga, Akinori Kageyama, and Hiroshi Tsuji : “Proposal for Re-Usable TODO Knowledge
Management System RESTER”, IEEJ Transactions on Electronics, Information and Systems, vol.126, no.4
(2006).

[9] Hiroyuki Kojima, and Ken Iwata : “Seamless Management of Paper and Electronic Documents for Task
Knowledge Sharing”, IEEJ Transactions on Electronics, Information and Systems, vol.130, no.4 (2010).

[10] Studer R., Benjamins V.R., Fensel D.: “Knowledge Engineering Principles and Methods”, Data and
Knowledge Engineering, vol.25, pp.161-197 (1998).

[11] Andriessen JHE : “Working with Groupware: Understanding and Evaluating Collaboration Technology”,
Springer, London (2003).

[12] Kouji Kozaki, Yoshinobu Kitamura, Mitsuru Ikeda, Riichiro Mizoguchi : “Hozo : An Environment for
Building/Using Ontologies Based on a Fundamental Consideration of “Role” and “Relationship”, Proc. of
the 13th International Conference Knowledge Engineering and Knowledge Management (EKAW2002),
pp.213-218 (2002).

Chapter 5: Evaluation and Discussion

70

Chapter 5

Evaluation and Discussion

 This chapter describes about the experiment strategies that designed based on research goal
as following in table 5.1:

Table 5.1: Traceability of Research Goal and Experiment Strategies.

Research Goals* Experiments Evaluation Strategies

[G-1]
[Exp.1] Feature comparison
[Exp.2] Questionnaire: basic features

[G-2] [Exp.2]
Questionnaire: basic features
Questionnaire: collaborative work

[G-3] [Exp.2]
Questionnaire: environment driven suggestion
Questionnaire: collaborative work
Questionnaire: collaborative work

[G-4] [Exp.2] Questionnaire: environment driven suggestion
 [Exp.3] Process of experimental task

[G-5] [Exp.1] Feature comparison
 [Exp.3] Process of experimental task

* reference number from research purpose chapter 1, page 12.

 From the table 5.1, the first column is the research goals that refer from research purpose in
chapter 1. Second column are experiments: [Exp.1] is feature comparison experiment, [Exp.2] is
user questionnaire response, and [Exp.3] is the process of experimental task. The last column is
evaluation strategies, especially in experiment 2, have 3 types of questionnaire: about environment-
driven suggestion, about basic features, and about collaborative work supportability.

 This chapter consists of two sections. First section 5.1 describes about the evaluation
strategies: feature comparison in 5.1.1, user questionnaire response evaluation in 5.1.2, and process
of experimental task in 5.1.3. Section 5.2 is the research discussion.

5.1 Evaluation

 In this research, both qualitative and quantitative evaluations were employed in this study.
A comprehensive evaluation of knowledge intensive organization schema is the major focus is put
on static characteristics of the proposed system. Evaluation concentrated on characteristics of the
knowledge-development process supported by methodology. I provided three strategies for
evaluations: features comparison, questionnaire response, and process of experimental tasks. The set
of criteria that will be used for comparing divided into the following groups:

 General description which includes information about developers, release and availability.

 Software architecture and tool evolution which includes information about the tool
architecture (standalone, client/server, n-tier application), how the tool can be extend with other

Chapter 5: Evaluation and Discussion

71

functionalities/modules, how information are stored (database, text files, etc.) and if there is any
backup management system.

 Interoperability with other tools and language which includes information about
interoperability capacities of the tools. I will review the tool’s interoperability with other ontology
tools (for merge, annotation, storage, inferencing, etc.), as well as translations to and from ontology
language.

 Knowledge representation I will present KR paradigm underlying the knowledge model of
the tool. It is very relevant in order to know what and how knowledge can be modeled in the tool.

 Usability I analyze the existing of graphical editors for the creation of concept taxonomies
and relations, the ability to prune the graphs and the possibility to perform zooms of parts of it. I will
also analyze if the tool allows some kind of collaborative working.

 5.1.1 Experiment 1: Features Comparison

 To evaluate the different engineering tools, I specified a number of relevant criteria in three
dimensions. First there is a general dimension, which refers to aspects of the system that can also
found in other types of programs.

 The second dimension refers to information about the knowledge-developing supportability
and different actions the user can perform. Relevant questions would include: Meaning of interface
is easy to support step of work? The clarity by interface is clear? Interface enable judging facts based
on internal parameter? Is there a good overview and particular view? Does the system check new
data for consistency? The various concepts in this system were well integrated? etc.

 The last dimension is that of interoperability, which is used to evaluate the tool’s support for
constructing by several people at different locations. For examples of questions: Does the system
allow synchronous editing by different users? Provided features are enough for the needs of the
corporation? Is it possible to import information from another tool? Is it possible to export
information in various format? etc.

 I evaluated the system features by comparing with survey of the other knowledge tools,
such as, Protégé 2000 and WebODE. Seven knowledge domain users participated in the study; male
2 persons and female 5 persons; age between 25-36 years with age average 28.57. All participants
had experience in knowledge and/or ontology tools more than 1 year with experience average 2
years and 4 months.

 The comparison consists of two sections: general description survey and comparative
questionnaire. For questionnaire, I complied into a 3-level scale (+, 0, -) subsequently calculating a
weight mean of the results. A plus (+) means positive, e.g. the feature/characteristic is available or
properly implemented. A zero (0) means reasonable, e.g. the feature is available, but it is difficult to
use. A minus (-) is negative, e.g. the feature is not supported or not correctly implemented. “NA”
means not applicable and a questionmark means that I have been unable to find out. The
comparative features are divided into the followed dimensions: general description, knowledge-
developing supportability, and interoperability, as shown questions in Table 5.2. Table 5.3 shows
comparison of proposed system with Protégé 2000 and WebODE.

