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Chapter 1

Introduction

Poincaré first introduced the notion of the cut locus in [Po]. He investigated the struc-

ture of the cut locus of a point on a complete, simply connected and real analytic

2-dimensional Riemannian manifold. Thirty years after his research, Myers and White-

head investigated the detail structures of the cut locus for 2-dimensional Riemannian

manifolds. Myers proved that the cut locus of a point on an analytic 2-dimensional

compact Riemannian manifold is a finite graph. Whitehead proved that the distance

function to the cut locus of a point is continuous for any dimensional complete Rieman-

nian manifolds. In 1994, Hebda [He] proved that the cut locus of a point in a complete

2-dimensional Riemannian manifold admits a local tree structure. His result was gen-

eralized by Shiohama and Tanaka [ShT] to the cut locus of a compact subset in an

Alexandrov surface.

It is very difficult to determine the structure of the cut locus of a Riemannian manifold.

Since Elerath succeeded in revealing the structure of the cut locus for paraboloids of

revolution and 2-sheeted hyperboloids of revolution in 1980, the structure for quadric

surfaces of revolution have been studied. After his work, the structure of the cut locus

has been determined for quadric surfaces and the standard tori in Euclidean space by

Itoh, Kiyohara, Sinclair and Tanaka.

In the present thesis, the structure of the cut locus is determined for a class of cylinders

of revolution.
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Chapter 2

Riemannian geometry

The curvature is one of concepts in Differential geometry. There are so many kinds

of curvatures such as principal curvatures, mean curvatures, sectional curvatures, and

Gaussian curvatures, etc. In this work, we are interesting in the Gaussian curvature. In

this chapter we reach the definition of a Riemannian manifold by introducing classical

surfaces of revolution first.

2.1 Surfaces of revolution

A surface of revolution S is a surface in Euclidean space obtained by rotating a plane

curve in E3 where the rotation is about a line that does not intersect the curve and is

contained in the plane containing the curve. The line is called the axis of rotation and

the curve is called the generating curve or the 0-meridian. Without loss of generality,

we may assume that the curve is a unit speed xz-plane curve and the axis of revolution

is the z-axis.

Let c(t) = (m(t), 0, z(t)), where m(t) > 0, be a unit speed xz-plane curve without self

intersection. Thus ṁ(t) + ż(t) = 1. Then the surface of revolution S which is generated

by this plane curve in parametric form is

x(t, θ) = (m(t) cos θ,m(t) sin θ, z(t)), t ∈ R2, 0 6 θ < 2π.

The curves on the surface of revolution obtained by holding θ constant and varying t

are called meridians or longitudes, and the curves on the surface obtained by holding t

constant and varying θ are called circle of latitudes or parallel. The meridian opposite

0-meridian is called π-meridian (Figure 2.1).
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Riemannian geometry 3

Figure 2.1: Surface of revolution

The meridian in parametric form is x(t, θ0) = (m(t) cos θ0,m(t) sin θ0, z(t)), where θ0 is

a constant. The parallel in parametric form is x(t0, θ) = (m(t0) cos θ,m(t0) sin θ, z(t0)),

where t0 is a constant.

Examples of a surface of revolution

1. A sphere of radius R is obtained by rotating a semicircle of radius R centered at

the origin. A typical parametric form is given by

x(t, θ) = (R cos t cos θ,R cos t sin θ,R sin t).

2. A right circular cylinder is obtained by rotating a straight line parallel to the z-axis

with constant distance a from the z-axis has a parametric in the form

x(t, θ) = (a cos θ, a sin θ, t).

A surface S is called a complete if every Cauchy sequence of points of S converges on S.

It is well known that Euclidean space E3 is complete, that is, every Cauchy sequence

of points of E3 converges to a point. Moreover, any closed subset S of E3 is complete,

that is, any Cauchy sequence of points in S is also a Cauchy sequence of any point in

E3, which has a limit point p. Since S is closed, p ∈ S and hence S is complete.

One of the most widely studied geometrical objects is a Riemannian manifold. A surface

in E3 is a 2-dimensional Riemannian manifold. The plane is represented by R2, while

R1 denotes a real line.
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The unit circle in R2 is denoted by S1. We denote a unit circle {x ∈ R2|||x|| = 1} by

S1, and thus S1 ×R1 ⊂ R2 ×R1 = R3 is a right circular cylinder.

A subset S ⊂ R3 is said to be connected if it cannot be expressed as a union of two

non-empty disjoint subsets each of which is open in S.

2.2 Tangent planes

A subset S ⊂ R3 is called a regular surface if, for each p ∈ S, there exists a neighborhood

V in R3 and a map x : U → V ∩ S of an open set U ⊂ R2 onto V ∩ S ⊂ R3 such that

1. x is differentiable. This means that if we write

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U

the functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives of all order

in U .

2. x is a homeomorphism. Since x is continuous by condition 1, x has an inverse

x−1 : V ∩S → U which is continuous; that is x−1 is the restriction of a continuous

map f : W ⊂ R3 → R2 defined on an open set W containing V ∩ S.

3. For each q ∈ U the differential dxq : R2 → R3 is injective.

The mapping x is called a parametrization or a system of local coordinates in a neigh-

borhood of p. The neighborhood V ∩ S of p in S is called a coordinate neighborhood.

Let M ⊂ R3 be a regular surface and let p ∈ M be a point. A vector v in R3 is a

tangent vector to M at p if there exists a curve c : (−ε, ε)→ M for some number ε > 0

such that c(0) = p and c′(0) = v. The collection of all tangent vectors to M at p is

denoted by TpM , and is called the tangent plane to M at p (Figure 2.2). Therefore,

a regular surface has the inner product on each tangent plane induced from Euclidean

inner product. Higher dimensional regular surfaces are defined similarly. Such higher

dimensional regular surfaces are called differentiable manifolds.

A Riemannian manifold is a differentiable manifold with a given Riemannian metric,

a correspondence which associates to each point p of M an inner product 〈 , 〉p on

the tangent space TpM . The regular surfaces are typical examples of a 2-dimensional

Riemannian manifold.
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Figure 2.2: Tangent plane TpM

2.3 Geodesics

A curve γ on a Riemannian manifold is called a geodesic if γ is locally minimizing. A

geodesic is characterized by a system of ordinary differential equations. If M is a regular

surface in E3, a curve γ on M is a geodesic if and only if γ′′(s) is orthogonal to the

tangent space Tγ(s)M for all s.

Examples for geodesics of some regular surfaces in E3

1. Geodesics of a plane

Let P = {x ∈ R3| 〈x, a〉 = b} be a plane orthogonal to the unit vector a ∈ E3. If

γ : [a, b] → P is an arbitrary differentiable curve on P , we have 〈γ(t), a〉 = b for

each t ∈ [a, b]. Thus 〈γ′′(t), a〉 = 0, that is,

γ′′(t) ∈ Tγ(t)P

holds for any t ∈ [a, b], where Tγ(t)P denotes the tangent plane at γ(t). Hence γ is

a geodesic if and only if γ′′ = 0, that is, γ(t) = ct+ d where c, d ∈ E3. Therefore,

we conclude that the geodesics of a plane are the straight lines parameterized

proportionally to the arclength in the plane.

2. Geodesics of a sphere

Let γ be a differentiable curve parameterized by arclength on the sphere S2(r)

centered at a point a ∈ R3 with radius r > 0. We have |γ(t)−a|2 = r2 for all t. By

differentiating this expression two times, we obtain 〈γ(t)− a, γ′′(t)〉 = −1. Since

the tangent plane Tγ(t)S
2(r) is the orthogonal complement of the radius vector

γ(t)− a, we may have

[γ′′(t)]T = γ′′(t) +
1

r2
(γ(t)− a),
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where [γ′′(t)]T denotes the orthogonal projection of γ′′(t) to the tangent plane

Tγ(t)M . Thus, γ is a geodesic if and only if γ satisfies the differential equation

r2γ′′(t) + γ(t)− a = 0

with the conditions |γ(t)− a|2 = r2 and |γ′(t)|2 = 1. Here we have

γ(t) = a+ p cos
t

r
+ rv sin

t

r
,

where p = γ(0) and v = γ′(0). Therefore, we conclude that the geodesics of a

sphere are the great circles.

3. Geodesics of a flat cylinder

Suppose that γ : R → C be a unit speed geodesic on C defined by γ(t) :=

(x(t), y(t), z(t)) with γ(0) = (1, 0, 0). Since γ′(t) is a unit tangent vector, we

obtain

x′(t)2 + y′(t)2 + z′(t)2 = 1. (2.1)

Since the tangent plane of C at γ(0) is parallel to the yz-plane, we may assume

that

γ′(0) = (0, a, b) (2.2)

for some a, b ∈ R. In particular, we have

y′(0) = a and z′(0) = b. (2.3)

Since γ′′(t) is orthogonal to the tangent plane to C, γ′′(t) is parallel to (x(t), y(t), 0)

for each t. Therefore there exists a function k(t) such that

x′′(t) = k(t)x(t) and y′′(t) = k(t)y(t). (2.4)

Since γ(t) is a curve on C, for each t

x(t)2 + y(t)2 = 1. (2.5)

Since z(0) = 0 and z′(0) = b, we get

z(t) = bt. (2.6)

By differentiating the equation (2.5) twice, we obtain

xx′′ + yy′′ + (x′)2 + (y′)2 = 0. (2.7)
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By combining (2.1), (2.3), (2.4), and (2.5), we have

k(t) = b2 − 1 = −a2.

From (2.4), we obtain differential equations

x′′(t) = −a2x(t) and y′′(t) = −a2y(t)

with initial conditions x(0) = 1, x′(0) = 0 and y(0) = 0, y′(0) = a, respectively.

The solutions are well known, i.e., x(t) = cos at and y(t) = sin at and hence

γ(t) = (cos at, sin at, bt)

with a2 + b2 = 1. Therefore, we conclude that the geodesics of a right circular

cylinder are circular helices.