Chapter 5: Evaluation and Discussion

72

Table 5.2: The statements of comparative questions.

ID Statements of questionnaire
q01 Provided features are enough for work
q02 Meaning of interface is easy to support step of work
q03 The clarity by interface is clear
q04 Interface enable judging facts based on internal parameters
q05 Is there a good overview and particular view
q06 Does the tool check new data for consistency
q07 The various concepts in this system were well integrated
q08 Does the tool allow synchronous editing by different users
q09 Is it possible to import an information from another tool
q10 Is it possible to export an information in various formats
q11 Provided features are enough for the needs of the corporation
q12 Are the changes made by other user easy to recognize

Table 5.3: Features comparison between the proposed system, protégé 2000, and WebODE.
A plus (+) means positive, a zero (0) means reasonable, a minus (-) is negative. “NA” stands for not

applicable and
a question mark means unable to find out.

Criterion Proposed System Protégé 2000 WebODE
General Description
Availability Open source Open source S/W license and

free Web
Software Architecture Client/Server Standalone

Client-Server
Client-Server

Extensibility API/Plugins Plugins API/Plugins
Storage File/Database File/Database Database
Methodological support CommonKADS - Methontology

Knowledge-developing Supportability
q01 Features supportability + + +
q02 Interface-wise guidance + 0 0
q03 Graphical taxonomy + + -
q04 Graphical prunes(view) + + +
q05 Zooming + + -
q06 Consistency checking + + +
q07 Compliance standard 0 + +

Interoperability
q08 Synchronous editing 0 0 -
q09 Import facilities 0 0 +
q10 Export facilities + 0 0
q11 Collaborative working + 0 +
q12 Change recognition - - -

Chapter 5: Evaluation and Discussion

73

5.1.2 Experiment 2: Users Evaluation

 The goal of this experiment was designed to evaluate supportability, usability, and utility of
proposed system. The participants recruited on a volunteer basis from related knowledge domain and
non-domain in King Mongkut’s Institute of Technology Ladkrabang (KMITL) Thailand, for
examples, staffs in office of Quality Assurance and Knowledge Management (QA&KM),
researchers from knowledge laboratory, knowledge management course students, and any persons
who were interest; all total 30 subjects; male 14 persons and female 16 persons; age between 19-37
years with age average of 25.13. All participants had experience in web browser such as, Internet
Explorer®, and ever used application related diagram, Maps, and/or Earth browser. I provided an
experimental environment with a private web server that shared KML/XML of pilot project for
experiment.

 In experimental process, firstly I explained the procedure of experiment, including separated
all participants into three groups based on experience on related knowledge tool, such as, Protégé,
Mindmap, Compendium, etc. The detail of classification as following:

 - Advanced user has experience more than one knowledge tool with average 2.5, total 8
subjects, and age average 28.5.

 - Experienced user has experience with one knowledge tool, total 10 subjects, and age
average 20.70.

 - Non-experienced/Naïve user never has experience with knowledge tool, total 12 subjects,
and age average 26.58.

Table 5.4: Three participant groups and description.

User Group Tool Exp. Number Sex Age
Advanced > 1 8 M 3, F 5 25-36

Experienced = 1 10 M 6, F 4 19-22
Non-experienced / Naïve 0 12 M 5, F 7 22-37

Figure 5.1: Flowchart of experimental process.

 Table 5.3 shows detail of participant groups with knowledge tool experience, number of
subjects, sex, and range of subject age. Fig

 In experimental process, subjects evaluated proposed system with three questionnai
following:

(Q1) Pre-test and post-test of environment
shown in Table 5.5.

(Q2) Basic features of proposed system evaluation; total 10 questions, as shown in Table
(Q3) Collaborative work (G

Table 5.7.
 For questionnaire (Q1), it was divided into three groups (Q1.A, Q1.B, and Q1.C) relies on
group of participant in Table

 All of questionnaires were designed on a scale (1
means “Strongly agree”), subsequently calculating a weight mean of the results. The types of
question consist of: subject perform on provided task questions, survey
ended comment and suggest.
portion of questionnaires (Q1.A) environment
the experiment session on site,

Figure 5.2: Portion of questionnaire (Q1.A): environment

user group (experience >1 tool) on scale (1

Figure 5.3: The experiment:
(right)

Chapter 5: Evaluation and Discussion

74

shows detail of participant groups with knowledge tool experience, number of
subjects, sex, and range of subject age. Figure 5.1 shows the experimental process activities.

In experimental process, subjects evaluated proposed system with three questionnai

test of environment-driven suggestion evaluation; total 10 questions, as

(Q2) Basic features of proposed system evaluation; total 10 questions, as shown in Table
(Q3) Collaborative work (Groupware) supportability evaluation; total 8 questions, as shown in

For questionnaire (Q1), it was divided into three groups (Q1.A, Q1.B, and Q1.C) relies on
group of participant in Table 5.4.

All of questionnaires were designed on a scale (1-5): (“1” means “Strongly disagree” to “5”
means “Strongly agree”), subsequently calculating a weight mean of the results. The types of
question consist of: subject perform on provided task questions, survey attitude questions, and open
ended comment and suggest. I used spreadsheet software for calculating the results. Fig
portion of questionnaires (Q1.A) environment-driven suggestion evaluation for advanced user, and
the experiment session on site, as shown in Figure 5.3.

Portion of questionnaire (Q1.A): environment-driven suggestion evaluation for advanced
user group (experience >1 tool) on scale (1-5): 1 means “Strongly disagree” to 5 means “Strongly

agree”.

The experiment: (left) experiment in computer laboratory room and
(right) brief and classify participants before experiment.

Evaluation and Discussion

shows detail of participant groups with knowledge tool experience, number of
shows the experimental process activities.

In experimental process, subjects evaluated proposed system with three questionnaires as

driven suggestion evaluation; total 10 questions, as

(Q2) Basic features of proposed system evaluation; total 10 questions, as shown in Table 5.6.
roupware) supportability evaluation; total 8 questions, as shown in

For questionnaire (Q1), it was divided into three groups (Q1.A, Q1.B, and Q1.C) relies on

5): (“1” means “Strongly disagree” to “5”
means “Strongly agree”), subsequently calculating a weight mean of the results. The types of

attitude questions, and open-
used spreadsheet software for calculating the results. Figure 5.2 is

driven suggestion evaluation for advanced user, and

driven suggestion evaluation for advanced
5): 1 means “Strongly disagree” to 5 means “Strongly

experiment in computer laboratory room and

Chapter 5: Evaluation and Discussion

75

Table 5.5: The statements of environment-driven suggestion questions (Q1), separated on user
group: (A) = Advanced, (E) = Experienced and (N) = Naïve; the (�) is used and (�) is not used.

ID Statements of questionnaire (Q1)
Used for

A E N
e01 Is there a good overview of the information � � �
e02 Is there a good particle view of the information � � �
e03 I found the interface easy for work � � �
e04 I found the interface enough for work � � �
e05 I found the interface guide step of work � � �
e06 The meaning of information is very easy to understand � � �
e07 The information is easy to apprehend. � � �
e08 The information is enough for work � � �
e09 I think the environment interface encourage my work � � �
e10 I think that I could contribute to this information � � �
e11 I found the various concepts were well integrated � � �

e12
I imagine that most legal experts would understand this information
very quickly � � �

e13 The information enable judging adequacy of conclusion � � �
e14 The information enable judging facts based on internal parameters � � �

Table 5.6: The statements of basic features questions (Q2).

ID Statements of questionnaire (Q2)
f01 The meaning of the interfaces are clear
f02 I am confident I understand the conceptualization of the tool
f03 I found the information very easy to understand
f04 Does the tool check new data for consistency
f05 Evaluate the speed of updating after new data is inserted
f06 Are the changes identifiable clear to user
f07 Is it possible to use multiple inheritance
f08 Is it possible to create exhaustive and/or disjoint decomposition
f09 Evaluate the stability of the tool (crashes, etc.)
f10 Are there example available in the tool

Table 5.7: The statements of collaborative work (Groupware) supportability questions (Q3).

ID Statements of questionnaire (Q3)
g01 Does the tool allow synchronous editing by different users
g02 Provided features are enough for the needs of the corporation
g03 I found the sharing of information cumbersome to understand
g04 Are the change made by other user easy to recognize
g05 Are the ways to lock the information
g06 Is it possible to browse the information if it locked
g07 Is it possible to import an information from another tool
g08 Is it possible to export the information in various format

Chapter 5: Evaluation and Discussion

76

 5.1.3 Experiment 3: Process of Experimental Task

 The goal of experiment was designed to evaluate usability support of proposed system. Ten
university students (are not overlap the evaluation 5.1) from knowledge management class in faculty
of Information Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL),
Thailand participated in this study; male 7 persons and female 3 persons; age between 19-21 years
with age average 19.9.

 In experimental process, I divided participant into two groups by random 5 persons per
group: (1) Training Group and (2) Non-training group. For training group, I brief how to operate on
proposed system and prepared a manual in experiment. On the other hands, non-training group only
observe the web browser screen before experiment 1 minute and repeat the process tasks again after
all first process tasks finish.

 On the process, all participants perform the process of experimental tasks in table 5.8. The
provided tasks consist of three suites: (1) operate from physical to logical view, (2) operate from
logical to functional view, and (3) develop scenario in function view. During operation, participant
has timekeeping after each tasks suite finish. Figure 5.4 shows the experimental process activities.
Table 5.8 shows the process of experimental task.

Figure 5.4: Flowchart of process experimental tasks.

Chapter 5: Evaluation and Discussion

77

Table 5.8: Process of experimental task.

Step Task
0-0 Experiment provided KML/XML shared file and direction sheet.
1-1 Physical view: Create a Knowledge Asset, set name “KA”.
1-2 Set description from direction sheet to “KA”.
1-3 Switch to Logical view: Create a Knowledge Instance: “KI-1”.
1-4 Set link from “KI-1” to “KA”.
2-1 Logical view: Create a Concept: “C” and Knowledge Instance: “KI-2”.
2-2 Set link from “KI-1” and “KI-2” to “C”.
2-3 Switch to Functional view: Create 2 Knowledge Roles: “KR-1” and “KR-2”.
2-4 Set link “KI-1” to “KR-1” and “KI-2” to “KR-2”.
3-1 Functional view: Create Inference: “I-1” and set description from sheet.
3-2 Set link “KR-1” to “I-1” and Transfer function: “TF-1” to “I-1”.
3-3 Create touring scenario: “I-1” to “I-2” to “I-3” and display touring.
0-0 End of experiment.