2.4 Hopf-Rinow theorem

The following theorem, which is called the Hopf-Rinow theorem, is fundamental in Rie-

mannian geometry.

Theorem 2.1. Let M be a Riemannian manifold and let p ∈ M . The following asser-

tions are equivalent:

(a) expp is defined on all of TpM .

(b) The closed and bounded sets of M are compact.

(c) M is complete as a metric space.

(d) M is geodesically complete.

(e) There exists a sequence of compact subsets Kn ⊂M,Kn ⊂ Kn+1 and
⋃
nKn =

M , such that if qn /∈ Kn then d(p, qn)→∞.

In addition, any of statements above implies that

(f) For any q ∈M there exists a geodesic γ joining p to q with l(γ) = d(p, q).

The Hopf-Rinow theorem says that every geodesic on a complete connected manifold M

can be extended indefinitely to both directions. For each pair p, q ∈M , p and q can be

joined by a minimal geodesic segment.

The geodesics on Euclidean plane are straight lines, and any two points p and q can be

joined by a unique line segment.
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2.5 Exponential map

Let p be a point on a complete connected Riemannian manifold M . The exponential

map expp : TpM →M , where TpM is tangent plane of M at p, is defined by

expp(v) = γv(1)

for all v in TpM , where γv : [0,∞]→M denotes the unit speed geodesic on M satisfying

γv(0) = p, γ′v(0) = v.

Figure 2.3: Exponential map

2.6 Curvature tensors

Let M denote a Riemannian manifold, and ∇ the Riemannian connection induced from

its Riemannian metric. Then the curvature tensor R of M is defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for vector fields X,Y, and Z on M .

Let σ denote a plane of a tangent space TpM of p spanned by X and Y . Then the

sectional curvature K(σ) of σ is defined by

K(σ) :=
〈R(X,Y )Y,X〉

〈X,X〉 〈Y, Y 〉 − 〈X,Y 〉2
.

For a 2-dimensional Riemannian manifold, the sectional curvature is called the Gaussian

curvature.
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2.7 Jacobi fields

We consider a family of geodesics γτ : [0, 1]→M, τ ∈ (−ε, ε). Put f(t, τ) := expp(tv(τ)),

where v(τ) = γ′τ (0). We get a vector field J(t) := ∂f
∂τ (t, 0) along the geodesic γ0. Since

γτ is a geodesic for each τ ∈ (−ε, ε), we get D
dt
∂f
∂t = 0, where D

dt denotes the covariant

derivative along γτ for each fixed τ . By D
dτ , we denote the covariant derivative along the

τ -curve of f . Thus,

0 =
D

∂τ

(
D

∂t

∂f

∂t

)
=
D

∂t

D

∂τ

∂f

∂t
−R

(
∂f

∂τ
,
∂f

∂t

)
∂f

∂t
=
D

∂t

D

∂t

∂f

∂τ
+R

(
∂f

∂t
,
∂f

∂τ

)
∂f

∂t
.

Since we put ∂f
∂τ (t, 0) = J(t),

D2J

dt2
+R(γ′(t), J(t))γ′(t) = 0,

for all t ∈ [0, 1], where R denotes the curvature tensor of M . Suppose that M is

a 2-dimensional Riemannian manifold. Let w0 denote a unit tangent vector at γ(0)

orthogonal to γ′(0), where γ := γ0. Let w(t) denote the parallel vector filed along γ

with w(0) = w0. Then we obtain an orthogonal basis w(t), γ′(t) for Tγ(t)M for each

t ∈ [0, 1].

Suppose that the Jacobi field J(t) is orthogonal to γ′(t) for each t ∈ [0, 1]. Then we have

J(t) = 〈J(t), w(t)〉w(t).

If we put 〈J(t), w(t)〉 =: f(t), we get a differential equation

f ′′(t) +G(γ(t))f(t) = 0,

where G(γ(t)) denotes the Gaussian curvature at γ(t).

2.8 Conjugate points and conjugate loci

Let γ|[0,t1] be a geodesic on a complete connected Riemannian manifold M . The point

γ(t0), t0 ∈ (0, t1] is said to be conjugate to γ(0) along γ, if there exists a Jacobi field

J along γ, not identically zero, with J(0) = 0 = J(t0). The conjugate locus of p is

defined as the set of the conjugate points along all geodesics emanating from p. If γ(t0)

is conjugate to γ(0), then γ(0) is conjugate to γ(t0).
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For example, let γ be a geodesic starting at any point p of a 2-sphere S with radius r.

Then the Jacobi equation is
d2f

ds2
+

1

r2
f = 0,

where s is the arc length parameter of γ. We know that

f(s) = a sin
s

r
+ b cos

s

r
,

where a, b are arbitrary constants. Suppose the initial conditions are f(0) = 0, f ′(0) = 1.

Thus we obtain

f(s) =
1

r
sin

s

r
.

Since f(s) = 0 if s
r = nπ or s = nπr, where n = 1, 2, 3, . . .. The first conjugate point of

γ(0) = p on γ is the point f(πr) = 0, i.e., the antipodal point −p of p.

2.9 Cut points and cut loci

Let γ|[0,t1] be a unit speed minimal geodesic emanating from a point p = γ(0) of a

complete connected manifold M . If all geodesic extensions γ|[0,t2] of γ are not minimal

anymore, the endpoint γ(t1) is called a cut point of p along γ.

The cut locus of p is the set of all cut points along all minimal geodesics emanating from

p and we denote the set by Cp.

2.10 The Sturm and Rauch comparison theorem

The following theorem is very useful to determine the structure of the cut locus.

Theorem 2.2 (Sturm comparison theorem). Let x1(t) and x2(t) be solutions to equa-

tions

x′′1(t) + p1(t)x1(t) = 0 (2.8)

and

x′′2(t) + p2(t)x2(t) = 0 (2.9)

with the initial conditions x1(0) = x2(0) = 0 and x′1(0) = x′2(0) = 1, where p1(t) and

p2(t) are continuous on [0, T ]. Suppose p1(t) 6 p2(t) on [0, T ] and x2(t) > 0 on (0, T ].

Then x1(t) > x2(t) on [0, T ].
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Proof. Mutiplying (2.8) by x2(t) and (2.9) by x1(t), and subtracting one from the other,

we get

x1(t)x
′′
2(t)− x2(t)x′′1(t) + (p2(t)− p1(t))x1(t)x2(t) = 0. (2.10)

Assume that t1 the first zeros of x1(t) with t1 < T . Then x′1(t1) < 0 and x2(t1) > 0.

By using the technique of integrate by parts on (2.10) over [0, t1], thus

0 =

∫ t

0

(
x1(t)x

′′
2(t)− x2(t)x′′1(t) + (p2(t)− p1(t))x1(t)x2(t)

)
dt

= (x1(t)x
′
2(t)− x2(t)x′1(t))

∣∣∣t1
0

+

∫ t1

0
((p2(t)− p1(t))x1(t)x2(t)) dt

= −x2(t1)x′1(t1) +

∫ t1

0
((p2(t)− p1(t))x1(t)x2(t)) dt

But x′1(t1) < 0, x2(t1) > 0, p1(t) 6 p2(t) and x1(t), x2(t) > 0 on (0, t1) imply that

− x2(t1)x′1(t1) +

∫ t1

0
((p2(t)− p1(t))x1(t)x2(t)) dt > 0 (2.11)

which is a contradiction. Thus x1(t) > 0 on [0, T ]. Here we get from above that

x1(t)x
′
2(t)− x2(t)x′1(t) 6 0,

that is,
x′1(t)

x1(t)
>
x′2(t)

x2(t)
.

Therefore, for any small ε > 0 and any t ∈ [ε, T ], which implies

x1(t)

x2(t)
>
x1(ε)

x2(ε)
.

Then, by applying the L’Hôpital rule, we get

1 = lim
ε→0

x′1(ε)

x′2(ε)
= lim

ε→0

x1(ε)

x2(ε)
6 lim

ε→0

x1(t)

x2(t)
=
x1(t)

x2(t)
.

Thus x1(t) > x2(t) on [0, T ].

The following is a generalization of the Sturm comparison theorem.

Theorem 2.3 (Rauch comparison theorem). Let γ : [0, a] → Mn and γ̃ : [0, a] →
M̃n+k, k > 0, be geodesics with the same velocity (i.e., |γ′(t)| = |γ̃′(t)|), and let J and J̃

be Jacobi fields along γ and γ̃, respectively, such that

J(0) = J̃(0) = 0,
〈
J ′(0), γ′(0)

〉
=
〈
J̃ ′(0), γ̃′(0)

〉
, |J ′(0)| = |J̃ ′(0)|.
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Assume that γ̃ does not have conjugate points on (0, a] and that, for all t and all x ∈
Tγ(t)M, x̃ ∈ Tγ̃(t)M̃ , we have

K̃(x̃, γ̃′(t)) > K(x, γ′(t)),

where K(x, y) denotes the sectional curvature with respect to the plane generated by x

and y. Then

|J̃ | 6 |J |.

In addition, if for some t0 ∈ (0, a], we have |J̃(t0)| = |J(t0)|, then K̃(J̃(t), γ̃′(t)) =

K(J(t), γ′(t)), for all t ∈ [0, t0].



Chapter 3

The case where the Gaussian

curvature is decreasing on the

upper half meridian

It is a very difficult problem to determine the structure of the cut locus of a Riemannian

manifold and it was difficult even for a quadric surface.

Since Elerath ([E]) succeeded in specifying the structure of the cut locus for paraboloids

of revolution and (2-sheeted) hyperboloids of revolution, the structures of the cut locus

for quadric surfaces of revolution have been studied. After his work, Sinclair and Tanaka

([ST]) determined the structure of the cut locus for a class of surfaces of revolution

containing the ellipsoids. Notice that the structures of the cut locus for triaxial ellipsoids

with unequal axes were also determined by Itoh and Kiyohara ([IK]).