5.2 Discussion
 Advantages of the proposed system can be observed from features comparison in Table 5.3
Compared with other knowledge tools, our system provides advance usability that supports by
virtual space interface for knowledge development process. The strength point in knowledge-
developing supportability is the interface-wise guidance. Because of the proposed system is designed
based on start up at organization context, so user can develop bottom up approach with their
environment. On the other hand, Protégé 2000 and WebODE start up at conceptual knowledge. For
interoperability, because of this research was developed using virtual geographically environment,
so it can enhance collaborative work.

 From the results of experiment 5.1.2 shown in Table 5.9 and Figure 5.5 suggest that:

 - Average means of post-test are greater than pre-test: participants of all levels repeated the
same task with better understanding by environment-driven interface supportability.

 - Difference value between pre-test and post-test of each group: ∆d(Q1.B) = 0.92 >
∆d(Q1.C) = 0.90 > ∆d(Q1.A) = 0.56: an impact of environment-driven gives more clues to beginner
than advanced user.

Table 5.9: Result of average means and standard deviation in (Q1) pre-test and post-test of
environment-driven suggestion of three user groups: Advanced, Experienced, and Naïve.

User Group
Pre-test Post-test

Mean SD Mean SD
Advanced 2.80 ± 0.25 3.36 ± 0.27

Experienced 2.70 ± 0.33 3.62 ± 0.23
Naïve 2.43 ± 0.22 3.33 ± 0.28

Chapter 5: Evaluation and Discussion

78

Figure 5.5: Comparison of average between pre-test and post-test of environment-driven suggestion
questionnaire (Q1) separated in three participant groups. The participants were differentiated by

experience on knowledge tool: Advanced (tool exp. >1),
Experienced (tool exp. =1), and Naïve (never used).

 To test the earlier stated hypothesis, t-test is performed at 95% confidence level, with
following results in Table 5.10.

Table 5.10: t-test summary in (Q1) pre-test and post-test of environment-driven suggestion of three

user groups:
Advanced, Experienced, and Naïve.

Group
Paired Differences

t Df
Sig.

2-tailed Mean Std. error
Advanced 5.63 0.53 10.57 7 0.000

Experienced 9.20 0.59 15.53 9 0.000
Naïve 9.08 0.19 47.07 11 0.000

 As such, based on the above t-test results, post-test in overall is significantly better than pre-
test in Q1. All participants are better understanding by environment-driven interface supportability,
especially beginner user.

 From the evaluation results in (Q2) and (Q3) shown in Table 5.11 and Figure 5.6, the
average means of (Q2) Basic features and (Q3) Collaborative work (groupware) supportability are
high. This results show that the proposed system satisfies the wider user with various experiences.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Advanced Experienced Naive

Pretest

Posttest

Chapter 5: Evaluation and Discussion

79

Table 5.11: Result of average means and standard deviation in Basic features (Q2) and Groupware
supportability (Q3) questionnaires.

User Group
Basic features (Q2) Groupware (Q3)

Mean SD Mean SD
Advanced 3.55 ± 0.66 3.20 ± 0.63

Experienced 3.56 ± 0.46 3.09 ± 0.57
Non-experienced / Naïve 3.48 ± 0.38 3.02 ± 0.54

Total 3.53 ± 0.50 3.10 ± 0.58

Figure 5.6: Comparison of average in (Q2) basic features and (Q3) Collaborative work (groupware)
supportability questionnaires. The participants were differentiated by experience on knowledge tool:

Advanced (exp. tool >1), Experienced (exp. Tool =1),
and Naïve (never used).

 For the open-ended comments, through analyzing their answer, I not only attempt to
understand their perspective, but also to utilize these important suggestions for future improvements.
I concluded in Table 5.12 as following:

Table 5.12: Responses of experimental participants.

Participants Suggestions
PP01, PP05 An interface is designed for supporting the macroscopic view. It is suitable for

the system that has location and area is significant factor.
PP05, PP11 Some features use altitude value to define the node. It is not familiar for non-

experienced user.
PP08 The proposed system is simple and can be developed rapidly. It is suitable for

using knowledge in ad-hoc situation, such as, in case of disaster, emergency
planning, and basic tool for knowledge management class.

PP12 The proposed system is easy to use, supports wide range of users, and provides
better understanding for knowledge in context.

PP24, PP27 The proposed system could not support in case of knowledge structure more
complicated and have big data.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q2 Q3

Advanced

Experienced

Naïve

Chapter 5: Evaluation and Discussion

80

 The result of experiment 5.3 shown in Table 5.13 presents a total of time cost on three tasks,
compared between training group and non-training both the first-time and the second-time
experiment. This result can be shown that learning does not take too much time, so that can easily
learn in proposed system. The second time usage of non-training group less than the first time usage.
This result can be shown user can learn by themselves without material suggestion and learning with
experience from environment suggestion satisfies same as material guideline.

Table 5.13: Result of average means and standard deviation
in process of experiment task of training user group and non-training user group with spending time

(unit: seconds).

Task
Training Group

Non-training Group
First Second

Mean SD Mean SD Mean SD
Task 1 76.6 ± 8.20 110.2 ± 11.84 74.6 ± 8.93
Task 2 131.2 ± 12.68 174.8 ± 24.41 147.8 ± 17.33
Task 3 176.6 ± 15.79 203.2 ± 28.89 182.2 ± 12.0

 To test the earlier stated hypothesis, t-test is performed at 95% confidence level, with
following results in Table 5.14.

Table 5.14: t-test summary in process of experiment task of training user group and non-training user

group with spending time.
TR = Training group; NTR#1 = Non-training, the first time process;

NTR#2 = Non-training, the second time process.