On the structure of the cut locus for a cylinder of revolution (R1 × S1, dt2 +m(t)2dθ2),

Tsuji ([Ts]) first determined the cut locus of a point on the equator t = 0 if the cylinder

is symmetric with respect to the equator and the Gaussian curvature is decreasing on

the upper half meridian t > 0, θ = 0. In 2003, Tamura ([Ta]) determined the structure

of the cut locus by adding an assumption m′ 6= 0 except t = 0. In this chapter, we

determine the structure of the cut locus without this assumption.

Here, let us review the notion of a cut point and the cut locus of a point. Let γ : [0, a]→
M be a minimal geodesic segment in a complete Riemannian manifold M. The end point

of γ(a) is called a cut point of γ(0) along γ, if any geodesic extension of γ is not minimal

anymore. The cut locus Cp of a point p of M is by definition the set of the cut points

along all minimal geodesic segments emanating from p.

In this chapter we will prove the following theorem.

13
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Main Theorem. Let (M,ds2) be a complete Riemannian manifold R1 × S1 with a

warped product metric ds2 = dt2 +m(t)2dθ2 of the real line (R1, dt2) and the unit circle

(S1, dθ2). Suppose that the warping function m is a positive-valued even function and

the Gaussian curvature of M is decreasing along the half meridian t−1[0,∞) ∩ θ−1(0).

If the Gaussian curvature of M is positive on t = 0, then the structure of the cut locus

Cq of a point q ∈ θ−1(0) in M is given as follows:

1. The cut locus Cq is the union of a subarc of the parallel t = −t(q) opposite to

q and the meridian opposite to q if |t(q)| < t0 := sup{t > 0 | m′(t) < 0} and

ϕ(m(t(q))) < π. More precisely,

Cq = θ−1(π) ∪
(
t−1(−t(q)) ∩ θ−1[ϕ(m(t(q))), 2π − ϕ(m(t(q)))]

)
.

2. The cut locus Cq is the meridian θ−1(π) opposite to q if ϕ(m(t(q))) ≥ π or if

|t(q)| ≥ t0.

Here, the function ϕ(ν) on (inf m,m(0)) is defined as

ϕ(ν) := 2

∫ 0

−ξ(ν)

ν

m
√
m2 − ν2

dt = 2

∫ ξ(ν)

0

ν

m
√
m2 − ν2

dt,

where ξ(ν) := min{t > 0 |m(t) = ν}. Notice that the point q is an arbitrarily given point

if the coordinates (t, θ) are chosen so as to satisfy θ(q) = 0.

Remark 3.1. If the Gaussian curvature of a cylinder of revolution is nonpositive every-

where, then any geodesic has no conjugate point. Therefore, it is clear to see that the

cut locus of a point on the manifold is the meridian opposite to the point.

3.1 Preliminaries

Let f be the solution of the differential equation

f ′′ +Kf = 0 (3.1)

with initial conditions f(0) = c and f ′(0) = 0. Here c denotes a fixed positive number

and K : [0,∞)→ R denotes a continuous function.

Lemma 3.2. If K(0) > 0 and f ′(t) 6= 0 for any t > 0, then f ′(t) < 0 on (0,∞).

Furthermore, if f > 0 on [0,∞), then K(t) < 0 for some t > 0.
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Proof. Since f ′′(0) = −K(0)f(0) < 0 by (3.1), f ′(t) is strictly decreasing on (0, δ) for

some δ > 0. This implies that 0 = f ′(0) > f ′(t) for any t ∈ (0, δ). Since f ′ 6= 0 on

[0,∞), f ′(t) < 0 on (0,∞). Furthermore, we assume that f > 0 on [0,∞). Supposing

that K ≥ 0 on [0,∞), we will get a contradiction. By (3.1),

f ′′(t) = −K(t)f(t) ≤ 0

on [0,∞). Hence f ′(t) is decreasing on [0,∞). In particular, 0 = f ′(0) > f ′(δ) ≥ f ′(t)

for any t ≥ δ. This contradicts the assumption f > 0.

Lemma 3.3. Suppose that K(0) > 0 and f > 0 on [0,∞). If f ′(t) = 0 for some t > 0

and K is decreasing, then there exists a unique solution t = t0 ∈ (0,∞) of f ′(t) = 0 such

that f ′(t) < 0 on (0, t0) and f ′(t) > 0 on (t0,∞) and there exists t1 ∈ (0, t0) satisfying

K(t1) = 0. Hence K ≥ 0 on [0, t1] and K ≤ 0 on [t1,∞).

Proof. Let a > 0 denote the minimum positive solution t = a of f ′(t) = 0. Suppose that

there exist another solution b(> a) satisfying f ′(b) = 0. By the mean value theorem,

there exist t1 ∈ (0, a) and s1 ∈ (a, b) satisfying f ′′(t1) = f ′′(s1) = 0. Hence K(t1) =

K(s1) = 0 by (3.1). Since K is decreasing, K = 0 on [t1, s1]. Therefore, by (3.1),

f ′′(t) = 0 on [t1, s1]. In particular, f ′(a) = f ′(t1) = 0. Since 0 < t1 < a, t1 is a positive

solution t of f ′(t) = 0, which is less than a. This is a contradiction. Therefore, there

exists a unique positive solution t = t0 of f ′(t) = 0. From the mean value theorem and

(3.1), there exists t1 ∈ (0, t0) satisfying K(t1) = 0. Since K(t) is decreasing, K ≥ 0 on

[0, t1] and K ≤ 0 on [t1,∞). Hence by (3.1), f ′′(t) = −K(t)f(t) ≥ 0 on [t1,∞) and

f ′(t) ≥ f ′(t0) = 0 for any t > t0. Since f ′ has a unique positive zero, f ′ > 0 on (t0,∞).

It is clear from the proof of Lemma 3.2 that f ′ < 0 on (0, t0).

3.2 Review of the behavior of geodesics

From now on, M denotes a complete Riemannian manifold R1 × S1 with a warped

product Riemannian metric ds2 = dt2 +m(t)2dθ2 of the real line (R1, dt2) and the unit

circle (S1, dθ2). Let us review the behavior of a geodesic γ(s) = (t(s), θ(s)) on the

manifold M . For each unit speed geodesic γ(s) = (t(s), θ(s)), there exists a constant ν

satisfying

m(t(s))2θ′(s) = ν. (3.2)

Hence, if η(s) denotes the angle made by the velocity vector γ′(s) of the geodesic γ(s)

and the tangent vector (∂/∂θ)γ(s), then

m(t(s)) cos η(s) = ν (3.3)
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for any s. The constant ν is called the Clairaut constant of γ. The reader should refer

to Chapter 7 in [SST] for the Clairaut relation. Since γ(s) is unit speed,

t′(s)2 +m(t(s))2θ′(s)2 = 1 (3.4)

holds. By (3.2) and (3.4), it follows that

t′(s) = ±
√
m(t(s))2 − ν2
m(t(s))

(3.5)

θ(s2)− θ(s1) = ε(t′(s))

∫ t(s2)

t(s1)

ν

m
√
m2 − ν2

dt (3.6)

holds, if t′(s) 6= 0 on (s1, s2) and ε(t′(s)) denotes the sign of t′(s).

The length L(γ) of a geodesic segment γ(s) = (t(s), θ(s)), s1 ≤ s ≤ s2 is

L(γ) = ε(t′(s))

∫ t(s2)

t(s1)

m(t)√
m(t)2 − ν2

dt (3.7)

if t′(s) 6= 0 on (s1, s2).

From a direct computation, the Gaussian curvature G of M is given by

G(q) = −m
′′

m
(t(q))

at each point q ∈ M . Since G is constant on t−1(a) for each a ∈ R, a smooth function

K on R is defined by

K(u) := G(q)

for q ∈ t−1(u). Therefore m satisfies the following differential equation

m′′ +Km = 0

with m′(0) = 0.

From now on, we assume that the Gaussian curvature G of M is positive on t−1(0), and

m(t) = m(−t) holds for any t ∈ R. Hence, M is symmetric with respect to the equator

t = 0 and if K is decreasing on [0,∞), then by Lemma 3.3, m′(t) < 0 for all t > 0 or

there exists a unique positive solution t = t0 of m′(t) = 0 such that m′ < 0 on (0, t0)

and m′ > 0 on (t0,∞). Furthermore, if the latter case happens, there exists t1 ∈ (0, t0)

such that K ≥ 0 on [0, t1] and K ≤ 0 on [t1,∞).

For technical reasons, we treat both geodesics on M and its universal covering space

π : M̃ →M, where M̃ := (R1 ×R1, dt̃2 +m(t̃)2dθ̃2).
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Choose any point p on the equator t = 0. We may assume that θ(p) = 0 without loss of

generality. Let γ : [0,∞)→M denote a geodesic emanating from p = γ(0) with Clairaut

constant ν ∈ (inf m,m(0)). Notice that γ is uniquely determined up to the reflection

with respect to t = 0. The geodesic γ(s) = (t(s), θ(s)) is tangent to the parallel t = ξ(ν)

( if (t ◦ γ)′(0) > 0 ) or t = −ξ(ν) ( if (t ◦ γ)′(0) < 0 ), where ξ(ν) > 0 denotes the least

positive solution of m(ξ(ν)) = ν, that is,

ξ(ν) := min{u > 0 |m(u) = ν}.

After γ is tangent to the parallel t = ξ(ν) or −ξ(ν), γ intersects the equator t = 0 again.

Thus, after γ̃ is tangent to the parallel arc t̃ = ξ(ν) or −ξ(ν), γ̃ intersect t̃ = 0 again.

Here γ̃ denotes a geodesic on M̃ satisfying γ = π ◦ γ̃.

From (3.6), we obtain,

θ̃(s0)− θ̃(0) =

∫ 0

−ξ(ν)

ν

m
√
m2 − ν2

dt =

∫ ξ(ν)

0

ν

m
√
m2 − ν2

dt,

and

θ̃(s1)− θ̃(s0) =

∫ 0

−ξ(ν)

ν

m
√
m2 − ν2

dt =

∫ ξ(ν)

0

ν

m
√
m2 − ν2

dt,

where s0 := min{s > 0 |m(t̃(s)) = ν}, s1 := min{s > 0 | t̃(s) = 0}.