Task
Compared between (group

#time)
Paired Differences

T
Sig.

2-tailed Mean Std. error

1
TR NTR#1 33.60 4.73 7.11 0.002
TR NTR#2 2.00 5.97 0.34 0.744

2
TR NTR#1 43.60 15.31 2.85 0.046
TR NTR#2 16.60 13.34 1.24 0.281

3
TR NTR#1 26.60 14.54 1.83 0.141
TR NTR#2 5.60 10.46 0.54 0.621

df = 4

 Based on above t-test results, the total of time cost on task 1 and task 2 are significantly
self-learning, by time cost of non-training group on the second time are less than the first time. On
the other hand, task 3 is non-significantly, though it has same direction as task 1 and task 2.

Chapter 5: Evaluation and Discussion

81

5.3 Chapter Conclusion

 From an evaluation responsive research goal in this chapter, the research goals have been
achieved as following:

 [Goal-1]: Aim to develop useful and practical guidelines for knowledge intensive
organization by develop the schema is to get acquainted with the system and to assess the amount of
foreknowledge needed.

 In an experiment 1, feature comparison shown the result of proposed system has enough
features for work with others tools in the current market. Moreover, it was developed based on
knowledge schema compounded from an organization aspect. Additionally in experiment 2, the
results of questions in questionnaire about information need are good in practical view, enough for
work, and easy to understand.

 [Goal-2]: Enables one to spot the opportunities and bottlenecks in how organizations
develop, distribute and apply their knowledge resources, and so gives tools for corporate knowledge
management.

 This goal was achieved by an experiment 2. The results from questionnaire suite had shown
the proposed system provided features for knowledge-developing process rely on a knowledge
systematic schema that developed from organization aspect, and encourage collaborative work and
distribute knowledge for corporate knowledge management.

 [Goal-3]: Provide the methods to obtain a thorough understanding of the structures and
processes used by knowledge workers even where much of their knowledge is tacit leading to a
better integration of information technology in support of knowledge work.

 In an experiment 2 provided the pre-test and post-test to evaluate environment-driven
suggestion supportability. The significant of difference between pre-test and post-test shown user
could understand the structure and process knowledge with their experience to perform the system.
The result of basic features is high shown the proposed system provided enough function for
knowledge developing. Additionally, an average of collaborative work supportability is high, shown
the proposed system has base of knowledge integration fundamental.

 [Goal-4]: Designed concern how difficult is it to learn to work with the system and about
the amount of knowledge required of the underlying knowledge representation language.

 This goal was achieved with evaluate experiment 2 and 3. For an experiment 2, the result
from questionnaire shown the user satisfies provided features and environment-driven supportability
with high level. It provided an interface that easy to work, guide step of work, and encourage user
working. On the other hand, an experiment 3 shown the non-training user group could learn to work
on the proposed system by themselves without material guideline. Additionally, they could learn by
their experience as well as training user group.

Chapter 5: Evaluation and Discussion

82

 [Goal-5]: Build better knowledge system that easier to use, has a well-structured
architecture, and simpler to maintain.

 This goal was investigated in an experiment 1 and experiment 3. In an experiment 1, the
provided features both of knowledge-developing supportability and interoperability are enough for
work and satisfy by compare with other systems. The stability of system architecture was developed
base on well-known stable architecture in web-base application, both of software and system design.
For experiment 3, the result of self-learning in non-training user group shown the system is easier for
work. They could learn with experience without material guideline and not much learning time.

Reference Publication:

Boonprasert Surakratanasakul and Kazuhiko Hamamoto : “An Approach to Design A Virtual Space to Support
Knowledge Methodological Environment”, The Transactions of the Institute of Electronic Engineers of Japan (IEEJ),
Section.C, Vol.134, No.12. (in publishing, 2014.10.11)

Chapter 5: Evaluation and Discussion

83

Bibliography

[1] Riichiro Mizoguchi, and Kouji Kozaki : “Ontology Engineering Environments”, Handbook on Ontologies,
International Handbooks on Information Systems, pp.315-336 (2009).

[2] Duinevel A., Weiden M., Kenepa B., and Benjamis R. : “WonderTools? A Comparative Study of Ontological
Engineering Tools”, Proceeding of KAW99, Banff (1999).

[3] Andriessen JHE : “Working with Groupware: Understanding and Evaluating Collaboration Technology”,
Springer, London (2003).

[4] Kouji Kozaki, Yoshinobu Kitamura, Mitsuru Ikeda, Riichiro Mizoguchi : “Hozo : An Environment for
Building/Using Ontologies Based on a Fundamental Consideration of “Role” and “Relationship””, Proc. of
the 13th International Conference Knowledge Engineering and Knowledge Management (EKAW2002),
pp.213-218 (2002).

[5] Madokoro T., Nakatsuji M., and Okamoto K., Miyazaki S., Harada T. : “Know-who/know-how Navigation
Using Development Project-related Taxonomies”, IEEE International Conference on Semantic Computing,
pp.559-560 (2009).

[6] York Sure, Jurgen Ahqele, and Steffen Staab : “OntoEidit: Guiding Ontology Development by Methodology
and Inferencing”, Proceeding On the Move to Meaningful Internet Systems, ISBN: 3-540-00106-9, pp.1205-
1222 (2002).

[7] N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson, and M.A. Musen : “Creating Semantic Wen
Contents with Protégé-2000”, IEEE Intelligent Systems vol.16, no.2, pp.60-71 (2001).