By summing up the argument above, we have,

Lemma 3.4. Let γ̃(s) = (t̃(s), θ̃(s)) denote a geodesic emanating from the point p̃ :=

(t̃, θ̃)−1(0, 0) with Clairaut constant ν ∈ (inf m,m(0)). Then γ̃ intersects t̃ = 0 again at

the point (t̃, θ̃)−1(0, ϕ(ν)). Here,

ϕ(ν) := 2

∫ 0

−ξ(ν)

ν

m
√
m2 − ν2

dt = 2

∫ ξ(ν)

0

ν

m
√
m2 − ν2

dt. (3.8)

Lemma 3.5. The length l(ν) of the subarc (t̃(s), θ̃(s)), 0 ≤ θ̃(s) ≤ ϕ(ν), of γ̃(s) is given

by

l(ν) = 2

∫ 0

−ξ(ν)

m√
m2 − ν2

dt = 2

∫ 0

−ξ(ν)

√
m2 − ν2
m

dt+ νϕ(ν), (3.9)

and
∂l

∂ν
(ν) = νϕ′(ν). (3.10)



The case where the Gaussian curvature is decreasing on the upper half meridian 18

Proof. From (3.7), we obtain,

l(ν) = 2

∫ 0

−ξ(ν)

m√
m2 − ν2

dt.

Since
m√

m2 − ν2
=

√
m2 − ν2
m

+
ν2

m
√
m2 − ν2

holds, we get

l(ν) = 2

∫ 0

−ξ(ν)

√
m2 − ν2
m

dt+ 2

∫ 0

−ξ(ν)

ν2

m
√
m2 − ν2

dt.

Hence, by (3.8), we get (3.9). By differentiating l(ν) with respect to ν, we get,

l′(ν) = 2

∫ 0

−ξ(ν)

∂

∂ν

√
m2 − ν2
m

dt+ ϕ(ν) + νϕ′(ν) = νϕ′(ν).

3.3 The decline of the function ϕ(ν)

Let π : M̃ = (R1 ×R1, dt̃2 +m(t̃)2dθ̃2)→M denote the universal covering space of M.

We choose an arbitrary point p̃ of t̃−1(−∞, 0], and we denote the cut locus of p̃ by Cp̃.

Before proving some lemmas on the cut locus, let us review the structure of the cut locus

of M̃. We refer to [ShT] or [SST] on the structure of the cut locus of a 2-dimensional

complete Riemannian manifold.

It is known that the cut locus has a local tree structure. Since M̃ is simply connected, the

cut locus has no circle. If two cut points x and y are in a common connected component

of the cut locus, then x and y are connected by a unique rectifiable arc in the cut locus.

Since M̃ is homeomorphic to R2, we may define a global sector at each cut point. For

general surfaces, only local sectors are defined (see [ShT], or [SST]). A global sector

at each cut point x of the point p̃ is by definition a connected component of M̃ \ Γx,

where Γx denotes the set of all points lying on a minimal geodesic segment joining p̃ to

x. Let c : [0, a] → Cp̃ denote a rectifiable arc in the cut locus. Then for each cut point

c(t), t ∈ (0, a), c bisects the sector at c(t) containing c[0, t) (respectively c(t, a]) . For

each sector of the point p̃ on M̃, there exists an end point of Cp̃, since Cp̃ has no circle.

Here, a cut point q of p̃ is called an end point if q admits exactly one sector.

In this section, we assume that the Gaussian curvature G of M is increasing on the

half meridian t−1(−∞, 0] ∩ θ−1(0) and that M has a reflective symmetry with respect
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to t = 0. Hence the Gaussian curvature of M̃ is increasing on the lower half meridian

t̃−1(−∞, 0] ∩ θ̃−1(0) and M̃ has a reflective symmetry with respect to t̃ = 0.

Lemma 3.6. Suppose that there exists a cut point of the point p̃ in t̃−1(−∞, 0). Then

there exist two minimal geodesic segments α and β joining p̃ to a cut point y of p̃

such that the global sector D(α, β) bounded by α and β has an end point of Cp̃ and

D(α, β) ⊂ t̃−1(−∞, 0).

Proof. Since the subset of cut points admitting at least two minimal geodesics is dense

in the cut locus, the existence of two minimal geodesics α and β is clear (see [Bh]).

Since M̃ has a reflective symmetry with respective to t̃ = 0, it is trivial that D(α, β) ⊂
t̃−1(−∞, 0). Let y denote the end point of α distinct from p̃. Since the proof is complete

in the case where the cut point y is not an end point of the cut locus, we assume that y

is an end point. Then, we get an arc c in the cut locus emanating from y. Any interior

point y1 on c is not an end point of the cut locus. It is clear that there exist two minimal

geodesic segments joining p̃ and y1 which bound a sector containing y as an end point

of the cut locus.

Lemma 3.7. For any unit speed minimal geodesic segment γ : [0, L(γ)]→ M̃ joining p̃

to any end point x of Cp̃ in the domain D(α, β), x is conjugate to p̃ along γ and γ is

shorter than α and β.

Proof. Note that for any end point x of the cut locus, the set of all minimal geodesic

segments joining p̃ to x is connected. Therefore, x is conjugate to p̃ along any minimal

geodesic segments joining p̃ to the end point of the cut locus. Let γ : [0, L(γ)] → M̃

denote any minimal geodesic segment p̃ to an end point x of Cp̃∩D(α, β). We will prove

that γ is shorter than α and β. It follows from Theorem B in [ShT] or [IT] that there

exists a unit speed arc c : [0, l] → Cp̃ joining the end point x to y, where y denotes the

end point of α distinct from p̃. Since the function d(p̃, c(τ)) is a Lipschitz function, it

follows from Lemma 7.29 in [WZ] that the function is differentiable for almost all τ and

d(p̃, c(l))− d(p̃, y) =

∫ l

0

d

dτ
d(p̃, c(τ))dτ (3.11)

holds. From the Clairaut relation (3.3), the inner angle θ(τ) at c(τ) of the sector

containing c[0, τ) is less than π. Hence, by the first variation formula, we get

d

dτ
d(p̃, c(τ)) = cos

θ(τ)

2
> 0
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for almost all τ. Notice that for each τ ∈ (0, l), the curve c bisects the sector at c(τ)

containing c[0, τ). Therefore, from (3.11),

L(α) = L(β) = d(p̃, c(l)) > d(p̃, y) = L(γ).

Lemma 3.8. Let q be a point on θ̃−1(0) and u0 any real number. Then d(q, c(θ))

is strictly increasing on [0,∞). Here c : [0,∞) → M̃ denotes c(θ) = (u0, θ) in the

coordinates (t̃, θ̃) and d(·, ·) denotes the Riemannian distance function on M̃.

Proof. Choose any positive numbers θ1 < θ2. Let αi, i = 1, 2, denote minimal geodesic

segments joining the point q to c(θi) respectively. Since θ2 > θ1, there exists an intersec-

tion α2(t2) of α2 and the meridian θ̃ = θ1. The point c(θ1) is the unique nearest point

on t̃ = u0 from α2(t2). Hence,

d(α2(t2), c(θ1)) < d(α2(t2), c(θ2)).

Therefore, by the triangle inequality, we get

d(q, c(θ2)) = d(q, α2(t2)) + d(α2(t2), c(θ2)) > d(q, α2(t2)) + d(α2(t2), c(θ1)) ≥ d(q, c(θ1)).

This implies that d(q, c(θ)) is strictly increasing on [0,∞).

Lemma 3.9. Suppose that γ : [0, L(γ)] → M̃ is a minimal geodesic segment joining p̃

to an end point x ∈ Cp̃, which is a point in the sector D(α, β) bounded by two minimal

geodesic segments α and β emanating from p̃. Then, for any s ∈ [0, L(γ)], t̃(α(s)) ≥
t̃(γ(s)) ≥ t̃(β(s)) holds. Here we assume that

∠(α′(0), (∂/∂t̃)p̃) < ∠(γ′(0), (∂/∂t̃)p̃) < ∠(β′(0), (∂/∂t̃)p̃),

where ∠(·, ·) denotes the angle made by two tangent vectors.

Proof. From (3.5), it follows that for sufficiently small s > 0, t̃(α(s)) > t̃(γ(s)) > t̃(β(s))

holds. Hence the set A := {s ∈ (0, L(γ)) | t̃(α(s)) > t̃(γ(s)) > t̃(β(s))} is a nonempty

open subset of (0, L(γ)). Let (0, s0) denote the connected component of A. It is sufficient

to prove that s0 = L(γ). Suppose that s0 < L(γ). Thus, t̃(α(s0)) = t̃(γ(s0)) or t̃(γ(s0)) =

t̃(β(s0)) holds, since A is open. By applying Lemma 3.8 for u0 := t̃(α(s0)) and t̃(β(s0)),

we get α(s0) = γ(s0) or γ(s0) = β(s0), which is a contradiction.

Lemma 3.10. For any point p̃ ∈ t̃−1(−∞, 0], there does not exist a cut point of p̃ in

t̃−1(−∞, 0). In particular, the cut locus of p̃ is a subset of t̃−1(0) if t̃(p̃) = 0. This
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implies that the cut locus Cp of a point p ∈ t−1(0) is a subset of θ−1(π) ∪ t−1(0). Here

the coordinates (t, θ) are chosen so as to satisfy θ(p) = 0.