[8] Gomez-Perez A., Angele J., Fernandez-Lop ez M., Christophides V., Stutt A., Sure Y., et al. : “A Survey on
Ontology Tools. OntoWeb Deliverable 1.3”, Universidad Politecnia de Madrid (2002).

Chapter 6: Conclusions

84

Chapter 6

Conclusions

 Our economic and social life is becoming more knowledge-driven. The need of tool
supports the knowledge is required. The tool should include ready to use and collaborative
supportability that covers wider users with various experiences in web-based information system. In
this study, I present a novel knowledge intensive organization model in virtual environment based on
CommonKADS methodology. The proposed system was developed by using knowledge systematic
schemas covering knowledge management level and knowledge object level. I used the scene-graph
for construction and explained systematic description with KML/XML-based, additionally
demonstrated the proposed approach by prototyping a system developed in GoogleTM Earth APIs
environment.

Figure 6.1: Thesis Traceability.

 Figure 6.1 shown thesis traceability from problems and opportunities to research goals and
evaluated experiments. The line is link between traceable elements for ensure that all elements have
been developed. For the reference number on elements refer from: problems and opportunities [P-1]
– [P-4] in Chapter 1, section 1.3.1, research goals [G-1] – [G-5] in Chapter 1, section 1.3.2, and
Evaluation [Exp-1] – [Exp-3] in Chapter 5. Section 5.1.

[P-1]

[P-2]

[P-3]

[P-4]

[G-1]

[G-2]

[G-3]

[G-4]

[G-5]

[Exp-1]

[Exp-2]

[Exp-3]

Problems and
opportunities

Research
goals

Evaluation

Chapter 6: Conclusions

85

 In this study, I purpose a new knowledge intensive model with three schemas: knowledge
landscape, knowledge atlas, and knowledge systematic schema. (1) Knowledge landscape schema
elaborates knowledge model concept with logical view and functional view. (2) Knowledge atlas
realizes an organization aspect for understanding knowledge environment. (3) Knowledge
systematic schema is an approach concluded all in one schema with three views in one environment,
and using conjugate class for associate knowledge role playing on each selected-view. Finally, I
demonstrated the prototype application that developed with knowledge systematic schema in virtual
environment. The results of experiment show that the proposed system improves knowledge
methodology in various experience user levels for supportability, usability, and utility. Additionally,
its convergent design improves knowledge methodological suggestion for wider user with various
experiences.

 In future, based on this study, the proposed system can be further improved by including
schema that provides more complicated knowledge system and strategies for complex explanation in
virtual space. Furthermore, implementation in portable device may provide flexibility in access and
collaboration at diverse location.

Appendix

86

Appendix

Survey of the Proposed system comparison
with Protégé 2000 and WebODE.

 Proposed system Protégé 2000 WebODE
Development tool feature
- development process � � �
- methodological support � - �
- knowledge concept support � � �
- knowledge context support � - -
- architectural stability � � -
- collaborative working � - �
- step-wise guidance � - -
- interface clarity � � -
- interface consistency � � �
- Help system - - �
Merge and integration
- compliance with standard - - �
- concept definition � � -
- graph structure � � -
- instance of concept � � -
- language conformity - - �
- reusable � - -
- non-local installation � - �
Evaluation
- theory-awareness - � �
- concept definition � � �
- consistency checking � � �
- classification � - -
Annotation
- extensibility � � �
- change recognition - - -
- libraries - � �
- description � � �
Storage and querying
- import facilities � - �
- export facilities � - -
- backup management - - �

Appendix

87

Experiments Overview

A: Feature Comparison

Subject list

Person
no.

First name Last name
No. of tool
experience

Exp. time
(months)

Sex Age

1 ณัชชา สขุถาวร 2 18 F 25

2 ณัฐกติติ� จังพานชิ 2 22 M 26

3 วศนิ ี ปจุฉาการ 2 19 F 26

4 วชิชวุรรณ สขุไชยศร ี 3 25 F 28

5 วชิญานนั์นท ์ จริบวรวณชิย ์ 2 23 F 27

6 ศภุานุช มณีเนตร 3 28 F 32

7 ศภุกติติ� สทุธริอด 4 36 M 36

Evaluation

Features
Comparison

Questionnaire
Response

Process of
Experimental

Task

Environment
Suggestion

Features

Collaboration

Non-training

Training

Pretest

Posttest

Prote'ge' 2000

WebODE

Appendix

88

Feature comparison form (translate to English version)

Appendix

89

B: Questionnaire Response

Subject list of advanced user group

Person
no.

First name Last name Sex Age
No. of tool
experience

1 วศนิ ี ปจุฉาการ F 32 3

2 วชิชวุรรณ สขุไชยศร ี F 27 2

3 สัญชยั ภักตรผ์อ่ง M 28 2

4 ศภุกติติ� สทุธริอด M 36 4

5 วชิญานนั์นท ์ จริบวรวณชิย ์ F 28 3

6 ศภุานุช มณีเนตร F 26 2

7 ณัฐกติติ� จังพานชิ M 26 2

8 ณัชชา สขุถาวร F 25 2

 M 3, F 5 28.5 2.5
 Age average: 25-36 years

Subject list of experienced user group

Person
no.

First name Last name Sex Age

1 พสิษิฐ ์ เรอืงวัฒนกลุ M 21

2 ฟ้าวลัย ตันศยานนท ์ F 22

3 ภัทร ์ พลูศริ ิ F 21

4 กฤตยชญ ์ คงคตธิรรม M 20

5 กฤษกรช ์ เอกวรรณัง M 22

6 ฉัตรพร ยงทะเล M 21

7 ปทติตา กลิ0นหอม F 20

8 ปรพชิญ ์ เชื2อสขุ M 19

9 ปรญิญา สมีาธรรมรัตน ์ M 20

10 ฐติรัิตน ์ ศักดิ�พชิยัมงคล F 21

 M 6, F 4 20.7
 Age average: 19-22 years, Tool experience = 1

Appendix

90

Subject list of Naïve user group

Person
no.