Proof. Suppose that there exist a cut point of p̃ in t̃−1(−∞, 0). By Lemma 3.6, there

exist two minimal geodesic segments α and β joining a cut point y of p̃ which bound a

sector D(α, β) containing an end point x of Cp̃. Let γ : [0, L(γ)] → M̃ be a unit speed

geodesic segment joining p̃ to the end point x. From Lemmas 3.6 and 3.9, it follows that

for any s ∈ [0, L(γ)],

0 ≥ t̃(α(s)) ≥ t̃(γ(s)) ≥ t̃(β(s))

holds. Since the Gaussian curvature G is increasing on each lower half meridian, we

obtain

G(α(s)) ≥ G(γ(s)) ≥ G(β(s)).

By applying the Rauch comparison theorem for the pair of geodesic segments α|[0,L(γ)]
and γ, p̃ admits a conjugate point on α|[0,L(γ)] along α.

This contradicts the fact that α is minimal. Since M̃ is symmetric with respect to t̃ = 0,

the cut locus of p̃ is a subset of t̃−1(0), if t̃(p̃) = 0. This implies that Cp ⊂ θ−1(π)∪t−1(0)

for the point p = t−1(0) ∩ θ−1(0).

Proposition 3.11. Let M be a complete Riemannian manifold R1 × S1 with a warped

product metric ds2 = dt2+m(t)2dθ2 of the real line (R1, dt2) and the unit circle (S1, dθ2).

Here the warping function m : R → (0,∞) is a smooth even function. If the Gaussian

curvature is positive on the equator and decreasing on the upper half meridian t−1(0,∞)∩
θ−1(0), then the function ϕ(ν) is decreasing on (inf m,m(0)).

Proof. Let M̃ := (R1 × R1, dt̃2 + m(t̃)2dθ̃2) denote the universal covering space of M.

Choose any point p̃ on t̃−1(0). For each ν ∈ (inf m,m(0)), let αν : [0,∞) → M̃ denote

the geodesic emanating from the point p̃ = αν(0) with Clairaut constant ν and with

(t̃ ◦ αν)′(0) < 0. From the Clairaut relation, we get ∠((∂/∂θ̃)p̃, α
′
ν(0)) = cos−1 ν/m(0).

Choose any ν1 < ν2 with ν1, ν2 ∈ (inf m,m(0)). Since

cos−1
ν2
m(0)

< cos−1
ν1
m(0)

,

it follows from Lemma 3.10 that αν1 does not cross the domain bounded by the subarc

of αν2 and t̃−1(0) ∩ θ̃−1[θ̃(p̃), θ̃(p̃) + ϕ(ν2)]. This implies that ϕ(ν1) ≥ ϕ(ν2). Therefore,

ϕ(ν) is decreasing on (inf m,m(0)).
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3.4 The cut locus of a point on M̃

Choose any point q on M̃ with −t0 < t̃(q) < 0, where t0 := sup{ t > 0 | m′(t) < 0}.
Without loss of generality, we may assume that θ̃(q) = 0. We consider two geodesics αν

and βν emanating from the point q = αν(0) = βν(0) with Clairaut constant ν > 0. Here

we assume that

∠((∂/∂t̃)q, α
′
ν(0)) > ∠((∂/∂t̃)q, β

′
ν(0)).

Lemma 3.12. The two geodesics αν and βν intersect again at the point (t̃, θ̃)−1(u, ϕ(ν))

if ν ∈ (inf m,m(0)), where u := −t̃(q).

Proof. Suppose that ν ∈ (inf m,m(0)). Since αν is tangent to the parallel arc t̃ = −ξ(ν),

it follows from (3.6) that

θ̃(αν(s1))− θ̃(αν(0)) =

∫ −u
−ξ(ν)

ν

m
√
m2 − ν2

dt,

where s1 := min{s > 0 | t̃(αν(s)) = −ξ(ν)}, and

θ̃(αν(s2))− θ̃(αν(s1)) =

∫ u

−ξ(ν)

ν

m
√
m2 − ν2

dt,

where s2 := min{s > 0 | t̃(αν(s)) = u}. Hence, we obtain,

θ̃(αν(s2))− θ̃(αν(0)) =

∫ u

−ξ(ν)

ν

m
√
m2 − ν2

dt+

∫ −u
−ξ(ν)

ν

m
√
m2 − ν2

dt. (3.12)

Since m is an even function,∫ u

−ξ(ν)

ν

m
√
m2 − ν2

dt =

∫ 0

−ξ(ν)

ν

m
√
m2 − ν2

dt+

∫ 0

−u

ν

m
√
m2 − ν2

dt

holds. Therefore, by (3.12),

θ̃(αν(s2))− θ̃(αν(0)) = 2

∫ 0

−ξ(ν)

ν√
m2 − ν2

dt = ϕ(ν).

This implies that αν passes through the point (t̃, θ̃)−1(u, ϕ(ν)). On the other hand, after

βν is tangent to t̃ = ξ(ν) at βν(s+1 ), where s+1 := min{s > 0 | t̃(βν(s)) = ξ(ν)}, the

geodesic intersects t̃ = u again at βν(s+2 ), where s+2 := min{s > s+1 | t̃(βν(s)) = u}. By

the similar computation as above, we get

θ̃(βν(s+2 ))− θ̃(βν(0)) = ϕ(ν).

This implies that αν and βν pass through the common point (t̃, θ̃)−1(u, ϕ(ν)).
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Lemma 3.13. The two geodesic segments αν |[0,s2] and βν |[0,s+2 ] have the same length

and its length equals l(ν), which is defined in Lemma 3.5. In particular, s2 = s+2 . Here,

s2 and s+2 denote the numbers defined in the proof of Lemma 3.12.

Proof. From (3.7), we have

L(αν |[0,s1]) =

∫ −u
−ξ(ν)

m√
m2 − ν2

dt, (3.13)

and

L(αν |[s1,s2]) =

∫ u

−ξ(ν)

m√
m2 − ν2

dt =

∫ 0

−ξ(ν)

m√
m2 − ν2

dt+

∫ u

0

m√
m2 − ν2

dt,

where s1 denotes the number defined in the proof of Lemma 3.12. Since m is even

L(αν |[s1,s2]) =

∫ 0

−ξ(ν)

m√
m2 − ν2

dt+

∫ 0

−u

m√
m2 − ν2

dt. (3.14)

Therefore, we get, by (3.9), (3.13) and (3.14),

L(αν |[0,s2]) = 2

∫ 0

−ξ(ν)

m√
m2 − ν2

dt = l(ν).

Analogously we have,

L(βν |[0,s+2 ]) = l(ν).

Lemma 3.14. Let q be a point on M̃ with |t̃(q)| ∈ (0, t0). For any ν ∈ (inf m,m(u)],

where u = −t̃(q), αν |[0,s2(ν)] and βν |[0,s2(ν)] are minimal geodesic segments joining q to

the point (t̃, θ̃)−1(u, θ̃(q) + ϕ(ν)), and in particular, {(t̃, θ̃) | t̃ = u, θ̃ ≥ ϕ(m(u)) + θ̃(q)}
is a subset of the cut locus of the point q. Here, s2(ν) := min{s > 0 | t̃(αν(s)) = u} for

each ν ∈ (inf m,m(0)).

Proof. Without loss of generality, we may assume that θ̃(q) = 0. We will prove that

αν |[0,s2(ν)] is a minimal geodesic segment joining q to the point αν(s2(ν)) = (t̃, θ̃)−1

(u, ϕ(ν)). Suppose that αν0 |[0,s2(ν0)] is not minimal for some ν0 ∈ (inf m,m(u)]. Here we

assume that ν0 is the minimum solution ν = ν0 of ϕ(ν) = ϕ(ν0).

Let α : [0, d(q, x)] → M be a minimal geodesic segment joining q to x := αν0(s2(ν0)) =

(t̃, θ̃)−1(u, ϕ(ν0)). Hence, ϕ(ν1) = ϕ(ν0) = θ̃(x) and α equals αν1 |[0,s2(ν1)] or βν1 |[0,s2(ν1)],
where ν1 ∈ (inf m,m(0)) denotes the Clairaut constant of α. By Proposition 3.11, ϕ(ν) =
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ϕ(ν0) for any ν ∈ [ν0, ν1]. Hence, by Lemmas 3.5 and 3.13 we get,

s2(ν1) = L(α) = L(αν1 |[0,s2(ν1)]) = L(αν0 |[0,s2(ν0)]) = s2(ν0).

This implies that αν0 |[0,s2(ν0)] is minimal, which is a contradiction, since we assumed

that αν0 |[0,s2(ν0)] is not minimal. Therefore, by Lemma 3.13, for any ν ∈ (inf m,m(u)],

the geodesic segments αν |[0,s2(ν)] and βν |[0,s2(ν)] are minimal geodesic segments joining q

to the point (t̃, θ̃)−1(u, ϕ(ν)) = αν(s2(ν)). In particular, the point αν(s2(ν)) = βν(s2(ν))

is a cut point of q.

Proposition 3.15. The cut locus of the point q in Lemma 3.14 equals the set

{(t̃, θ̃) | t̃ = u, θ̃ ≥ |ϕ(m(u))|}.

Here the coordinates (t̃, θ̃) are chosen so as to satisfy θ̃(q) = 0.

Proof. By Lemma 3.14, geodesic segments αν |[0,s2(ν)] and βν |[0,s2(ν)] are minimal geodesic

segments for any ν ∈ (inf m,m(u)]. Hence their limit geodesics α− := αinfm and β+ :=

βinfm are rays, that is, any their subarcs are minimal.

Since M̃ has a reflective symmetry with respect to θ̃ = 0, it is trivial from Lemma 3.14

that the set {(t̃, θ̃) | t̃ = u, θ̃ ≥ |ϕ(m(u))|} is a subset of the cut locus of q. Suppose that

there exists a cut point y /∈ {(t̃, θ̃) | t̃ = u, θ̃ ≥ |ϕ(m(u))|}. Without loss of generality, we

may assume that θ̃(y) > 0 = θ̃(q) and t̃(q) = −u < 0. From Lemma 3.10, t̃(y) > 0 and y

is not a point in the unbounded domain cut off by two rays α− and β+, and hence the

point lies in the domain D+ cut off by β+ and the submeridian t̃ > −u, θ̃ = θ̃(q) = 0.