First name Last name Sex Age

1 เชาวนี จันทรท์อง F 37

2 ญานกิา อนิทรขํ์า F 26

3 ณพวทิย ์ เตชเรอืงรัศม ี M 31

4 ชญานศิ ตันธรีะพงศ ์ F 25

5 ชนกนันท ์ เหลา่งาม F 23

6 ยทุธพชิยั ชาญนติย ์ M 28

7 ยพุเรศ คงพึ0ง F 24

8 ณภัทร ฉัตรชมชื0น M 28

9 สทิธานต ์ รัตนเหลี0ยม M 24

10 บณุยนุช มังกรแกว้ F 22

11 บษุบา ตันตสิขุารมย ์ F 24

12 ปฏพิล สทิธริาพร M 27

 M 5, F 7 26.583333
Age average: 22-37 years, Tool experience = 0

Result of pretest and posttest of environment-driven suggestion (Q1)

Person
no.

Advanced
user group

Experienced
user group

Naïve
user group

Pretest Posttest Pretest Posttest Pretest Posttest
1 3.125 3.625 2.9 4.1 2.666667 3.666667
2 2.75 3.125 2.7 3.8 2.5 3.583333
3 2.625 3.5 2.2 3.2 2.666667 3.333333
4 2.875 3.375 2.7 3.7 2.25 3.083333
5 2.5 3.5 3.3 3.6 2.333333 3.5
6 2.75 3.125 2.4 3.5 2.583333 3.416667
7 2.375 3.25 2.9 3.6 2.333333 3.083333
8 3.125 3.875 2.5 3.6 2.666667 3.416667
9 2.875 3.25 2.4 3.5 2.166667 3.5
10 3 3 3 3.6 2.083333 2.75

Mean 2.8 3.3625 2.7 3.62 2.425 3.333333
SD 0.251385 0.266471 0.333333 0.229976 0.220304 0.280542

Paired samples statistics (from SPSS)

 Mean N Std. Deviation Std. Error Mean

Pair 1
Pre-test_advanced 28.0000 8 7.30949 2.58429
Post-test_advanced 33.6250 8 7.17013 2.53502

Pair 2
Pre-test_experienced 27.0000 10 8.19214 2.59058
Post-test_experienced 36.2000 10 7.68548 2.43036

Pair 3
Pre-test_naive 24.2500 12 8.99621 2.59698
Post-test_naive 33.3333 12 8.86601 2.55940

Appendix

91

Paired samples correlations (from SPSS)

Paired samples test (from SPSS)

Result of basic features questionnaire (Q2)

Person
no.

Advanced
user group

Experienced
user group

Naïve
user group

1 4.25 3.7 3.917
2 4.375 4 3.583
3 4 3.9 3.75
4 3.875 3.7 3.667
5 4 3.8 3.5
6 3.25 3.7 3.333
7 3.25 3.5 3.417
8 3 3 3.25
9 3.25 3.8 3.833
10 2.25 2.5 2.583

Mean 3.55 3.56 3.483
SD 0.662 0.462 0.382

 N Correlation Sig.
Pair 1 pre-test & post-test advanced 8 .979 .000
Pair 2 pre-test & post-test experienced 10 .974 .000
Pair 3 pre-test & post-test naïve 12 .997 .000

Paired Differences

t
df
 Sig. (2-tailed)

Mean
Std.

Deviation
Std. Error

Mean

95% Confidence Interval
of the Difference

Lower Upper

Pair 1 pre-test & post-test
advanced -5.6250 1.50594 .53243 -6.8840 -4.3660 -10.565 7 .000

Pair 2
pre-test & post-test

experienced -9.2000 1.87380 .59255 -10.5404 -7.8596 -15.526 9 .000

Pair 3 pre-test & post-test
naïve

-9.0833 .66856 .19300 -9.5081 -8.6586 -47.065 11 .000

Appendix

92

Result of collaborative work (Groupware) supportability questionnaire (Q3)

Person
no.

Advanced
user group

Experienced
user group

Naïve
user group

1 3.25 3.3 2.5
2 3.875 3.8 3.083
3 3.75 3.5 3.5
4 3.125 2.5 2.833
5 2.25 2.5 2.583
6 2.375 2.3 2.333
7 3.125 3.3 3.583
8 3.875 3.5 3.75

Mean 3.203 3.088 3.021
SD 0.634 0.567 0.541

Appendix

98

Sample of user evaluation questionnaire for advanced user group (Q1.A) – English translate

Appendix

93

Sample of user evaluation questionnaire for advanced user group (Q1.A) – Thai version

Appendix

94

Sample of user evaluation questionnaire for experienced user group (Q1.B) – English translate

Appendix

95

Sample of user evaluation questionnaire for experienced user group (Q1.B) – Thai version

Appendix

96

Sample of user evaluation questionnaire for naïve user group (Q1.C) – English translate

Appendix

97

Sample of user evaluation questionnaire for naïve user group (Q1.C) – Thai version

Appendix

98

C: Process of Experimental Tasks

Training user group

No. First name Last name Sex Age

1 กนกวรรณ มตุตามระ F 20

2 กลทป์ี พยหุวรรธนะ M 20

3 กษิดศิ ปิยธรรมวงศ ์ M 19

4 กันตฤ์ทัย ประเสรฐิพันธุ ์ F 20

5 กันต ์ ภูโ่ชตแิสงสวัสดิ� M 20

 Male 3: Female 2, age average: 19.8 years

Non-training user group

No. First name Last name Sex Age

1 กติตกิร ประเสรฐิศักดิ� M 21

2 กติศัิกดิ� แสนโท M 19

3 กลุศติา ดอนฉมิพล ี F 20

4 เขมทัต เลง่ไพบลูย ์ M 20

5 คณติ โพธิ�อาศัย M 20

 Male 4: Female 1, age average: 20 years

Process of experimental task of training user group with spending time (unit: seconds).