Since the cut locus of Cq has a tree structure, there exists an end point x of the cut locus

in the D+. Hence, x is conjugate to q for any minimal geodesic segment γ joining q to

x. Since such a minimal geodesic γ runs in the domain D+, the Clairaut constant of the

segment is positive and less than inf m. From the Clairaut relation (3.3), any geodesic

cannot be tangent to any parallel arc t̃ = c, if the Clairaut constant is positive and less

than inf m. From Corollary 7.2.1 in [SST], γ has no conjugate point of q, which is a

contradiction.

Lemma 3.16. Let q be a point on M̃ with |t̃(q)| ≥ t0. Then the cut locus of q is empty.

Proof. Suppose that the cut locus of a point q with |t̃(q)| ≥ t0 is nonempty. Since

M̃ has a reflective symmetry with respect to t̃ = 0, we may assume that t̃(q) ≤ −t0.
Hence by Lemma 3.10, there exists an end point x of the cut locus Cq in t̃−1(0,∞).

Let γ : [0, d(q, x)] → M̃ denote a minimal geodesic segment joining q to x. Then x is

conjugate to q along γ, since x is an end point of Cq. Since θ̃(x) > 0 = θ̃(q), the Clairaut
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constant ν of γ is positive, by (3.2). Moreover, from the Clairaut relation (3.3), the

Clairaut constant ν is less than inf m = m(t0), since γ intersects t̃ = −t0. Therefore,

γ cannot be tangent to any parallel arc t̃ = c. From Corollary 7.2.1 in [SST], γ has no

conjugate point of q, which is a contradiction.

Now our Main theorem is clear from Proposition 3.15 and Lemma 3.16.



Chapter 4

The case where the half period

function is decreasing for a

cylinder of revolution

The following structure theorem was proved in [C1] for a class of surfaces of revolution

homeomorphic to a cylinder.

Theorem Let (M,ds2) be a complete Riemannian manifold R1 × S1 with a warped

product metric ds2 = dt2+m(t)2dθ2 of the real line (R1, dt2) and the unit circle (S1, dθ2).

Suppose that the warping function m is a positive-valued even function and the Gaussian

curvature of M is decreasing along the half meridian t−1[0,∞]∩ θ−1(0). If the Gaussian

curvature of M is positive on t = 0, then the structure of the cut locus Cq of a point

q ∈ θ−1(0) in M is given as follows:

1. The cut locus Cq is the union of a subarc of the parallel t = −t(q) opposite to

q and the meridian opposite to q if |t(q)| < t0 := sup{t > 0|m′(t) < 0} and

ϕ(m(t(q))) < π. More precisely,

Cq = θ−1(π) ∪ (t−1(−t(q)) ∩ θ−1[ϕ(m(t(q))), 2π − ϕ(m(t(q)))]).

2. The cut locus Cq is the meridian θ−1(π) opposite to q if ϕ(m(t(q))) ≥ π or if

|t(q)| ≥ t0.

Here, the half period function ϕ(ν) on (inf m,m(0)) is defined as

ϕ(ν) := 2

∫ 0

−ξ(ν)

ν

m
√
m2 − ν2

dt = 2

∫ ξ(ν)

0

ν

m
√
m2 − ν2

dt, (4.1)

26
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where ξ(ν) := min{t > 0|m(t) = ν}. Notice that the point q is an arbitrarily given point

if the coordinates (t, θ) are chosen so as to satisfy θ(q) = 0.

Crucial properties of the manifold (M,ds2) in the theorem above are

1. M has a reflective symmetry with respect to a parallel.

2. The Gaussian curvature is decreasing along each upper half meridian.

In this chapter, the second property is replaced by the following property:

The cut locus of a point on t̃ = 0 is a nonempty subset of t̃ = 0, for the universal

covering space (M̃, dt̃2 +m(t̃)2dθ̃2) of a cylinder of revolution (M,dt2 +m(t)2dθ2) with

a reflective symmetry with respect to the parallel t = 0.

We will prove the following structure theorem of the cut locus for a cylinder of revolution

satisfying the property above.

Main Theorem. Let (M,ds2) denote a complete Riemannian manifold R1 × S1 with

a warped product metric ds2 = dt2 + m(t)2dθ2 of the real line (R1, dt2) and the unit

circle (S1, dθ2), and by (M̃, dt̃2 + m(t̃)2dθ̃2) we denote the universal covering space of

(M,ds2). Suppose that m is an even positive-valued function. If the cut locus of a point

on t̃−1(0) is a nonempty subset of t̃−1(0), then the cut locus Cq of a point q of M with

|t(q)| < t0 := sup{t > 0 | m′|(0,t) < 0} equals the union of a subarc of the parallel

t = −t(q) opposite to q and the meridian opposite to q. More precisely, there exists a

number tπ ∈ [0, t0) such that for any point q with |t(q)| < tπ,

Cq = θ−1(π) ∪
(
t−1(−t(q)) ∩ θ−1[ϕ(m(t(q))), 2π − ϕ(m(t(q)))]

)
and for any point q with tπ ≤ |t(q)| < t0, Cq = θ−1(π). Moreover, if t0 is finite, then

Cq = θ−1(π) for any point q with |t(q)| = t0.

Here the coordinates (t, θ) are chosen so as to satisfy θ(q) = 0. Notice that the domain of

the half period function ϕ(ν) is (m(t0),m(0)) (respectively (inf m,m(0)) ) if t0 is finite

(respectively infinite).

Remark 4.1. If the Gaussian curvature of the manifold M in the Main Theorem is

nonpositive on t̃−1(t0,∞), then the cut locus Cq of any point q with |t(q)| > t0 is equal

to θ−1(π), the meridian opposite to q.

We refer to [C1], [SST] and [ST] for some fundamental properties of geodesics on a

surface of revolution and the structure theorem of the cut locus on a surface.
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4.1 A necessary and sufficient condition for ϕ(ν) to be de-

creasing

A complete Riemannian manifold (M,ds2) homeomorphic to R1×S1 is called a cylinder

of revolution if ds2 = dt2 +m(t)2dθ2 is a warped product metric of the real line (R1, dt2)

and the unit circle (S1, dθ2).

Throughout this paper, we assume that the warping functionm of a cylinder of revolution

M is an even function. Hence M has a reflective symmetry with respect to t = 0, which

is called the equator. Let (M̃, ds̃2) denote the universal covering space of (M,ds2).

Thus ds̃2 = dt̃2 +m(t̃)2dθ̃2. Since m′(0) = 0, it follows from Lemma 7.1.4 in [SST] that

the equator t = 0 and t̃ = 0 are geodesics in M and M̃ respectively.

The following lemma is a corresponding one to Lemma 3.2 in [BCST] in the case of a

two-sphere of revolution.

Lemma 4.2. If the cut locus of a point in t̃−1(0) is a nonempty subset of t̃−1(0), then the

Gaussian curvature of M̃ is positive on t̃−1(0) and for any t > 0 satisfying m′|(0,t) < 0,

the function ϕ(ν) is decreasing on (m(t),m(0)).

Proof. Let q be an end point of the cut locus of a point p ∈ t̃−1(0). Since the end

point q is conjugate to p along the subarc of t̃−1(0), the Gaussian curvature on t̃−1(0)

is positive. We omit the proof of the second claim, since the proof of Proposition 4.6 in

[C1] is applicable.

Lemma 4.3. Suppose that the Gaussian curvature of M̃ is positive on t̃−1(0). Let t > 0

be any number satisfying m′|(0,t) < 0. If ϕ(ν) is decreasing on (m(t),m(0)) then for any

point p̃ ∈ t̃−1(0), Cp̃ ∩ t̃−1(−t, t) is a nonempty subset of t̃−1(0). Here Cp̃ denotes the

cut locus of p̃.

Proof. Choose an arbitrary point p̃ ∈ t̃−1(0) and fix it. Since the Gaussian curvature is

positive constant on t̃ = 0, there exists a conjugate point of p̃ along the subarc of t̃ = 0.

Thus, Cp̃∩ t̃−1(−t, t) is nonempty. We omit the proof of the claim that Cp̃∩ t̃−1(−t, t) is

a subset of t̃−1(0), since the proof of Lemma 3.3 in [BCST] is still valid in our case.

Combining Lemmas 4.2 and 4.3 we get

Proposition 4.4. Suppose that m′ 6= 0 on (0,∞). Then the cut locus of a point on

t̃−1(0) is a nonempty subset of t̃−1(0) if and only if the Gaussian curvature of M̃ is

positive on t̃−1(0) and the half period function ϕ(ν) defined by (4.1) is decreasing on

(inf m,m(0)).
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4.2 Preliminaries

From now on, we assume that the cut locus of a point on t̃ = 0 is a nonempty subset

of t̃ = 0. Hence, from Lemma 4.2, the function ϕ(ν) is decreasing on (m(t0),m(0)),

where t0 := sup{ t > 0 | m′|(0,t) < 0} and m(t0) means inf m when t0 = ∞. For each

ν ∈ [0,m(0)) let γν : [0,∞)→ M̃ denote a unit speed geodesic emanating from the point

p̃ := (t̃, θ̃)−1(0, 0) on t̃−1(0) with Clairaut constant ν. It is known (see [C1], for example)

that γν intersects t̃−1(0) again at the point (t̃, θ̃)−1(0, ϕ(ν)) if ν is greater than m(t0).

Notice that γν is a submeridian of θ̃ = 0, when ν = 0.

Lemma 4.5. If 0 ≤ ν ≤ m(t0), then γν is not tangent to any parallel arc t̃ = c. In

particular, the geodesic does not intersect t̃ = 0 again.

Proof. Since there does not exist a cut point of p̃ in t̃ 6= 0, the subarc γν |[0,l(ν)] of

γν is minimal for each ν ∈ (m(t0),m(0)). Here l(ν) denotes the length of the subarc

of γν having end points p̃ and (t̃, θ̃)−1(0, ϕ(ν)). Therefore, the limit geodesic γm(t0) =

limν↘m(t0) γν |[0,l(ν)] is a ray emanating from p̃ and in particular, γm(t0) is not tangent

to any parallel arc and does not intersect t̃ = 0 again. We will prove that for any ν ∈
[0,m(t0)), γν is not tangent to any parallel arc. Suppose that for some ν0 ∈ (0,m(t0)),

γν0 is tangent to a parallel arc. Since M̃ has a reflection symmetry with respect to

t̃ = 0, we may assume that (t̃ ◦ γν0)′(0) < 0 and (t̃ ◦ γm(t0))
′(0) < 0. By applying the

Clairaut relation at the point p̃, γν0 |(0,t) lies in the domain D cut off by γm(t0) and the

submeridian γ0 of θ̃ = 0 for some positive t. Since there does not exist a cut point of p̃

in t̃−1(−∞, 0), the geodesic γν0 does not intersect γm(t0) again. Hence γν0 |(0,∞) lies in

the domain D. Since γν0 is tangent to a parallel arc, the geodesic intersects t̃ = 0 again,

which is a contradiction.

Lemma 4.6. Let γ̃ν : R → M̃ denote a unit speed geodesic with Clairaut constant

ν ∈ (0,m(t0)]. If γ̃ν passes through a point of t̃−1(−t0, t0), then γ̃ν is not tangent to any

parallel arc t̃ = c.

Proof. First, we will prove that γ̃ν intersects t̃ = 0 for any ν ∈ [0,m(t0)]. Supposing that

γ̃ν does not intersect t̃ = 0 for some ν ∈ [0,m(t0)], we will get a contradiction. Since

M̃ has a reflective symmetry with respect to t̃ = 0, we may assume that (t̃ ◦ γ̃ν)(s) < 0

for any real number s. By the Clairaut relation, (t̃ ◦ γ̃ν)′(s) 6= 0 for any s satisfying

−t0 < t̃◦ γ̃ν(s) < 0 < t0. From the assumptions, we may assume that t̃◦ γ̃ν(0) ∈ (−t0, 0).

If (t̃ ◦ γ̃ν)′(0) > 0 (respectively (t̃ ◦ γ̃ν)′(0) < 0) then t̃ ◦ γ̃ν(s) is increasing (respectively

decreasing) and bounded above by 0. Thus, there exists a unique limit −t0 < t̃1 :=

lims→∞ t̃ ◦ γ̃ν(s) ≤ 0 (respectively −t0 < t̃1 := lims→−∞ t̃ ◦ γ̃ν(s) ≤ 0). It follows from

Lemma 7.1.7 in [SST] that m′(t̃1) = 0 and m(t̃1) = ν. This is a contradiction, since
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ν ∈ [0,m(t0)] and −t0 < t̃1 ≤ 0. Therefore, γ̃ν intersects t̃ = 0 for any ν ∈ [0,m(t0)],

and hence by Lemma 4.5, the geodesic is not tangent to any parallel arc.

Lemma 4.7. If t0 = sup{ t > 0 | m′|(0,t) < 0} is finite, then any subarc of the parallel

arc t̃ = −t0 is minimal, i.e., the parallel arc is a straight line. Hence, t̃ = t0 is also a

straight line.

Proof. Since m′(t0) = 0, the parallel arc t̃ = −t0 is a geodesic by Lemma 7.1.4 in [SST].

Let c be a geodesic emanating from a point on t̃ = −t0 which is not tangent to t̃ = −t0.
By Lemma 4.6, c is not tangent to any parallel arc. In particular, c does not intersect

t̃ = −t0 again. This implies that t̃ = −t0 is a straight line. Since M̃ has a reflective

symmetry with respect to t̃ = 0, t̃ = t0 is also a straight line.

4.3 The cut locus of a point in M̃

Choose any point q in M̃ with −t0 < t̃(q) < 0. Without loss of generality, we may assume

that θ̃(q) = 0. For each ν ∈ [0,m(0)) let γν : [0,∞) → M̃ denote a geodesic emanating

from the point p̃ := (t̃, θ̃)−1(0, 0) on t̃−1(0) with Clairaut constant ν. The geodesic γν

intersects t̃ = 0 again at the point (t̃, θ̃)−1(0, ϕ(ν)), if ν > m(t0).

We consider two geodesics αν and βν emanating from the point q = αν(0) = βν(0) with

Clairaut constant ν > 0. Here we assume that the angle ∠((∂/∂t̃)q, α
′
ν(0)) made by the

tangent vectors (∂/∂t̃)q and α′ν(0) is greater than the angle ∠((∂/∂t̃)q, β
′
ν(0)) by (∂/∂t̃)q

and β′ν(0), if ν < m(t(q)). Notice that αν = βν if ν = m(t(q)).

It follows from Lemma 5.1 in [C1] that the geodesics αν and βν intersect again at the

point (t̃, θ̃)−1(u, ϕ(ν)), where u := −t̃(q), if ν ∈ (m(t0),m(u)). The subarcs of αν and βν

having end points q and (t̃, θ̃)−1(u, ϕ(ν)) have the same length and its length equals l(ν),

where l(ν) denotes the length the subarc of γν having end points p̃ and (t̃, θ̃)−1(0, ϕ(ν)).

Lemma 4.8. Let q be a point in M̃ with |t̃(q)| ∈ (0, t0). Then, for any ν ∈ (m(t0),m(u)],

where u = −t̃(q), αν |[0,l(ν)] and βν |[0,l(ν)] are minimal geodesic segments joining q to the

point (t̃, θ̃)−1(u, θ̃(q) + ϕ(ν)), and in particular, {(t̃, θ̃) | t̃ = u, θ̃ ≥ ϕ(m(u)) + θ̃(q)} is a

subset of the cut locus of the point q.

Proof. Without loss of generality, we may assume that θ̃(q) = 0 and −t0 < t̃(q) < 0. We

will prove that αν |[0,l(ν)] is a minimal geodesic segment joining q to the point αν(l(ν)) =

(t̃, θ̃)−1(u, ϕ(ν)). Suppose that αν0 |[0,l(ν0)] is not minimal for some ν0 ∈ (m(t0),m(u)].

Here we assume that ν0 is the minimum solution ν = ν0 of ϕ(ν) = ϕ(ν0).
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Let α : [0, d(q, x)] → M be a unit speed minimal geodesic segment joining q to x :=

αν0(l(ν0)) = (t̃, θ̃)−1(u, ϕ(ν0)). Hence, ϕ(ν1) = ϕ(ν0) = θ̃(x) and α equals αν1 |[0,l(ν1)] or

βν1 |[0,l(ν1)], where ν1 ∈ (m(t0),m(u)) denotes the Clairaut constant of α. By Lemma 4.2,

ϕ(ν) = ϕ(ν0) for any ν ∈ [ν0, ν1]. Hence, by Lemma 3.2 in [C1] we get, l(ν1) = l(ν0).

This implies that αν0 |[0,l(ν0)] is minimal, which is a contradiction, since we assumed

that αν0 |[0,l(ν0)] is not minimal. Therefore, for any ν ∈ (m(t0),m(u)], the geodesic

segments αν |[0,l(ν)] and βν |[0,l(ν)] are minimal geodesic segments joining q to the point

(t̃, θ̃)−1(u, ϕ(ν)) = αν(l(ν)). In particular, the point αν(l(ν)) = βν(l(ν)) is a cut point

of q.

Proposition 4.9. The cut locus of any point q with |t̃(q)| < t0 equals the set

{(t̃, θ̃) | t̃ = u, θ̃ ≥ |ϕ(m(u))|}.

Here the coordinates (t̃, θ̃) are chosen so as to satisfy θ̃(q) = 0.

Proof. Without of loss of generality, we may assume that −t0 < t̃(q) < 0. By Lemma

4.8, the geodesic segments αν |[0,l(ν)] and βν |[0,l(ν)] are minimal for any ν ∈ (m(t0),m(u)].

Hence their limit geodesics α− := αm(t0) and β+ := βm(t0) are rays, that is, any their

subarcs are minimal. Since M̃ has a reflective symmetry with respect to θ̃ = 0, it is trivial

from Lemma 4.8 that the set {(t̃, θ̃) | t̃ = u, θ̃ ≥ |ϕ(m(u))|} is a subset of the cut locus of

q. Suppose that there exists a cut point y /∈ {(t̃, θ̃) | t̃ = u, θ̃ ≥ |ϕ(m(u))|}. Without loss

of generality, we may assume that θ̃(y) > 0 = θ̃(q). Since the cut locus of q has a tree

structure, there exists an end point x of the cut locus in the set {(t̃, θ̃)| θ̃ > 0}\D(β+, α−),

where D(β+, α−) denotes the closure of the unbounded domain cut off by β+ and α−.

Hence, x is conjugate to q along any minimal geodesic segments γ joining q to x. Since

such a minimal geodesic γ runs in the set {(t̃, θ̃) | θ̃ > 0} \D(β+, α−), by applying the

Clairaut relation at the point q, we get that the Clairaut constant of γ is positive and less

than m(t0). Notice that the geodesics β+ and α− have the same Clairaut constant m(t0).

It follows from Lemma 4.5 that the geodesic γ cannot be tangent to any parallel arc.

From Corollary 7.2.1 in [SST], γ has no conjugate point of q, which is a contradiction.

Lemma 4.10. Let q be a point in M̃ with |t̃(q)| = t0. Then, the cut locus of q is empty.

Proof. We may assume that t̃(q) = −t0, since M̃ has a reflective symmetry with respect

to t̃ = 0. Supposing that there exists a cut point x of q, we will get a contradiction. Since

M̃ is simply connected, the cut locus has an end point. Hence, we may assume that the

cut point x is an end point of Cq. Let γ be a minimal geodesic segment joining q to x.