Person No. Task 1 Task 2 Task 3
1 65 123 164
2 78 115 158
3 83 134 189
4 72 136 177
5 85 148 195

Average 76.6 131.2 176.6
SD 8.203658 12.67675 15.78924

Appendix

99

Process of experimental task of non-training user group with spending time (unit: seconds).

Person
No.

Task 1 Task 2 Task 3
Time #1 Time #2 Time #1 Time #2 Time #1 Time #2

1 102 85 167 158 210 185
2 98 64 210 172 196 196
3 108 82 188 138 249 188
4 115 68 148 143 188 164
5 128 74 161 128 173 178

Average 110.2 74.6 174.8 147.8 203.2 182.2
SD 11.84061 8.933085 24.40697 17.32628 28.89118 12.0499

* pair 4-9 only

Paired Samples Statistics

22.4000 10 2.01108 .63596
26.9000 10 2.13177 .67412
27.0000 10 3.33333 1.05409
36.2000 10 2.29976 .72725
29.1000 10 2.64365 .83600
40.0000 10 3.36650 1.06458
76.6000 5 8.20366 3.66879

110.2000 5 11.84061 5.29528
76.6000 5 8.20366 3.66879
74.6000 5 8.93308 3.99500

131.2000 5 12.67675 5.66922
174.8000 5 24.40697 10.91513
131.2000 5 12.67675 5.66922
147.8000 5 17.32628 7.74855
176.6000 5 15.78924 7.06116
203.2000 5 28.89118 12.92053
176.6000 5 15.78924 7.06116
182.2000 5 12.04990 5.38888

PE_G1
PO_G1

Pair 1

PE_G2
PO_G2

Pair 2

PE_G3
PO_G3

Pair 3

TASK1_TI
TASK1_#1

Pair 4

TASK1_TI
TASK1_#2

Pair 5

TASK2_TI
TASK2_#1

Pair 6

TASK2_TI
TASK2_#2

Pair 7

TASK3_TI
TASK3_#1

Pair 8

TASK3_TI
TASK3_#2

Pair 9

Mean N Std. Deviation
Std. Error

Mean

Paired Samples Correlations

10 .295 .407
10 .522 .122
10 .612 .060
5 .493 .399
5 -.214 .729
5 -.670 .215
5 -.978 .004
5 .030 .962
5 -.400 .504

PE_G1 & PO_G1Pair 1
PE_G2 & PO_G2Pair 2
PE_G3 & PO_G3Pair 3
TASK1_TI & TASK1_#1Pair 4
TASK1_TI & TASK1_#2Pair 5
TASK2_TI & TASK2_#1Pair 6
TASK2_TI & TASK2_#2Pair 7
TASK3_TI & TASK3_#1Pair 8
TASK3_TI & TASK3_#2Pair 9

N Correlation Sig.

Appendix

100

Paired Samples Test

-4.5000 2.46080 .77817 -6.2604 -2.7396 -5.783 9 .000
-9.2000 2.89828 .91652 -11.2733 -7.1267 -10.038 9 .000

-10.9000 2.72641 .86217 -12.8504 -8.9496 -12.643 9 .000
-33.6000 10.57355 4.72864 -46.7288 -20.4712 -7.106 4 .002

2.0000 13.36039 5.97495 -14.5891 18.5891 .335 4 .755
-43.6000 34.22426 15.30555 -86.0950 -1.1050 -2.849 4 .046
-16.6000 29.83790 13.34391 -53.6486 20.4486 -1.244 4 .281
-26.6000 32.50846 14.53823 -66.9646 13.7646 -1.830 4 .141
-5.6000 23.38376 10.45753 -34.6348 23.4348 -.535 4 .621

PE_G1 - PO_G1Pair 1
PE_G2 - PO_G2Pair 2
PE_G3 - PO_G3Pair 3
TASK1_TI - TASK1_#1Pair 4
TASK1_TI - TASK1_#2Pair 5
TASK2_TI - TASK2_#1Pair 6
TASK2_TI - TASK2_#2Pair 7
TASK3_TI - TASK3_#1Pair 8
TASK3_TI - TASK3_#2Pair 9

Mean Std. Deviation
Std. Error

Mean Lower Upper

95% Confidence
Interval of the

Difference

Paired Differences

t df Sig. (2-tailed)

© 2011 IEEE. Reprinted, with permission, from Boonprasert,S;

Hamamoto,K.; CommonKADS’s Knowledge Model using UML Architectural

View and Extension Mechanism, Advanced Information Management and

Service (ICIPM), 2011 7th International Conference on, Nov. 2011.

© 2014 IEEE. Reprinted, with permission, from Boonprasert,S;

Hamamoto,K.; Conjugate of Knowledge Items Between Abstract and

Organization Knowledge Models, Digital Information and Communication

Technology and it’s Applications (DICTAP), 2014 4th International

Conference on, May. 2014.