Then, x is a conjugate point of q along γ, since x is an end point of the cut locus. From

Lemma 4.7, t̃(x) 6= −t0. By applying the Clairaut relation, we obtain that the Clairaut
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constant of γ is smaller than m(t0), and hence γ is not tangent to any parallel arc by

Lemma 4.6. Therefore, by Corollary 7.2.1 in [SST], there does not exist a conjugate

point of q along γ, which is a contradiction.

Lemma 4.11. Let q be a point in M̃ with |t̃(q)| > t0. If the Gaussian curvature of M̃

is nonpositive on t̃−1(−∞,−t0) ∪ t̃−1(t0,∞), then the cut locus of the point q is empty.

Proof. Suppose that the cut locus of a point q with |t̃(q)| > t0 is nonempty. Since M̃ has

a reflective symmetry with respect to t̃ = 0, we may assume that t̃(q) < −t0. Supposing

the existence of a cut point of q, we will get a contradiction. We may assume that there

exists an end point x of Cq, since M̃ is simply connected. Let γ : [0, d(q, x)] → M̃ be

a unit speed minimal geodesic joining q to x. If t̃(γ(s)) ≤ −t0 for any s ∈ (0, d(q, x)],

then γ has no conjugate point of q, since the Gaussian curvature is nonpositive on

t̃−1(−∞,−t0) ∪ t̃−1(t0,∞). This contradicts the fact that x is an end point of Cq. Thus

we may assume that t̃(γ(s)) > −t0 for some s ∈ (0, d(q, x)]. This implies that γ passes

through a point of t̃−1(−t0, t0). It follows from the Clairaut relation that the Caliraut

constant of γ is smaller than m(t0). Hence, from Corollary 7.2.1 in [SST] and Lemma

4.6, there does not exist a conjugate point of q along γ, which is a contradiction.

Proof of Main Theorem

Since the functions m and ϕ are decreasing on [0, t0) and (m(t0),m(0)) respectively, the

composite function ϕ◦m is increasing on (0, t0). It is clear to see that limt↗t0 ϕ◦m(t) =

∞, since the minimal geodesic segment γν |[0,l(ν)] converges to the ray γm(t0) as ν ↘ m(t0).

Let t = tπ ∈ [0, t0) be a solution of ϕ ◦m(t) = π. Define tπ = 0 if there is no solution.

Hence, ϕ ◦m(t) ≥ π on [tπ, t0) and ϕ ◦m(t) ≤ π on (0, tπ). Now the Main Theorem is

clear from Proposition 4.9 and Lemma 4.10.

4.4 A family of cylinders of revolution

An example of a cylinder of revolution satisfying the two properties 1 and 2 in the

introduction was given by Tamura [Ta]. The Riemannian metric ds2 is defined by

ds2 = dt2 + e−t
2
dθ2. It is easy to see that m′ = −2t ·m < 0 on (0,∞), and the Gaussian

curvature G(q) at a point q is −4t2(q) + 2. This implies that the Gaussian curvature is

decreasing on each upper half meridian of the surface. By Lemma 4.5 in [C1], the cut

locus of a point on t̃ = 0 on the universal covering space of the surface is a nonempty

subset of t̃ = 0. Hence, this surface satisfies the assumptions of the Main Theorem. The

following family of cylinders of revolution shows that the converse is not true, i.e., under
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the assumptions of the Main Theorem, the decline of the Gaussian curvature does not

always hold.

In this section we give a family of cylinders of revolution {Mλ}λ := {(R1 × S1, dt2 +

mλ(t)2dθ2)}λ satisfying the assumtions in the Main Theorem, where λ > 1 denotes a

parameter and

mλ(t) :=
cosh t√

1 + λ sinh2 t
. (4.2)

Lemma 4.12. The Gaussian curvature G(q) at a point q ∈Mλ is given by

G(q) = (λ− 1)

(
3

h2(t(q))
− 2

h(t(q))

)
, (4.3)

where h(t) = 1 + λ sinh2 t. In particular, the Gaussian curvature G is not monotonic

along the upper half meridian θ−1(0) ∩ t−1(0,∞).

Proof. From (4.2), we get

m′λ(t) = (1− λ)mλ(t) tanh t/h(t), (4.4)

and

m′′λ(t) = ((1− λ)tanh t/h(t))2mλ(t) + (1− λ)mλ(t)(h(t)/ cosh2 t− h′(t) tanh t)/h(t)2.

Thus, we obtain

m′′λ = (1− λ)mλ(t)((1− λ) tanh2 t+ h(t)/ cosh2 t− h′(t) tanh t)/h2.

Since (1− λ) tanh2 t+ h(t)/ cosh2 t = 1 holds, we have

−m′′λ(t)/mλ(t) = (λ− 1)
(
3/h2(t)− 2/h(t)

)
.

Since G(q) = −m′′λ(t(q))/mλ(t(q)), we obtain (4.3). By (4.4), it is trivial to see that the

Gaussian curvature is not monotonic along the upper half meridian.

Lemma 4.13. Let a, b ∈ (0, 1) be numbers with a < b. Then,∫ 1

b

dx

x(x− a)
√

(x− b)(1− x)
=

π

a(1− a)

(
a− 1√

b
+

1

c

)
(4.5)

holds, where c =
√

(b− a)/(1− a).
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Proof. From a direct computation, we obtain

d

du

(
a− 1√

b
arctan

u√
b

+
1

c
arctan

u

c

)
=

a− 1

u2 + b
+

1

u2 + c2
(4.6)

and
du

dx
=

(1− b)u
2(x− b)(1− x)

, (4.7)

where u =
√

(x− b)/(1− x). Since c2 = (b− a)/(1− a), we get

a− 1

u2 + b
+

1

u2 + c2
=
a(1− a)(1− x)

(1− b)x(x− a)
. (4.8)

By (4.6), (4.7) and (4.8), we have

d

dx

(
a− 1√

b
arctan

u√
b

+
1

c
arctan

u

c

)
=
a(1− a)

2

1

x(x− a)
√

(x− b)(1− x)
.

This implies that∫
dx

x(x− a)
√

(x− b)(1− x)
=

2

a(1− a)

(
a− 1√

b
arctan

u√
b

+
1

c
arctan

u

c

)

holds. Hence, we obtain (4.5).

By (4.2) and (4.4), we get inf mλ = 1/
√
λ and m′λ(t) < 0 for any t > 0. Hence the half

period function ϕ(ν) for Mλ is defined on (1/
√
λ, 1).

Lemma 4.14. The half period function ϕ(ν) is given by

ϕ(ν) = π

(
−
√
λ− 1 +

λν√
λν2 − 1

)
on ( 1√

λ
, 1). In particular ϕ is decreasing on ( 1√

λ
, 1) and the surface Mλ satisfies the

assumptions of the Main Theorem.

Proof. By putting x := m2
λ(t), we get, by (4.4),

dt =
h(t)

2(1− λ)x tanh t
dx. (4.9)

Since x = (1 + sinh t2)/h(t),

sinh2 t =
1− x
λx− 1

, cosh2 t =
(λ− 1)x

λx− 1
, and h(t) =

(λ− 1)

λx− 1
. (4.10)
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By combining (4.9) and (4.10), we obtain,

dt =
−
√
λ− 1

2(λx− 1)
√
x(1− x)

dx. (4.11)

Therefore, by (4.1),

ϕ(ν) = ν
√
λ− 1

∫ 1

ν2

dx

x(λx− 1)
√

(x− ν2)(1− x)

for ν ∈ (1/
√
λ, 1). It follows from Lemma 4.13 that ϕ(ν) = π

(
−
√
λ− 1 + λν/

√
λν2 − 1

)
.

It is easy to check that ϕ′(ν) = −π
(

1/(2
√
λ− 1) + λ/

√
λν2 − 1

3
)
< 0 on (1/

√
λ, 1).

Therefore, by Proposition 4.4, the surface Mλ satisfies the assumptions of the Main

Theorem.



Chapter 5

Final remarks

We summerize the Chapter 3 and the Chapter 4. Let (M,ds2) denote a complete

Riemannian manifold R1×S1 with a warped product metric ds2 = dt2+m(t)2dθ2 of the

real line (R1, dt2) and the unit circle (S1, dθ2). Suppose that m is an even function, and

the Gaussian curvature is positive on the equator t = 0. Then the half period function

ϕ(ν) is defined on (m(t0),m(0)), where t0 := sup{t > 0|m′|(0,t) < 0}, and m(t0) := inf m

if t0 =∞.

We have proved the following structure theorem of the cut locus for a certain class of

cylinders.

Theorem. If the half period function ϕ(ν) is decreasing on (m(t0),m(0)), then there

exists tπ ∈ [0, t0) such that for any point q ∈ θ−1(0) with |t(q)| < tπ, the cut locus of q

equals

θ−1(π) ∪
(
t−1(−t(q)) ∩ θ−1[ϕ(m(t(q))), 2π − ϕ(m(t(q)))]

)
and for any point q with tπ 6 |t(q)| 6 t0 equals θ−1(π), the meridian opposite to q.

In the Chapter 3, a sufficient condition for ϕ(ν) to be decreasing on (m(t0),m(0)) is

given: If the Gaussian curvature is decreasing on the upper half meridian θ−1(0) ∩
t−1[0,∞), and positive on the equator, then ϕ is decreasing on (m(t0),m(0)), the Gaus-

sian curvature is nonpositive on t−1(t0,∞), and m(t0) = inf m.

In the Chapter 4, a necessary and sufficient condition for ϕ(ν) to be decreasing on

(m(t0),m(0)) is also given by using the universal covering space of the cylinder.

The family {Mλ}λ>1 of cylinders of revolution introduced in the Chapter 4 can be

realized in Euclidean 3-space if λ > 1 satisfies
√
λ(λ− 1) 6 1. In particular, if λ 6 1.7,

then Mλ is isometrically embedded in Euclidean 3-space. Incidentally, the half period

36
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function for Mλ is decreasing for each λ > 1, but the Gaussian curvature of Mλ is not

monotone on the half meridian θ−1(0) ∩ t−1[0,∞).
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